
GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in
Point Cloud – Supplementary Material

Li Yi1 Wang Zhao2 He Wang1 Minhyuk Sung1 Leonidas Guibas1,3

1Stanford University 2Tsinghua University 3Facebook AI Research

This document provides a list of supplemental materials
that accompany the main paper.

• PartNet - We provide more details about the PartNet
dataset in Section 1.

• Runtime Comparison - We provide the runtime com-
parison between GSPN and a 3D bounding box regres-
sion baseline in Section 2.

• GSPN Model Design - We discuss the influence of dif-
ferent design choices in our Generative Shape Proposal
Network (GSPN) in Section 3.

• Additional Comparison with 3D Object Detection
Approaches - We compare our approach with previous
state-of-the-art object detection approaches on Scan-
Net and show the comparison in Section 4.

• Additional Comparison on NYUv2 - We compare
our approach with additional baseline methods on
NYUv2 dataset to validate its effectiveness. (see Sec-
tion 5).

• Architecture Details - We provide architecture details
about GSPN and Region-based PointNet (R-PointNet)
in Section 6.

• Additional Visualizations - In Section 7, we pro-
vide additional visualizations for the instance segmen-
tation results generated by our R-PointNet on different
datasets.

1. PartNet
PartNet is a consistent, large-scale dataset of 3D objects

annotated with fine-grained, instance-level, and hierarchi-
cal 3D part information. The dataset consists of 573,585
part instances over 26,671 3D models covering 24 object
categories. This dataset is very suitable for evaluating in-
stance segmentation algorithms since each part instance is
segmented out with their semantic labels annotated. Also
different from objects in a scene, parts in an object are more
structured but more adjacent with each other with usually
complex topology, thus providing a new angle for evaluat-
ing instance segmentation frameworks. For this reason, we
evaluate our framework on PartNet to test its generalizabil-
ity.

2. Runtime Comparison
We have shown a comparison of different 3D object pro-

posal approaches in the main paper. GSPN clearly outper-
forms the basic 3D bounding box regression baseline by a
large margin, both w.r.t. the proposal quality and w.r.t. the fi-
nal segmentation mAP. To compare the computation cost of
GSPN with the bounding box regression baseline, we mea-
sure the runtime of both proposal approaches on a single
TitanX GPU following the same configuration. On aver-
age, it takes the bounding box regression baseline 0.6s to
process a single scene in ScanNet while GSPN costs 0.88s.
This shows GSPN achieves significantly better performance
without introducing much additional computation cost com-
pared with the baseline.

3. GSPN Model Design
In GSPN, we use a variation of CVAE which takes multi-

scale context around each seed point as input and pre-
dicts the corresponding object center before the generation
process. To validate our design choices, we experiment
with three additional settings: replacing CVAE with naive
encoder-decoder structure (E-D), using a single scale con-
text as input, and removing the center prediction network
from GSPN. In the naive encoder-decoder structure, we en-
code the multi-scale context into a latent code and directly
decode the object instance from the code. For the second
setting, we choose the largest context as input to guarantee
the largest objects in the scene can be roughly included. We
use chamfer distance (CD) and mIoU as our evaluation met-
rics, where CD is computed between the generated shape
and the ground truth shape, and mIoU is computed between
the induced axis-aligned bounding boxes from the shapes.
The comparison is reported in Table 1.

When replacing CVAE with E-D, we observe difficulties
for the network to produce good shape reconstructions. We
conjecture the instance guidance in CVAE training makes
such a difference. The recognition network encodes the
ground truth instances into a proposal distribution, which
provides strong guidance to the prior network to learn a
semantic meaningful and compact prior shape distribution.
We also find using single context fails to encode small ob-
jects well, leading to worse object proposals. The experi-
ment also shows it is important to explicitly predict object



center to learn the generation process in a normalized space,
otherwise the reconstruction quality will be influenced.

Ours E-D 1-Context No Center Pred

CD 0.0450 0.0532 0.0524 0.0571
mIoU 0.581 0.408 0.486 0.409

Table 1. Evaluation of different generative model designs. Using
CVAE with multi-scale context inputs, along with a center predic-
tion network for translation factorization, gives us the best pro-
posal generation quality.

4. Additional Comparison with 3D Object De-
tection Approaches

To further justify the effectiveness of GSPN, we compare
our approach with previous state-of-the-art object detection
approaches on ScanNet, including Deep Sliding Shapes [5]
and Frustum Pointnet [4], which operate on RGB-D frame
data, as well as MaskR-CNN [3] projected to 3D. We eval-
uate using mean average precision (mAP) over 18 semantic
classes. In contrast to previous approaches operating on in-
dividual frames, GSPN proposes objects directly in 3D, ex-
ploiting generative shape priors and achieving significantly
better detection performance as shown in Table 2.

Ours [37] [30] [16]

mAP@0.25 30.6 15.2 19.8 17.3
mAP@0.5 17.7 6.8 10.8 10.5

Table 2. Additional comparison with object detection baselines.

5. Additional Comparison on NYUv2
To better evaluate our approach, we provide an addi-

tional comparison on semantic instance segmentation with
one of the previous state-of-the-art approaches, Mask R-
CNN, on the NYUv2 dataset. AP with an IoU threshold of
0.25 is used as the evaluation metric and the IoU is com-
puted between predicted segmentations and ground truth
segmentations.

Mask R-CNN is initially designed for RGB images. To
adapt it for RGBD image processing, we convert the depth
channel into an HHA image following [2] and concatenate
it with the original RGB image to form a 6-channel input
to the network. We initialize the whole network, except for
the first convolution layer, with pre-trained coco weights.
We carefully train Mask R-CNN following the guideline
provided by [1]. To be specific, we first freeze the feature
backbone, train the conv1, and heads for 20 epochs with a
learning rate 0.001. And then Resnet 4+ layers are finetuned
with another 15 epochs using lower learning rate (0.0001).
Finally Resnet 3+ layers are open to train for 15 epochs
with a learning rate 0.00001. Due to the small size of train-
ing data set (only 795 images), data augmentations (Fliplr &

Random Rotation & Gamma Adjustment), high weight de-
cay (0.01) and simple architecture (Resnet-50) are applied
to avoid severely overfitting. This approach is called MR-
CNN*. We also train Mask R-CNN on the RGB images
only to analyze the effectiveness of 3D learning. The quali-
tative comparison is shown in Table 3.

For shape categories with strong appearance signatures
but weak geometric features, such as monitor, Mask R-CNN
achieves the best performance. This indicates our way of
using color information is not as effective as Mask R-CNN.
Introducing depth information to Mask R-CNN does not
improve its performance dramatically, even on categories
with a strong geometric feature which could be easily seg-
mented out by R-PointNet such like bathtub. This justifies
the necessity of 3D learning while dealing with RGBD im-
ages.

6. Architecture Details
In GSPN, we have a center prediction network, a prior

network, a recognition network and a generation network.
We use PointNet/PointNet++ as their backbones. Following
the same notations in PointNet++, SA(K, r, [l1, ..., ld]) is a
set abstraction (SA) layer with K local regions of ball radius
r. The SA layer uses PointNet of d 1 x 1 conv layers with
output channels l1, ..., ld respectively. FP(l1, ..., ld) is a fea-
ture propagation (FP) layer with d 1 x 1 conv layers, whose
output channels are l1, ..., ld. Deconv(C, [h,w], [s1, s2])
means a deconv layer with C output channels, a kernel size
of [h,w] and a stride of [s1, s2]. MLP([l1, ..., ld]) indicates
several multi-layer perceptrons (MLP) with output channels
l1, ..., ld. FC([l1, ..., ld]) is the same as MLP. We report the
details of the network design in Table 4. The center predic-
tion network is essentially a PointNet++. The prior network
takes three contexts as input and uses three PointNets to en-
code each context. The parameters of the MLP used within
each PointNet are shown in the first list. Then their features
are concatenated and several MLPs are applied to transform
the aggregated features to get the mean & variance of the
latent variable z. In the recognition network, the first list
of MLPs is used to extract shape features and the second
list of MLPs is used to output the mean & variance of the
latent variable z. In the generation network, we use both
deconv and fc layers to generate shape proposals. This two
branches (deconv and fc) generate parts of the whole point
set independently which are combined together in the end.

The R-PointNet consists of three heads: a classification
head, a segmentation head and a bounding box refinement
head. For the classification head and the bounding box re-
finement head, we first use an MLP with feature dimen-
sions (128, 256, 512) to transform the input features. Then
after max-pooling, we apply several fully-connected layers
with output dimensions (256, 256, num category) and (256,
256, num category*6) to get the classification scores and
the bounding box updates, respectively. For the segmenta-
tion head, we choose to use a small PointNet segmentation
architecture with MLP([64, 64]) for local feature extraction,



Mean bath-
tub

bed book-
shelf

box chair coun-
ter

desk door dres-
ser

gar-
bin

lamp moni-
tor

night-
stand

pil-
low

sink sofa table TV toilet

MRCNN 29.3 26.3 54.1 23.4 3.1 39.3 34.0 6.2 17.8 23.7 23.1 31.1 35.1 25.4 26.6 36.4 47.1 21.0 23.3 58.8
MRCNN* 31.5 24.7 66.3 20.1 1.4 44.9 43.9 6.8 16.6 29.5 22.1 29.2 29.3 36.9 34.6 37.1 48.4 26.6 21.9 58.5

Ours 39.3 62.8 51.4 35.1 11.4 54.6 45.8 38.0 22.9 43.3 8.4 36.8 18.3 58.1 42.0 45.4 54.8 29.1 20.8 67.5

Table 3. Additional instance segmentation comparison on NYUv2 dataset.

MLP([64, 128, 512]) & Max-pooling for global feature ex-
traction and 1x1 conv(256, 256, num categroy) for segmen-
tation label prediction. we predict one segment for each cat-
egory and the weights are updated only based on the predic-
tion for the ground truth category during training. During
the inference time, the predicted RoIs are refined based on
the bounding box refinement head, which then goes through
Point RoIAlign to generate RoI features for the segmenta-
tion head.

In addition, we provide various configuration parameters
in Table 5. “num sample” represents the number of seed
points we used for shape proposal. “spn pre nms limit”
represents the object proposals we keep after GSPN
by filtering out proposals with low objectness scores.
“spn nms max size” is the maximum number of object pro-
posals we keep after a non-maximum suppression operation
following GSPN. “spn iou threshold” is the 3D IoU thresh-
old we used for the non-maximum suppression operation.
“num point ins mask” is the number of points in each of
our generated shape proposals. “train rois per image” is
the maximum number of RoIs we use for training within
each image in each mini-batch. “detection min confidence”
is the confidence threshold we use during the inference
time, where detections with confidence scores lower than
this threshold are filtered out. “detection max instances” is
the maximum number of instances we detection from a sin-
gle scene or object.

7. Additional Visualizations

In the main paper, we have evaluated our R-PointNet
with GSPN on three datasets: ScanNet, PartNet and
NYUv2. In this section, we provide more visualizations for
the instance segmentation results generated by R-PointNet
on these datasets. Specifically, we show instance segmen-
tation results on ScanNet, PartNet and NYUv2 in Figure 1,
Figure 2 and Figure 3 respectively.

References
[1] Mask r-cnn wiki. https://github.com/

matterport/Mask_RCNN/wiki. 2
[2] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich

features from rgb-d images for object detection and segmen-
tation. In European Conference on Computer Vision, pages
345–360. Springer, 2014. 2

[3] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In Computer Vision (ICCV), 2017 IEEE International Confer-
ence on, pages 2980–2988. IEEE, 2017. 2

Sub-Networks Architecture

Center Prediction Net SA(2048, 0.2, [32, 32, 64])
SA(512, 0.4, [64, 64, 128])

SA(128, 0.8, [128, 128, 256])
SA(32, 1.6, [256, 256, 512])

FP(256, 256)
FP(256, 256)
FP(256, 128)

FP(128, 128, 128)

Prior Net MLP([64, 128, 256]) (For context)
MLP([256, 512, 512]) (After concat)

Recognition Net MLP([64, 256, 512, 256])
MLP([256, 512, 512])

Generation Net Deconv(512, [3,3], [1,1])
Deconv(256, [3,3], [2,2])
Deconv(128, [4,4], [2,2])
Deconv(3, [1,1], [1,1])
FC([512, 512, 256*3])

Table 4. Architecture details of GSPN.

Configurations Train Inference

num sample 512 2048
spn pre nms limit 192 1536
spn nms max size 128 384
spn iou threshold 0.5 0.5

num point ins mask 256 1024
train rois per image 64 -

detection min confidence 0.5 0.5
detection max instances 100 100

Table 5. Main configuration parameters used during train and in-
ference.

[4] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frus-
tum pointnets for 3d object detection from rgb-d data. arXiv
preprint arXiv:1711.08488, 2017. 2

[5] S. Song and J. Xiao. Deep sliding shapes for amodal 3d object
detection in rgb-d images. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
808–816, 2016. 2

https://github.com/matterport/Mask_RCNN/wiki
https://github.com/matterport/Mask_RCNN/wiki


Figure 1. Visualization for ScanNet instance segmentation results. Different colors indicate different instances.



Figure 2. Visualization for PartNet instance segmentation results. Different colors indicate different instances.

Figure 3. Visualization for NYUv2 instance segmentation results. Different colors indicate different instances.


