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Figure 1: Similarity visualization of closest-to-center sample, its reconstruction and the feature center reconstruction. (a) Sample image
whose feature is closest to the feature center. (b) The reconstructed image of (a). (c) The reconstructed image from the class feature center.
We observe that the feature center corresponds to a neutral frontal face, which also shares similarity to the reconstructed image of the closest
sample (row (b)).
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Figure 2: Feature transfer visualization between two classes. (a) Original images of class 1: x1. (b) Reconstructed images of (a): x′
1 (c)

Original images of class 2: x2. (d) Reconstructed images of (c): x′
2. (e) Reconstructed images of the transferred features from class 1 to

class 2: x′
12. (f) Reconstructed images of the transferred features from class 2 to class 1: x′

21. It is clear that the transferred features share
the same identity as the target class while keep the source image’s intra-class variance including pose, expression, illumination, etc. It shows
the effectiveness of the proposed feature transfer in enlarging the intra-class variance for UR classes.



1. Feature Visualization
Center Visualization Given multiple images of the same
class, we extract features using Enc and compute a feature
center. We apply Dec on the feature center to reconstruct a
center face image. We also find one sample that is closest
to the center in the feature space and decode the sample
features. Figure 1 shows several examples. Each row shows
the original image of the closest sample, the reconstructed
image from this sample, the reconstructed image of the fea-
ture center. We observe that the feature centers correspond
to frontal neutral faces, which are visually similar to the re-
constructed images from the closest samples. In some cases,
the feature center shows a smiling face, which happens when
the majority of the images in this class is smiling.

Feature Transfer We perform feature transfer in the feature
space g. The transferred features can be visualized using
Dec. Let x1,2, x′

1,2, g1,2, c1,2 denote the input images,
reconstructed images, encoded features, and feature centers
of two classes, respectively. Let Q denote the PCA basis
of the intra-class variance. We transfer features from class
1 to class 2: g12 = c2 +QQT (g1 − c1), and visualize the
decoded images as x′

12. We also transfer features from class
2 to class 1: g21 = c1 +QQT (g2 − c2), and visualize the
decoded images as x′

21.

Figure 2 shows the examples of feature transfer between
two classes. The proposed feature transfer succeeded in
transferring the source class’s intra-class variance onto the
target class’s center. The visualizations of the transferred
features consistently preserve the target class’s identity via
incorporating the source image’s attributes, i.e. pose, expres-
sion, lighting condition, etc., which shows that our feature
transfer is effective in enlarging the intra-class variance.

PCA Basis In our framework, we use PCA to capture the
intra-class variance. Here we visualize what is being cap-
tured in each basis. Specifically, we add one basis to the
feature center of one class to generate a new feature repre-
sentation of that class via gi = ci+Q(:, k) ·0.1, where ci is
the center of class i, Q(:, k) is the kth PCA basis, and 0.1 is
the mean absolute coefficient of all images when projecting
to the top 10 basis.

Figure 3 shows the results of several examples. It is clear
that each PCA basis consistently captures a mixture of pose,
expression, illumination variations. For example, adding the
1st basis improves the image quality with good lighting con-
dition; adding the 6th basis turns the face to left and makes it
smile; adding the 7th basis turns the face downward slightly
and opens the mouth; and etc. It is critical that the PCA basis
captures the various intra-class variations so that the feature
transfer is semantically meaningful. This visualization sup-
ports that the reconstruction task in our baseline framework
encourages the feature space g to capture these variations.

Feature Interpolation The interpolation between two face
representations can show the transition from one to the
other. This visualization is widely used in GAN-based frame-
works [5,6]. However, previous work visualize this transition

with a mixed change of identity and non-identity variations.
In our approach, we model face as a linear combination of
center and intra-class variance. Therefore, we can separate
the visualization into two parts. Let g1,2, c1,2 denote the
encoded features and the feature centers of two samples from
different classes respectively. Previous work generates a new
representation as g = g1 + (g2 − g1) ∗ α. In our work,
we can generate a smooth transition of non-identity change
as g = c1 +QQT (g2 − c2) ∗ α, which is the same as the
proposed feature transfer when α = 1. On the other hand,
we can also generate a smooth transition of identity change
as g = g1 + (c2 − c1) ∗ α. We vary α from 0.1 to 1 and
visualize the transition results.

Figure 4 shows the above 3 transitions of 4 examples.
Traditional method shows the change of identity and non-
identity components simultaneously. In our approach, we
can visualize two separate transitions for identity and non-
identity changes. For example, (a) shows the transition from
a male with slightly left pose to a female with right pose.
Second row shows the same identity while the mouth is
gradually open and the face is turning to the right at the same
time. Third row shows the same attributes as the left image
(pose and expression) while the identity is gradually changed
to that of the right image. When the source and target image
have opposite pose (example (d)), traditional interpolation
generates undesirable artifacts. However, our method shows
smooth transitions without any artifacts.

2. Ablation Study
In this paper, we propose a two-stage alternative training

scheme to correct the classifier bias and learn a more dis-
criminative feature representation. In the main manuscript,
we have shown sufficient experimental results to support
that we can learn a better feature representation, which is
essential for face recognition. Here we present evidence to
show that we have corrected the classifier bias as well.

In the ablation study, we perform classification on the
hold-out testing set from MS-celeb-1M. We compare two
methods. (1) FC: use the trained FC as the classifier. (2) NN:
use the training images to calculate the class feature center
as the gallery and use Nearest Neighbor for classification. It
is observed in [1] that the L2 norm of the weights for a UR
class is smaller than that of a regular class, which suggests
that the classifier is biased. Motivated by [1], we compare the
weight norm of regular and UR classes, which can quantify
the classifier bias.

The results are shown in Table 1. When using FC on
the baseline models, the accuracy on the UR classes is very
low. However when NN is used, the accuracy on the regular
classes drops slightly while the accuracy on the UR classes
improves significantly. This suggests that an UR sample that
is closer to its center can be mis-classified into a neighboring
regular class when using the trained FC. This bias is also
consistent with the imbalance between the weight norm of
regular and UR classes. After applying our FTL, we observe
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Figure 3: Visualization of the PCA basis. Column 1 shows the feature center reconstructed images. Column 2-11 shows the
reconstructed image of adding one of the top 10 principal components to the centers. Column 12 shows one sample image from
the corresponding class. We observe that each principal component captures a mixture of pose, expression, and illumination.
For example, adding the 6th basis to the centers turns the faces to left and with smiling expression. Therefore the proposed
baseline framework with reconstruction task encourage the intra-class variance being captured in features g.

Test → MS1M: FC MS1M: NN Weight Norm

Train↓ Method↓ Regular UR Regular UR Regular UR
10K0K sfmx+m-L2 92.03 – 90.21 84.64 0.427 –

10K10K
sfmx+m-L2 90.76 0.15 89.48 84.10 0.430 0.126
FTL (Ours) 95.18 88.32 92.27 88.16 0.379 0.356

10K30K
sfmx+m-L2 93.59 2.04 90.60 86.40 0.401 0.139
FTL (Ours) 96.26 81.89 91.76 88.72 0.366 0.270

10K50K
sfmx+m-L2 93.73 4.76 90.24 87.11 0.387 0.141
FTL (Ours) 96.66 68.52 92.08 89.36 0.352 0.235

10K0K sfmx+m-L2 94.07 93.15 93.68 93.46 0.291 0.281

Table 1: Additional results on the controlled experiments by varying the ratio between regular and UR classes in the training
sets. Evaluation is done on the hold out test set from MS1M.

a consistent improvement when using FC for classification.
The imbalance between the weight norm is also reduced to a
large extent. However, the bias is more difficult to correct
as the number of UR classes increases. In conclusion, the
proposed FTL method is very effective in correcting the
classifier bias and learning more discriminative features.

3. Data Distribution

Dataset Statistics Figure 6 shows the distribution of two
public face datasets: CASIA-Webface [7] and the cleaned
version of MS-celeb-1M [2]. Considering a class with no
more than 20 images as an UR class, the specific statistics
of regular and UR classes are shown in Table 3. There is

a large portion of UR classes for both datasets, which only
contributes a small amount of images to the full dataset.
Training with such UR data will cause the classifier bias
problem and lead to an inferior feature representation.

Dataset Distribution The main purpose of FTL is to enrich
the biased distribution of an UR class. To visualize this
effect, we project the features f onto 2D space. Figure 5
shows one example of the sample distribution before and
after the feature transfer. Figure 5 (a) shows one regular class
with a balanced distribution. When we select 20 images to
form an UR class, the distribution is biased (Figure 5 (b)).
After the proposed FTL, we observe that the distribution is
enriched after transferring 100 and 300 samples from other
regular classes, as shown in Figure 5 (c) and (d) respectively.
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α → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Figure 4: Transition from top-left image to top-right image via feature interpolation. For each example: first row shows the results of
g = g1+(g2−g1)∗α; second row shows the results of g = c1+QQT (g2−c2)∗α; third row shows the results of g = g1+(c2−c1)∗α.
While traditional interpolation shows a mixture change of identity and non-identity variations (first row), our approach can separate the
interpolation for non-identity (second row) and identity (third row) changes.

4. Network Structures

Table 2 shows the network structures of our framework,
which consists of an encoder Enc, a decoder Dec, a distil-
lation network R, and an FC classifier. The Enc takes an
input image x ∈ R

100×100×3 and generates a feature vector
g ∈ R

320×1. The Dec takes g as input and reconstructs
the original input image as x′ ∈ R

100×100×3. The R takes

the features g as input and distills the intra-class variance to
generate a more discriminative representation f ∈ R

320×1.
The FC takes f as input for classification with a linear layer,
which is eliminated from the table. Batch Normalization [3]
and ReLU [4] are used after each convolutional (Conv) and
full convolutional (Fconv) layer except “Conv53”.

It is well known that adding skip connections between
the encoder and the decoder helps to improve the visual



Enc Dec R
Layer Filter/Stride/Pad Output Size Layer Filter/Stride/Pad Output Size Layer Filter/Stride/Pad Output Size

FC 6× 6× 320 FC 6× 6× 320
Conv11 3× 3/1/1 100× 100× 32 FConv52 3× 3/1/1 6× 6× 160 FConv52 3× 3/1/1 6× 6× 160
Conv12 3× 3/1/1 100× 100× 64 FConv51 3× 3/1/1 6× 6× 256 FConv51 3× 3/1/1 6× 6× 256
Conv21 3× 3/2/1 50× 50× 64 FConv43 3× 3/2/1 12× 12× 256 - - -
Conv22 3× 3/1/1 50× 50× 64 FConv42 3× 3/1/1 12× 12× 128 - - -
Conv23 3× 3/1/1 50× 50× 128 FConv41 3× 3/1/1 12× 12× 192 - - -

Conv31 3× 3/2/1 25× 25× 128 FConv33 3× 3/2/1 24× 24× 192 - - -
Conv32 3× 3/1/1 25× 25× 96 FConv32 3× 3/1/1 24× 24× 96 - - -
Conv33 3× 3/1/1 25× 25× 192 FConv31 3× 3/1/1 24× 24× 128 - - -

Conv41 3× 3/2/0 12× 12× 192 FConv23 3× 3/2/1 48× 48× 128 - - -
Conv42 3× 3/1/1 12× 12× 128 FConv22 3× 3/1/1 48× 48× 64 - - -
Conv43 3× 3/1/1 12× 12× 256 FConv21 3× 3/1/0 50× 50× 64 - - -

Conv51 3× 3/2/1 6× 6× 256 FConv13 3× 3/2/1 100× 100× 64 - - -
Conv52 3× 3/1/1 6× 6× 160 FConv12 3× 3/1/1 100× 100× 32 Conv52 3× 3/1/1 6× 6× 160
Conv53 3× 3/1/1 6× 6× 320 FConv11 3× 3/1/1 100× 100× 3 Conv53 3× 3/1/1 6× 6× 320
AvgPool 6× 6/1/0 1× 1× 320 AvgPool 6× 6/1/0 1× 1× 320

Table 2: Network structures of different modules in the proposed framework.
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Figure 5: (a) The original distribution with center annotated as red box. (b) The faked UR distribution with a subset of samples
and an estimated center (green box). (c) The enriched distribution after transferring 100 samples (blue) to this class. (d) The
enriched distribution after transferring 300 samples (blue) to this class.
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(a) CASIA-Webface (b) MS-celeb-1M

Figure 6: Number of images per class vs. class ID on CASIA-
Webface and MS-celeb-1M show that the public large-scale
face benchmarks have severe portion of UR data.

CASIA-Webface MS-celeb-1M

#Classes #Images #Classes #Images

Full 10.6K 455.6K 76.5K 4753.3K
Regular 6.5K 393.1K 67.0K 4638.4K

UR 4.0K 62.5K 9.5K 114.9K

Table 3: Statistics of CASIA-Webface and MS-celeb-1M.

quality of the decoded images [8]. However, we do not
add any skip connections to encourage the encoded features
f to include more intra-class variance that is needed for
image reconstruction by itself. This intra-class variance is

important when performing feature transfer.
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