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Figure 1: I2ZNet directly regresses the latent facial state codes z and headpose H from a face image I, and the pre-trained
decoder D generates full 3D face geometry G and high resolution texture T.

In the supplementary materials, we provide details on the
architecture of I2ZNet in Section A, and the additional ab-
lation studies on I2ZNet will be followed in Section B.

A. I2ZNet
In this section, we detail the architecture of I2ZNet.

Other than only utilizing self-supervised domain adaptation
to overcome domain differences, we also explored differ-
ent networks which could lead to the most domain invari-
ance. Namely, we utilized a combination of a pre-trained
VGGNet [5] and HourglassNet [3] to achieve better domain
invariance. More details are in Section A.2, and the prop-
erty of domain invariant features are validated in Section B.

Domain specific layers are still necessary to complete our
tasks, but thanks to the domain invariant features already
extracted by VGGNet and HourglassNet, the domain spe-
cific layers can have less parameters thus they are easier to
train. We use a combination of deep and shallow features to
achieve better performance. More details are in Section A.3.

A.1. Inputs and Outputs

Given a cropped input face image I ∈ R256×256×3, the
I2ZNet directly predicts the low-dimensional facial state
codes z ∈ R128, and a set of head pose parameters H ∈
R6 = {f, rx, ry, rz, tx, ty}, where f = {f}, r =
{rx, ry, rz}, t = {tx, ty} are focal length scale, Euler



angle, and 2D translation respectively. The pre-trained de-
coder D decodes [zT,HT] to generate high fidelity 3D face
geometry G ∈ R7306×3 and view dependent texture map
T ∈ R1024×1024×3. Note that, we are using the same de-
coder with [2], while we replace its encoder network EX

with our I2ZNet.

A.2. Domain Invariant Multi-level Unified Features

Given an input image I, I2ZNet extracts the features from
two-stream networks: VGGNet and HourglassNet. VG-
GNet captures perceptual information such as facial details
or shape, while HourglassNet guides "where to look" by
providing facial geometry features, e.g. facial landmark
heatmaps. We complete the multi-level unified features
ul ∈ R(32∗2l)×(32∗2l)×chl by concatenating the two-stream
features, where l = {4, 3, 2, 1} denotes the feature depth-
level and the associated channel size is chl ∈ CH =
{324, 580, 580, 580}. Here, we simply max-pool the output
from HourglassNet to make the feature size equal to each
level of VGG feature. The feature scale inconsistency be-
tween two different networks (VGGNet and HourglassNet)
is resolved by normalization layer before concatenation.
Our multi-level unified features are more domain (color,
illumination, or head pose) invariant by learning from do-
main generalized datasets [1, 4]. Note that, the pre-learned
weights on the two-stream networks are fixed in the follow-
ing training steps such that we prevent I2ZNet from being
domain specific.

A.3. Latent Parameter Regression

Inspired by many recent papers [6, 7] which have proposed
the use of combination of deep and shallow features to cap-
ture semantic-level information and local appearance details
at the same time, we concatenate feature vectors from each
depth level pz

4..1, ph
4..1 ∈ R512, which are encoded from

u4..1, and they are respectively regressed to z and H us-
ing several fully connected layers. Here, however, it re-
quires very heavy computational costs for converting three-
dimensional features ul to single dimensional one pz,h

l in
a fully connected way. Similar to [7], we alleviate this
bottleneck by channel-wise feature compression of ul to
one-sixteenth of its original channel size using two convolu-
tional layers as described as Compressor layer in Figure 1.

B. Ablation Studies on I2ZNet

In Section A, we introduced the domain and view invari-
ant property of our network. To verify this, we test I2ZNet
on four different scenarios, View, Color, Light, and Jit-
ter, where the baseline networks are the same with the ones
described in Section 4.2.1.

Table 1: Ablation studies on I2ZNet.

View Color Light Jitter Background

Geometry 0.607 1.485 1.175 0.983 1.285
VGG Headpose - 17.48 6.965 - 15.84
Scratch Texture - 0.021 0.014 0.016 0.015

Geometry 1.352 1.258 1.510 1.736 1.076

VGG Headpose - 16.61 13.98 - 16.42

Texture - 0.020 0.021 0.025 0.016

Geometry 0.3967 0.622 0.227 1.331 0.669
VGG

Headpose - 2.579 0.728 - 8.750
+Skip

Texture - 0.009 0.003 0.018 0.009

VGG
Geometry 0.255 0.505 0.151 0.896 0.417

+Skip Headpose - 1.676 0.684 - 8.172
+Key Texture - 0.007 0.002 0.012 0.006
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Figure 2: Visualization of the vertex-wise accuracy with a
representative subject for ablation studies on view consis-
tency and color sensitivity. The average score is reported
for each metric, where the lower score shows the better per-
formance for both scenarios.

View represents the test dataset of multiview videos, where
they are accurately synchronized and thus I2ZNet should
predict the same facial local deformation to make the fa-
cial configuration consistent across the views. To verify
this view consistent prediction ability, we pick the most
central camera as a ground-truth view and evaluate the per-
formance of other views. We use simple vertex-wise Eu-
clidean distance between the 3D faces predicted from cen-
tral view and other views meaning that the lower score
shows better consistency. The overall performance is sum-
marized in Table 1 and Figure 2, where the proposed net-
work outperforms all other baselines. We can further no-
tice that the combination of skip connection and landmark
guidance helps the network to figure out the facial geom-
etry configuration when predicting the facial configuration
from different views based on the comparison of VGG with
VGG+Skip and VGG+Skip+Key. Note that, when evalu-
ating the view consistency, we remove the texture and head
pose from a predicted 3D face because they have view de-
pendent property in our system.



Color, Light, Jitter, and Background represent video se-
quences which contain synthetic perturbation with random
color, gamma, jitters by similarity transformation (scale,
rotation, and translation variation), and white dotted back-
ground noise. The goal of the test on these sequences is to
verify the domain generality. For example, if I2ZNet out-
puts a completely different 3D facial configuration given
a perturbed image comparing to the one before the pertur-
bation, then it implies that the network is overfitted to the
training data domain. Therefore, we evaluate the perfor-
mance of I2ZNet on the sequence after the perturbation in
light of the results from the ones before the perturbation.
To measure this relative accuracy, we employ three metrics:
geometry, texture, and head pose. For geometry and texture,
we simply calculate the 3D distance and color difference of
the 3D faces. For head pose, we measure the 2D distance
between the ground-truth points and the reprojection of the
vertices on the 3D face to the input with the predicted head
pose. The average scores with respect to the entire test sub-
jects (4 subjects) are reported in Table 1, and the represen-
tative subject results are visualized in Figure 2. From the
comparison of VGG Scratch with VGG+Skip+Key, we
can notice that the pre-trained nature of the feature extrac-
tion parts (VGGNet and HourglassNet) plays a key role to
avoid overfitting from a specific domain. Further, the com-
parison between VGG+Skip and VGG+Skip+Key implies
that the landmark module guides the attention of the net-
work such that it prevents from the network distraction even
under the background perturbation.
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