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1. Two-rings dataset

The underlying manifold for two-rings data is given by

M = ML UM_, where
My = {(xl,xg) ‘x% + a2 = 0.92}
M_ = {(xl,xg) ’x% + 22 =117 } .

The observed data is sampled as * = x¢ + n, where x(
is uniformly sampled from M and n ~ N(0,272). We
sample 6 labeled training data, 3 for each class, and 3, 000
unlabeled training data, as shown in Figure 3.

2. Experiments details on FashionMNIST

In FashionMNIST! experiments, we preserve 100 data
points for validation from the original training dataset. That
is, we use 100/200/1, 000 labeled data for training and an-
other 100 labeled data for validation. For pre-processing,
we scale pixel values of images into [0,1]. The architec-
ture of the neural network for classification is as following:
(a,b) denotes the convolution filter is with a x a shape and
b channels. The max pooling layer is with stride 2. And we
apply local response normalization (LRN) [4]. The num-
ber of hidden nodes in the first fully connected layer is 512.
And the number of hidden nodes in the last fully connected
layer is 10.

Conv(3,32) — ReLU — Conv(3,32) — ReLU —
MaxPooling — LRN — Conv(3,64) — ReLU —
Conv(3,64) — ReLU — MaxPooling — LRN

— FC1 — ReLU — FC2
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For the labeled data, the batch size is 32, and for the un-
labeled data, the batch size is 128. All networks are trained
for 12,000 updates. The optimizer is ADAM with initial
learning rate 0.001, and linearly decayed over the last 4, 000
updates. The hyperparameters tuned include 1) the magni-
tude of the tangent adversarial perturbation €1, 2) the mag-
nitude of the normal adversarial perturbation €3 and 3) the
hyperparameter A in Eq. (28). All other hyperparameters
are set as 1.0 (e.g., a1, 2,3 = 1.0). We tune A\ from
{1,0.1,0.01,0.001}, and €y, e randomly from [0.05, 20].
The corresponding hyperparameters used for experiments
in the main paper are reported in Table 1.

The encoder of the VAE for identifying the underlying
manifold is a LeNet-like one, with two convolutional layers
and one fully connected layer. And the decoder is sym-
metric with the encoder, except using deconvolutional lay-
ers to replace convolutional ones. The latent dimension-
ality is 128. The localized GAN for identifying the un-
derlying manifold is similar as stated in [3]. And the im-
plementation is modified from https://github.com/
z331565360/Localized-GAN. We change the latent
dimensionality into 128.

VAE is pretrained and fixed during the training of TNAR.
We tried both jointly and separately training the LGAN with
the classifier, observing no significant difference.

3. Experiments details on SVHN and CIFAR-
10

In SVHN? and CIFAR-10° experiments, we preserve
1,000 data for validation from the original training set.
That is, we use 1,000/4, 000 labeled data for training and
another 1,000 labeled data for validation. The only pre-
processing on data is to scale the pixels value into [0, 1].
We do not use data augmentation. The structure of classifi-
cation neural network is shown in Table 2, which is identical

2http://ufldl.stanford.edu/housenumbers/
3https://www.cs.toronto.edu/Nkriz/cifar.html
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Table 1. The hyperparameters for TNAR on FashionMNIST dataset. A: the hyperparameter in Eq. (28);e1 and e2: the norms of tangent

adversarial perturbation and normal adversarial perturbation.

Hyperparameters 100 labels 200 labels 1000 labels
A/€1/e2 for TNAR-LGAN  0.1/0.2/8.0  0.1/4.0/0.5  1.0/20.0/0.5
A/e1/ez for TINAR-VAE  1.0/2.0/0.05 1.0/0.5/0.05  1.0/5.0/6.0

asin [2].

For the labeled data, the batch size is 32, and for the
unlabeled data, the batch size is 128. For SVHN, all net-
works are trained for 48, 000 updates. And for CIFAR-10,
all networks are trained for 200,000 updates. The opti-
mizer is ADAM with initial learning rate 0.001, and lin-
early decayed over the last 16,000 updates. The hyperpa-
rameters tuned include 1) the magnitude of the tangent ad-
versarial perturbation €;, 2) the magnitude of the normal
adversarial perturbation e and 3) the hyperparameter A in
Eq. (28). All other hyperparameters are set as 1.0 (e.g.,
a1, a9,z = 1.0). We tune A from {1,0.1,0.01,0.001},
and €1, €3 randomly from [0.05, 20].

The VAE for identifying the underlying manifold for
SVHN and CIFAR-10 is implemented as in https:
//github.com/axium/VAE-SVHN. The only mod-
ification is we change the coefficient of the regular-
ization term from 0.01 to 1. The localized GAN
for learning the underlying manifold for SVHN and
CIFAR-10 is similar as stated in [3]. And the imple-
mentation is modified from https://github.com/
z331565360/Localized-GAN. We change the latent
dimensionality of VAE and localized GAN into 512 for both
SVHN and CIFAR-10. The hyperparameters used in the
main paper for TNAR are reported in Table 3.

4. More adversarial examples

More adversarial perturbations and adversarial examples
in the tangent space and normal space are shown in Figure 1
and Figure 2.
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Figure 1. The perturbations and adversarial examples in the tan-
gent space and normal space for FashionMNIST dataset. Note
that since the perturbations are actually too small, to distinguish
them visually, thus we show the scaled perturbations. From left
to right: original example, tangent adversarial perturbation, nor-
mal adversarial perturbation, tangent adversarial example, normal
adversarial example.
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Figure 2. The perturbations and adversarial examples in tangent
space and normal space for CIFAR-10 dataset. Note that the per-
turbations is actually too small to distinguish easily, thus we show
the scaled perturbations. From left to right: original example, tan-
gent adversarial perturbation, normal adversarial perturbation, tan-
gent adversarial example, normal adversarial example.
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Table 2. The structure of convolutional neural networks for experiments on CIFAR-10 and SVHN, based on [6, 5, 1]. All the convolutional
layers and fully connected layers are followed by batch normalization except the fully connected layer on CIFAR-10. The slopes of all

IReLU functions in the networks are 0.1.

Conv-Small on SVHN | Conv-Small on CIFAR-10 Conv-Large
32x32 RGB image
3x3 conv. 64 IReLU 3x3 conv. 96 IReLU 3x3 conv. 128 IReLU
3x3 conv. 64 IReLLU 3x3 conv. 96 IReLU 3x3 conv. 128 IReLU
3x3 conv. 64 IReLU 3x3 conv. 96 IReLU 3x3 conv. 128 IReLU
2 2 max-pool, stride 2
dropout, p = 0.5
3x3 conv. 128 IReLU 3x3 conv. 192 IReLU 3x3 conv. 256 IReLU
3x3 conv. 128 IReLU 3%x3 conv. 192 IReLU 3% 3 conv. 256 IReLU
3x3 conv. 128 IReLU 3x3 conv. 192 IReLU 3x3 conv. 256 IReLU
2x 2 max-pool, stride 2
dropout, p = 0.5
3x3 conv. 128 IReLU 3x3 conv. 192 IReLU 3%x3 conv. 512 IReLU
1x1 conv. 128 IReLU 1x1 conv. 192 IReLU 1x1 conv. 256 IReLU
1x1 conv. 128 IReLU 1x1 conv. 192 IReLU 1x1 conv. 128 IReLU

global average pool, 6x6 — 1x1

dense 128 — 10 ‘ dense 192— 10

‘ dense 128— 10

10-way softmax

Table 3. The hyperparameters for TNAR on SVHN and CIFAR-10 datasets. \: the hyperparameter in Eq. (28);e1 and e2: the norms of
tangent adversarial perturbation and normal adversarial perturbation.

Hyperparameters SVHN 1,000 CIFAR-10 SVHN 1,000 Ilabels CIFAR-10 4,000 labels
labels 4,000 labels with augmentation with augmentation

A/€1 /€ for TNAR-LGAN (small) 0.01/0.5/2.0 0.1/5.0/1.0 - -

A/e€1/e2 for TNAR-LGAN (large) 0.01/0.5/2.0 0.1/5.0/1.0 - -

A/€1/e2 for TNAR-VAE (small) 0.01/0.2/2.0 0.01/5.0/1.0 - -

M/e1 /€ for TNAR-VAE (large) 0.01/0.2/2.0 0.001/5.0/1.0 0.01/0.2/2.0 0.001/4.0/1.0




