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Abstract

This supplementary material accompanies our main
manuscript “Unsupervised Person Re-identifictaion by Soft
Multilabel Learning”, including the observation of the log-
normal distribution of the soft multilabels, the simplified
2-Wasserstein distance, more implementation details and the
evaluations on the mining ratio and a hyperparameter 5.

1. Observation of the log-normal distribution

As mentioned in Sec. 3.3 in our main manuscript, we
empirically observe that the soft multilabel approximately
follows a log-normal distribution. Note that we do not claim
the generality of the log-normal distribution, This empirical
observation only serves to facilitate our implementation and
computation in computing the distributional distance in the
Cross-view soft Multilabel Learning, which does not require
any specific distribution of the soft multilabel (Please refer
to Loz in Eq. (5) in our main manuscript). We show the
distribution of the log-soft multilabel in the training set of the
Market-1501 [[12] dataset in Figure S1(a). From Figure S1(a)
we observe that the soft multilabel approximately follows a
normal distribution in the log space over all the dimensions.
We have also made similar observations across each single
dimension. For example, we show the distribution of the first
dimension (i.e. the label likelihood w.r.t. the first reference
person) in Figure S1(b), which also approximately follows a
normal distribution.
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2. The simplified 2-Wasserstein distance

As mentioned in Sec. 3.3 in our main manuscript, in this
work we adopt the simplified 2-Wasserstein distance [1, 3]
which gives a very simple form of the Cross-view consistent
soft Multilabel Learning (L¢psz) in Eq. (6) in our main
manuscript.

Given two normal distributions X = N(u,,C,) and
Y = N (uy, Cy) where fi, is the mean vector of X and C,
is the covariance matrix of X. The 2-Wasserstein distance
between X and Y is defined by [1]:

1 1
Wa(X,Y)? = || — py|I3 + trace(Cy + Cy — 2(C2 C,C2) 7).
(1)

As in [3]], we simplify the above formulation to:
1
Wa(X,Y)* = Slllue = pllz + llow —oull2], @)

where o, and o, are the standard deviation vectors of X and
Y, respectively.

3. Further implementation details

We resize the images to 384 x 128 with random crop
and horizonal flip in the training. In the testing we do not
use any data augmentation. We use the ResNet-50 [2] as
our backbone network which produces a 2048-D feature
embedding. We remove the last ReLU nonlinear so that the
feature embedding would not be cut to a half hypersphere
[6]. We set the learning rate to 0.0002. We train our model
by SGD with the moment of 0.9 for 20 epoches. We decrease
the learning rate by a factor of 0.1 after 12 epoches, and then
we further decrease the learning rate by a factor of 0.1 after
18 epoches, following the ResNet-50 training scheme [2].



set too large to violate the balance of the loss magnitudes in
Eq. (9) in our main manuscript.
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