
Appendix
Abstract

In our work we presented the new task of Visual Com-

monsense Reasoning and introduced a large-scale dataset

for the task, VCR, along with Adversarial Matching, the

machinery that made the dataset construction possible. We

also presented R2C, a new model for the task. In the supple-

mental material, we provide the following items that shed

further insight on these contributions:

• Additional dataset analysis (Section A)

• More information about dataset creation (Section B)

and Adversarial Matching (Section C)

• An extended discussion on language priors (Section D)

• Model hyperparameters used (Section E)

• Additional VQA Baseline Results, with BERT embed-

dings (Section F)

• A datasheet for VCR (Section G)

• A visualization of R2C’s predictions (Section H)

For more examples, and to obtain the dataset and code,

check out visualcommonsense.com.

A. Dataset Analysis

In this section, we continue our high-level analysis of
VCR.

A.1. Language complexity and diversity

How challenging is the language in VCR? We show sev-
eral statistics in Table 3. Of note, unlike many question-
answering datasets wherein the answer is a single word, our
answers average to more than 7.5 words. The rationales are
even longer, averaging at more than 16 words.

An additional informative statistic is the counts of unique
answers and rationales in the dataset, which we plot in Fig-
ure 7. As shown, almost every answer and rationale is
unique.

A.2. Objects covered

On average, there are roughly two objects mentioned
over a question, answer, and rationale. Most of these ob-
jects are people (Figure 8), though other types of COCO
objects are common too [49]. Objects such as ‘chair,’ ‘tie,’
and ‘cup’ are often detected, however, these objects vary in
terms of scene importance: even though more ties exist in
the data than cars, workers refer to cars more in their ques-
tions, answers, and rationales. Some objects, such as hair
driers and snowboards, are rarely detected.

Train Val Test

Number of questions 212,923 26,534 25,263
Number of answers per question 4 4 4
Number of rationales per question 4 4 4

Number of images 80,418 9,929 9,557
Number of movies covered 1,945 244 189

Average question length 6.61 6.63 6.58
Average answer length 7.54 7.65 7.55
Average rationale length 16.16 16.19 16.07
Average # of objects mentioned 1.84 1.85 1.82

Table 3: High level dataset statistics, split by fold (train,
validation, and test). Note that we held out one fold in the
dataset for blind evaluation at a later date; this fold is blind
to us to preserve the integrity of the held-out data. Accord-
ingly, the statistics of that fold are not represented here.

Figure 7: CDF of dataset examples ordered by frequency
in question-answering datasets [5, 93, 75, 46]. To obtain
this plot, we sampled 10,000 answers from each dataset (or
rationales, for ‘VCR rationales’). We consider two exam-
ples to be the same if they exactly match, after tokenization,
lemmatization, and removal of stopwords. Where many
datasets in this space are light-tailed, our dataset shows
great diversity (e.g. almost every rationale is unique.)

A.3. Movies covered
Our dataset also covers a broad range of movies - over

2000 in all, mostly via MovieClips (Figure 9). We note that
since we split the dataset by movie, the validation and test
sets cover a completely disjoint set of movies, which forces
a model to generalize. For each movie image, workers ask
2.6 questions on average (Figure 10), though the exact num-
ber varies - by design, workers ask more questions for more
interesting images.

A.4. Inference types
It is challenging to accurately categorize commonsense

and cognition-level phenomena in the dataset. One ap-
proach that we presented in Figure 2 is to categorize ques-
tions by type: to estimate this over the entire training set,
we used a several patterns, which we show in Table 4. Still,

13

https://visualcommonsense.com

Type Freq. Patterns

Explanation 38% why, how come, how does
Activity 24% doing, looking, event, playing, preparing

Temporal 13% happened, before, after, earlier, later, next
Mental 8% feeling, thinking, saying, love, upset, angry
Role 7% relation, occupation, strangers, married
Scene 5% where, time, near

Hypothetical 5% if, would, could, chance, might, may

Table 4: Some of the rules we used to determine the type of
each question. Any question containing a word from one of
the above groups (such as ‘why’) was determined to be of
that type (‘explanation’).

we note that automatic categorization of the inference types
required for this task is hard. This is in part because a sin-
gle question might require multiple types of reasoning: for
example, ‘Why does person1 feel embarrassed?’ requires
reasoning about person1’s mental state, as well as requir-
ing an explanation. For this reason, we argue that this break-
down underestimates the task di�culty.

B. Dataset Creation Details
In this section, we elaborate more on how we collected

VCR, and about our crowdsourcing process.

B.1. Shot detection pipeline
The images in VCR are extracted from video clips

from LSMDC [67] and MovieClips. These clips vary in
length from a few seconds (LSMDC) to several minutes
(MovieClips). Thus, to obtain more still images from these
clips, we performed shot detection. Our pipeline is as fol-
lows:
• We iterate through a video clip at a speed of one frame

per second.
• During each iteration, we also perform shot detection:

if we detect a mean di↵erence of 30 pixels in HSV
space, then we register a shot boundary.
• After a shot boundary is found, we apply Mask-RCNN

[29, 24] on the middle frame for the shot, and save the
resulting image and detection information.

We used a threshold of 0.7 for Mask-RCNN, and the
best detection/segmentation model available for us at the
time: X-101-64x4d-FPN14, which obtains 42.4 box mAP
on COCO, and 37.5 mask mAP.

B.2. Interestingness Filter
Recall that we use an ‘interestingness filter’ to ensure

that the images in our dataset are high quality. First, every
image had to have at least two people in it, as detected by

14Available via the Detectron Model Zoo.

Figure 8: Distribution of the referenced COCO [49] objects
in VCR. We count an object as being ‘referenced’ if, for a
given question, answer, and rationale, that object is men-
tioned explicitly. Note that we do not double-count objects
here - if person5 is mentioned in the question and the an-
swer, we count it once. This chart suggests that our dataset
is mostly human-centric, with some categories being refer-
enced more than others (cars are mentioned more than ties,
even though cars appear less often).

Mask RCNN. However, we also found that many images
with two or more people were still not very interesting. The
two main failure cases here are when there are one or two

14

https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md

Figure 9: Distribution of movies in the VCR training set by
number of images. Blue bars are movies from LSMDC (46k
images); red are MovieClips (33k images). The MovieClips
images are spread over a wider range of movies: due to
space restrictions, most are under ‘other MovieClips.’

Figure 10: Number of questions asked per image on the
VCR training set. The average number of questions asked
per image is 2.645. Note that while workers could ask any-
where between one to three questions per image, images
that were flagged as especially interesting by workers got
re-annotated with additional annotations.

people detected, but they aren’t doing anything interesting
(Figure 11a), or when the image is especially grainy and
blurry. Thus, we opted to learn an additional classifier for
determining which images were interesting.

Our filtering process evolved as we collected data for the
task. The first author of this paper first manually annotated
2000 images from LSMDC [67] as being ‘interesting’ or
‘not interesting’ and trained a logistic regression model to
predict said label. The model is given as input the number
of people detected by Mask RCNN [29, 24], along with the
number of objects (that are not people) detected. We used
this model to identify interesting images in LSMDC, using a
threshold that corresponded to 70% precision. This resulted
in 72k images selected; these images were annotated first.

During the crowdsourcing process, we obtained data that
allowed us to build an even better interestingness filter later
on. Workers were asked, along with each image, whether
they thought that the image was especially interesting (and
thus should go to more workers), just okay, or especially
boring (and hard to ask even one good question for). We
used this to train a deeper model for this task. The model
uses a ResNet 50 backbone over the entire image [30] as
well as a multilayer perceptron over the object counts. The
entire model is trained end-to-end: 2048 dimensional fea-
tures from Resnet are concatenated with a 512 dimensional
projetion of the object counts, and used to predict the la-

15

a) Boring image.

b) Interesting image.

Figure 11: Two example images that come from the raw
video pipeline. Image a) is flagged by our initial filter as
‘boring’, because there are only two people without any ad-
ditional objects, whereas image b) is flagged as being inter-
esting due to the number of people and objects detected.

bels.15 We used this model to select the most interesting
40k images from Movieclips, which finished o↵ the anno-
tation process.

B.3. Crowdsourcing quality data
As mentioned in the paper, crowdsourcing data at the

quality and scale of VCR is challenging. We used several
best practices for crowdsourcing, which we elaborate on in
this section.

We used Amazon Mechanical Turk for our crowdsourc-
ing. A screenshot of our interface is given in Figure 12.
Given an image, workers asked questions, answered them,
and provided a rationale explaining why their answer might
be correct. These are all written in a mixture of natural lan-
guage text, as well as referring to detection regions. In our
annotation UI, workers refer to the regions by writing the
tag number.16

Workers could ask anywhere between one to three ques-
tions per HIT. We paid the workers proportionally at $0.22
per triplet. According to workers, this resulted in $8–
25/hr. This proved necessary as workers reported feeling

15In addition to predicting interestingness, the model also predicts the
number of questions a worker asks, but we never ended up using these
predictions.

16Note that this di↵ers a bit from the format in the paper: we originally
had workers write out the full tag, like [person5], but this is often long
and the workers would sometimes forget the brackets. Thus, the tag format
here is just a single number, like 5.

Figure 12: Screenshot of our annotation interface. Workers
are given an image, as well as context from the video (here,
captions from LSMDC [67]), and are asked to write one to
three questions, answers, and rationales. For each answer,
they must mark it as likely, possible, or unlikely. Workers
also select whether the image was especially interesting or
boring, as this allows us to train a deep model for predicting
image interestingness.

“drained” by the high quality required.
Automated quality checks We added several auto-

mated checks to the crowdsourcing UI to ensure high qual-
ity. The workers had to write at least four words for the
question, three for the answer, and five for the rationale.
Additionally, the workers had to explicitly refer to at least
one detection on average per question, answer, and ratio-
nale triplet. This was automatically detected to ensure that
the workers were referring to the detection tags in their sub-
missions.

We also noticed early on was that sometimes workers
would write detailed stories that were only loosely con-
nected with the semantic content of the image. To fix this,
workers also had to self-report whether their answer was
likely (above 75% probability), possible (25-75% probabil-
ity), or unlikely (below 25% probability). We found that this
helped deter workers from coming up with consistently un-
likely answers for each image. The likelihood ratings were
never used for the task, since we found they weren’t neces-
sary to obtain high human agreement.

Instructions Like for any crowdsourcing task, we
found wording the instructions carefully to be crucial. We
encouraged workers to ask about higher-level actions, ver-
sus lower-level ones (such as ‘What is person1wearing?’),
as well as to not ask questions and answers that were overly

16

generic (and thus could apply to many images). Workers
were encouraged to answer reasonably in a way that was not
overly unlikely or unreasonable. To this end, we provided
the workers with high-quality example questions, answers,
and rationales.

Qualification exam Since we were picky about the
types of questions asked, and the format of the answers and
rationales, workers had to pass a qualification task to dou-
ble check that they understood the format. The qualifica-
tion test included a mix of multiple-choice graded answers
as well as a short written section, which was to provide a
single question, answer, and rationale for an image. The
written answer was checked manually by the first author of
this paper.

Work verification In addition to the initial qualifica-
tion exam, we also periodically monitored the annotation
quality. Every 48 hours, the first author of this paper would
review work and provide aggregate feedback to ensure that
workers were asking good questions, answering them well,
and structuring the rationales in the right way. Because this
took significant time, we then selected several outstanding
workers and paid them to do this job for us: through a sepa-
rate set of HITs, these outstanding workers were paid $0.40
to provide detailed feedback on a submission that another
worker made. Roughly one in fifty HITs were annotated in
this way to give extra feedback. Throughout this process,
workers whose submission quality dropped were dequali-
fied from the HITs.

C. Adversarial Matching Details
There are a few more details that we found useful when

performing the Adversarial Matching to create VCR, which
we discuss in this section.

Aligning Detections In practice, most responses in our
dataset are not relevant to most queries, due to the diversity
of responses in our dataset and the range of detection tags
(person1, etc.).

To fix this, for each query qi (with associated object list
oi and response ri) we turn each candidate r j into a tem-
plate, and use a rule based system to probabilistically remap
its detection tags to match the objects in oi. With some
probability, a tag in r j is replaced with a tag in qi and ri.
Otherwise, it is replaced with a random tag from oi.

We note that our approach isn’t perfect. The remap-
ping system often produces responses that violate pred-
icate/argument structure, such as ‘person1 is kissing
person1.’ However, our approach does not need to be per-

fect: because the detections for response r j are remapped
uniquely for each query qi, with some probability, there
should be at least some remappings of ri that make sense,
and the question relevance model Prel should select them.

Semantic categories Recall that we use 11 folds for
the dataset of around 290k questions, answers, and ratio-

nales. Since we must perform Adversarial Matching once
for the answers, as well as for the rationales, this would
naively involve 22 matchings on a fold size of roughly 26k.
We found that the major computational bottleneck wasn’t
the bipartite matching17, but rather the computation of all-
pairs similarity and relevance between ⇠26k examples.

There is one additional potential problem: we want the
dataset examples to require a lot of complex commonsense
reasoning, rather than simple attribute identification. How-
ever, if the response and the query disagree in terms of gen-
der pronouns, then many of the dataset examples can be
reduced to gender identification.

We address both of these problems by dividing each fold
into ‘buckets’ of 3k examples for matching. We divide the
examples up in terms of the pronouns in the response: if the
response contains a female or male pronoun, then we put
the example into a ‘female’ or ‘male’ bucket, respectively,
otherwise the response goes into the ‘neutral’ bucket. To
further divide the dataset examples, we also put di↵erent
question types in di↵erent buckets for the question answer-
ing task (e.g. who, what, etc.). For the answer justification
task, we cluster the questions and answers using their aver-
age GloVe embeddings [56].

Relevance model details Recall that our relevance
model Prel is trained to predict the probability that a re-
sponse r is valid for a query q. We used BERT for this
task [15], as it achieves state-of-the-art results across many
two-sentence inference tasks. Each input looks like the fol-
lowing, where the query and response are concatenated with
a separator in between:
[CLS] what is casey doing ? [SEP] casey is

getting out of car . [SEP]

Note that in the above example, object tags are replaced
with the class name (car3!car). Person tags are replaced
with gender neutral names (person1!casey) [19].

We fine-tune BERT by treating it as a two-way classifi-
cation problem. With probability 25% for a query, BERT
is given that query’s actual response, otherwise it is given
a random response (where the detections were remapped).
Then, the model must predict whether it was given the ac-
tual response or not. We used a learning rate of 2 · 10�5, the
Adam optimizer [44], a batch size of 32, and 3 epochs of
fine-tuning.18

Due to computational limitations, we used BERT-Base
as the architecture rather than BERT-Large - the latter is
significantly slower.19 Already, Prel has an immense com-
putational requirement as it must compute all-pairs simi-

17We use the https://github.com/gatagat/lap implementation.
18We note that during the Adversarial Matching process, for either Ques-

tion Answering or Answer Justification, the dataset is broken up into 11
folds. For each fold, BERT is fine-tuned on the other folds, not on the final
dataset splits.

19Also, BERT-Large requires much more memory, enough so that it’s
harder to fine-tune due to the smaller feasible batch size.

17

larity for the entire dataset, over buckets of 3000 examples.
Thus, we opted to use a larger bucket size rather than a more
expensive model.

Similarity model details While we want the responses
to be highly relevant to the query, we also want to avoid
cases where two responses might be conflated by humans
- particularly when one is the correct response. This con-
flation might occur for several reasons: possibly, two re-
sponses are paraphrases of one another, or one response en-

tails another. We lump both under the ‘similarity’ umbrella
as mentioned in the paper and introduce a model, Psim, to
predict the probability of this occurring - broadly speaking,
that two responses ri and r j have the same meaning.

We used ESIM+ELMo for this task [10, 57], as it still
does quite well on two-sentence natural language inference
tasks (although not as well as BERT), and can be made
much more e�cient. At test time, the model makes the sim-
ilarity prediction when given two token sequences.20

We trained this model on freely available NLP corpora.
We used the SNLI formalism [8], in which two sentences
are an ‘entailment’ if the first entails the second, ‘contradic-
tion’ if the first is contradicted by the second, and ‘neutral’
otherwise. We combined data from SNLI and MultiNLI
[82] as training data. Additionally, we found that even af-
ter training on these corpora, the model would struggle with
paraphrases, so we also translated SNLI sentences from En-
glish to German and back using the Nematus machine trans-
lation system [81, 73]. These sentences served as extra
paraphrase data and were assigned the ‘entailment’ label.
We also used randomly sampled sentence pairs from SNLI
as additional ‘neutral’ training data. We held out the SNLI
validation set to determine when to stop training. We used
standard hyperparameters for ESIM+ELMo as given by the
AllenNLP library [22].

Given the trained model Pnli, we defined the similarity
model as the maximum entailment probability for either
way of ordering the two responses:

Psim(ri, r j) = max
n
Pnli(ent|ri, r j), Pnli(ent|r j, ri)

o
, (3)

where ‘ent’ refers to the ‘entailment’ label. If one response
entails the other, we flag them as similar, even if the reverse
entailment is not true, because such a response is likely to
be a false positive as a distractor.

The benefit of using ESIM+ELMo for this task is that
it can be made more e�cient for the task of all-pairs sen-
tence similarity. While much of the ESIM architecture in-
volves computing attention between the two text sequences,
everything before the first attention can be precomputed.
This provides a large speedup, particularly as computing
the ELMo representations is expensive. Now, for a fold size

20Again, with object tags replaced with the class name, and person tags
replaced by gender neutral names.

Figure 13: Tuning the � hyperparameter. Workers were
asked to solve 100 dataset examples from the validation set,
as given by Adversarial Matching for each considered value
of �. We used these results to pick reasonable values for the
hyperparameter such that the task was di�cult for the ques-
tion relevance model Prel, while simple for human workers.
We chose � = 0.1 for Q! A and � = 0.01 for QA! R.

of N, we only have to compute 2N ELMo representations
rather than N

2.

Validating the � parameter Recall that our hyperpa-
rameter � trades o↵ between machine and human di�culty
for our final dataset. We shed more insight on how we chose
the exact value for � in Figure 13. We tried several di↵erent
values of � and chose � = 0.1 for Q ! A and � = 0.01 for
QA ! R, as at these thresholds human performance was
roughly 90%. For an easier dataset for both humans and
machines, we would increase the hyperparameter.

18

D. Language Priors and Annotation Artifacts
Discussion

There has been much research in the last few years in
understanding what ‘priors’ datasets have.21 Broadly speak-
ing, how well do models do on VCR, as well as other visual
question answering tasks, without vision?

To be more general, we will consider problems where
a model is given a question and answer choices, and picks
exactly one answer. The answer choices are the outputs that
the model is deciding between (like the responses in VCR)
and the question is the shared input that is common to all
answer choices (the query, image, and detected objects in
VCR). With this terminology, we can categorize unwanted
dataset priors in the following ways:
• Answer Priors: A model can select a correct answer

without even looking at the question. Many text-only
datasets contain these priors. For instance, the Roc-
Stories dataset [53] (in which a model must classify
endings to a story as correct or incorrect), a model can
obtain 75% accuracy by looking at stylistic features
(such as word choice and punctuation) in the endings.
• Non-Visual Priors: A model can select a correct an-

swer using only non-visual elements of the question.
One example is VQA 1.0 [5]: given a question like
‘What color is the fire hydrant?’ a model will clas-
sify some answers higher than others (red). This was
addressed in VQA 2.0 [26], however, some answers
will still be more likely than others (VQA’s answers
are open-ended, and an answer to ‘What color is the
fire hydrant?’ must be a color).

These priors can either arise from biases in the world
(fire hydrants are usually red), or, they can come from an-
notation artifacts [28]: patterns that arise when people write
class-conditioned answers. Sometimes these biases are sub-
liminal: when asked to write a correct or incorrect story
ending, the correct endings tend to be longer [72]. Other
cases are more obvious: workers often use patterns such as
negation to write sentences that contradict a sentence [28].22

To what extent do vision datasets su↵er from annota-
tion artifacts, versus world priors? We narrow our focus to
multiple-choice question answering datasets, in which for
humans traditionally write correct and incorrect answers to
a question (thus, potentially introducing the annotation ar-
tifacts). In Table 5 we consider several of these datasets:
TVQA [46], containing video clips from TV shows, along

21This line of work is complementary to other notions of dataset bias,
like understanding what phenomena datasets cover or don’t [76], partic-
ularly how that relates to how marginalized groups are represented and
portrayed [71, 90, 69, 68].

22For instance, the SNLI dataset contains pairs of sentences with la-
bels such as ‘entailed’ or ‘contradiction’ [8]. For a sentence like ‘A skate-
boarder is doing tricks’ workers often write ‘Nobody is doing tricks’ which
is a contradiction. The result is that the word ‘nobody’ is highly predictive
of a word being a contradiction.

Dataset #train Chance A Q+A S+Q+A
TVQA [46] 122,039 20.0 45.0 47.4 70.6�
MovieQA [75] 9,848 20.0 33.8 35.4 36.3|
PororoQA [43]~ 7,530 20.0 43.1 47.4
TGIFQA [39]} 73,179 20.0 45.8 72.5

VCR Q!A 212,923 25.0 27.6 53.8
VCR QA!R 25.0 26.3 64.1

VCRsmall
Q!A 9,848 25.0 25.5 39.9

VCRsmall
QA! R 25.0 25.3 50.9

Table 5: Text-only results on the validation sets of vision
datasets, using BERT-Base. #train shows the number of
training examples. A corresponds to only seeing the an-
swer; in Q+A the model also sees the question; in S+Q+A
the model also sees subtitles from the video clip. These re-
sults suggest that many multiple choice QA datasets su↵er
from annotation artifacts, while Adversarial Matching helps
produce a dataset with minimial biases; moreover, pro-
viding extra text-only information (like subtitles) greatly
boosts performance. More info:

�: State of the art.

|: Only 45% (879/1958) of the questions in the MovieQA vali-
dation set have timestamps, which are needed to extract clip-
level subtitles, so for the other 55%, we don’t use any subtitle
information.

~: No o�cial train/val/test split is available, so we split the data
by movie, using 20% of data for validation and the rest for
training.

}: There seem to be issues with the publicly released train-test
split of TGIFQA (namely, a model with high accuracy on
a held-out part of the training set doesn’t generalize to the
provided test set) so we re-split the multiple-choice data our-
selves by GIF and hold out 20% for validation.

with subtitles; MovieQA [75], with videos from movies and
questions obtained from higher-level plot summaries; Poro-
roQA [43], with cartoon videos; and TGIFQA [39], with
templated questions from the TGIF dataset [47]. We note
that these all di↵er from our proposed VCR in terms of
subject matter, questions asked, number of answers (each
of the above has 5 answers possible, while we have 4) and
format; our focus here is to investigate how di�cult these
datasets are for text-only models.23 Our point of compari-
son is VCR, since our use of Adversarial Matching means
that humans never write incorrect answers.

We tackle this problem by running BERT-Base on these
models [15]: given only the answer (A), the answer and the
question (Q+A), or additional language context in the form
of subtitles (S+Q+A), how well does BERT do? Our results
in Table 5 help support our hypothesis regarding annotation

23It should be noted that all of these datasets were released before the
existence of strong text-only baselines such as BERT.

19

artifacts: whereas accuracy on VCR, only given the ending,
is 27% for Q ! A and 26% for Q ! A, versus a 25%
random baseline. Other models, where humans write the
incorrect answers, have answer-only accuracies from 33.8%
(MovieQA) to 45.8% (TGIFQA), over a 20% baseline.

There is also some non-visual bias for all datasets con-
sidered: from 35.4% when given the question and the an-
swers (MovieQA) to 72.5% (TGIFQA). While these results
suggest that MovieQA is incredibly di�cult without seeing
the video clip, there are two things to consider here. First,
MovieQA is roughly 20x smaller than our dataset, with 9.8k
examples in training. Thus, we also tried training BERT on
‘VCRsmall’: taking 9.8k examples at random from our train-
ing set. Performance is roughly 14% worse, to the point
of being roughly comparable to MovieQA.24 Second, of-
ten times the examples in MovieQA have similar structure,
which might help to alleviate stylistic priors, for example:

“Who has followed Boyle to Eamon’s apartment?” An-
swers:

1. Thommo and his IRA squad.
2. Darren and his IRE squad.
3. Gary and his allies.
4. Quinn and his IRA squad.
5. Jimmy and his friends.
On the other hand, our dataset examples tend to be highly

diverse in terms of syntax as well as high-level meaning,
due to the similarity penalty. We hypothesize that this is
why some language priors creep into VCR, particularly in
the QA! R setting: given four very distinct rationales that
ostensibly justify why an answer is true, some will likely
serve as better justifications than others.

Furthermore, providing additional language information
(such as subtitles) to a model tends to boost performance
considerably. When given access to subtitles in TVQA,25

BERT scores 70.6%, which to the best of our knowledge is
a new state-of-the-art on TVQA.

In conclusion, dataset creation is highly di�cult, partic-
ularly as there are many ways that unwanted bias can creep
in during the dataset creation process. One such bias of
this form includes annotation artifacts, which our analysis
suggests is prevalent amongst multiple-choice VQA tasks
wherein humans write the wrong endings. Our analysis also
suggests Adversarial Matching can help minimize this ef-
fect, even when there are strong natural biases in the under-
lying textual data.

24Assuming an equal chance of choosing each incorrect ending, the re-
sults for BERT on an imaginary 4-answer version of TVQA and MovieQA
would be 54.5% and 42.2%, respectively.

25We prepend the subtitles that are aligned to the video clip to the begin-
ning of the question, with a special token (;) in between. We trim tokens
from the subtitles when the total sequence length is above 128 tokens.

E. Model details
In this section, we discuss implementation details for our

model, R2C.
BERT representations As mentioned in the paper, we

used BERT to represent text [15]. We wanted to provide a
fair comparison between our model and BERT, so we used
BERT-Base for each. We tried to make our use of BERT to
be as simple as possible, matching our use of it as a baseline.
Given a query q and response choice r(i), we merge both
into a single sequence to give to BERT. One example might
look like the following:
[CLS] why is riley riding motorcycle while

wearing a hospital gown ? [SEP] she had to leave

the hospital in a hurry . [SEP]

Note that in the above example, we replaced per-
son tags with gender neutral names [19] (person3!
riley) and replaced object detections by their class name
(motorcycle1! motorcycle), to minimize domain shift
between BERT’s pretrained data (Wikipedia and the Book-
Corpus [94]) and VCR.

Each token in the sequence corresponds to a di↵erent
transformer unit in BERT. We can then use the later lay-
ers in BERT to extract contextualized representations for
the each token in the query (everything from why to ?) and
the response (she to .).26 Note that this gives us a di↵erent
representation for each response choice i.

We extract frozen BERT representations from the
second-to-last layer of the Transformer.27 Intuitively, this
makes sense as the representations that that layer are used
for both of BERT’s pretraining tasks: next sentence predic-
tion (the unit corresponding to the [CLS] token at the last
layer L attends to all units at layer L� 1), as well as masked
language modeling (the unit for a word at layer L looks at
its hidden state at the previous layer L � 1, and uses that to
attend to all other units as well). The experiments in [15]
suggest that this works well, though not as well as fine-
tuning BERT end-to-end or concatenating multiple layers
of activations.28 The tradeo↵, however, is that precomput-
ing BERT representations lets us substantially reduce the
runtime of R2C and allows us to focus on learning more
powerful vision representations.

Model Hyperparameters A more detailed discussion
of the hyperparameters used for R2C is as follows. We tried

26The only slight di↵erence is that, due to the WordPiece encoding
scheme, rare words (like chortled) are broken up into subword units (cho
##rt ##led). In this case, we represent that word as the average of the
BERT activations of its subwords.

27Since the domain that BERT was pretrained on (Wikipedia and the
BookCorpus [94]) is still quite di↵erent from our domain, we fine-tuned
BERT on the text of VCR (using the masked language modeling objec-
tive, as well as next sentence prediction) for one epoch to account for the
domain shift, and then extracted the representations.

28This suggests, however, that if we also fine-tuned BERT along with
the rest of the model parameters, the results of R2C would be higher.

20

to stick to simple settings (and when possible, used similar
configurations for the baselines, particularly with respect to
learning rates and hidden state sizes).

• Our projection of image features maps a 2176 dimen-
sional hidden size (2048 from ResNet50 and 128 di-
mensional class embeddings) to a 512 dimensional
vector.
• Our grounding LSTM is a single-layer bidirectional

LSTM with a 1280-dimensional input size (768 from
BERT and 512 from image features) and uses 256 di-
mensional hidden states.
• Our reasoning LSTM is a two-layer bidirectional

LSTM with a 1536-dimensional input size (512 from
image features, and 256 for each direction in the at-
tended, grounded query and the grounded answer). It
also uses 256-dimensional hidden states.
• The representation from the reasoning LSTM,

grounded answer, and attended question is maxpooled
and projected to a 1024-dimensional vector. That
vector is used to predict the ith logit.
• For all LSTMs, we initialized the hidden-hidden

weights using orthogonal initialization [70], and ap-
plied recurrent dropout to the LSTM input with pdrop =
0.3 [21].
• The Resnet50 backbone was pretrained on Imagenet

[14, 30]. The parameters in the first three blocks
of ResNet were frozen. The final block (after the
RoiAlign is applied) is fine-tuned by our model. We
were worried, however, that the these representations
would drift and so we added an auxiliary loss to the
model inspired by [48]: the 2048-dimensional repre-
sentation of each object (without class embeddings)
had to be predictive of that object’s label (via a linear
projection to the label space and a softmax).
• Often times, there are a lot of objects in the image that

are not referred to by the query or response set. We
filtered the objects considered by the model to include
only the objects mentioned in the query and responses.
We also passed in the entire image as an ‘object’ that
the model could attend to in the object contextualiza-
tion layer.
• We optimized R2C using Adam [44], with a learning

rate of 2 · 10�4 and weight decay of 10�4. Our batch
size was 96. We clipped the gradients to have a total
L2 norm of at most 1.0. We lowered the learning rate
by a factor of 2 when we noticed a plateau (validation
accuracy not increasing for two epochs in a row). Each
model was trained for 20 epochs, which took roughly
20 hours over 3 NVIDIA Titan X GPUs.

Q! A QA! R Q! AR

Model GloVe BERT GloVe BERT GloVe BERT

R2C 46.4 63.8 38.3 67.2 18.3 43.1
Revisited 39.4 57.5 34.0 63.5 13.5 36.8
BottomUp 42.8 62.3 25.1 63.0 10.7 39.6
MLB 45.5 61.8 36.1 65.4 17.0 40.6
MUTAN 44.4 61.0 32.0 64.4 14.1 39.3

Table 6: VQA baselines evaluated with GloVe or BERT,
evaluated on the VCR evaluation set with R2C as compari-
son. While BERT helps the performance of these baselines,
our model still performs the best in every setting.

F. VQA baselines with BERT
We present additional results where baselines for VQA

[5] are augmented with BERT embeddings in Table 6. We
didn’t include these results in the main paper, because to
the best of our knowledge prior work hasn’t used contex-
tualized representations for VQA. (Contextualized repre-
sentations might be overkill, particularly as VQA questions
are short and often simple). From the results, we find that
while BERT also helps the baselines, our model R2C ben-
efits even more, with a 2.5% overall boost in the holistic
Q! AR setting.

G. VCR Datasheet
A datasheet is a list of questions that accompany datasets

that are released, in part so that people think hard about the
phenomena in their data [23]. In this section, we provide a
datasheet for VCR.

G.1. Motivation for Dataset Creation
Why was the dataset created? The dataset was cre-

ated to study the new task of Visual Commonsense Rea-
soning: essentially, to have models answer challenging
cognition-level questions about images and also to choose a
rationale justifying each answer.

Has the dataset been used already? Yes, at the time
of writing, several groups have submitted models to our
leaderboard at visualcommonsense.com/leaderboard.

Who funded the dataset?? VCR was funded via a va-
riety of sources; the biggest sponsor was the IARPA DIVA
program through D17PC00343.29

G.2. Dataset Composition
What are the instances? Each instance contains an

image, a sequence of object regions and classes, a query,
and a list of response choices. Exactly one response is cor-
rect. There are two sub-tasks to the dataset: in Question

29However, the views and conclusions contained herein are those of
the authors and should not be interpreted as representing endorsements
of IARPA, DOI/IBC, or the U.S. Government.

21

https://visualcommonsense.com/leaderboard/

Answering (Q!A) the query is a question and the response
choices are answers. In Answer Justification (QA!R) the
query is a question and the correct answer; the responses are
rationales that justify why someone would conclude that the
answer is true. Both the query and the rationale refer to the
objects using detection tags like person1.

How many instances are there? There are 212,923
training questions, 26,534 validation questions, and 25,263
questions. Each is associated with a four answer choices,
and each question+correct answer is associated with four
rationale choices.

What data does each instance consist of? The image
from each instance comes from a movie, while the object
detector was trained to detect objects in the COCO dataset
[49]. Workers ask challenging high-level questions cover-
ing a wide variety of cognition-level phenomena. Then,
workers provide a rationale: one to several sentences ex-
plaining how they came at their decision. The rationale
points to details in the image, as well as background knowl-
edge about how the world works. Each instance contains
one correct answer and three incorrect counterfactual an-
swers, along with one correct rationale and three incorrect
rationales.

Does the data rely on external resources? No, every-
thing is included.

Are there recommended data splits or evaluation
measures? We release the training and validation sets,
as well as the test set without labels. For the test set, re-
searchers can submit their predictions to a public leader-
board. Evaluation is fairly straightforward as our task is
multiple choice, but we will also release an evaluation
script.

G.3. Data Collection Process
How was the data collected? We used movie images,

with objects detected using Mask RCNN [24, 29]. We col-
lected the questions, answers, and rationales on Amazon
Mechanical Turk.

Who was involved in the collection process and what
were their roles? We (the authors) did several rounds of
pilot studies, and collected data at scale on Amazon Me-
chanical Turk. In the task, workers on Amazon Mechanical
Turk could ask anywhere between one to three questions.
For each question, they had to provide an answer, indicate
its likelihood on an ordinal scale, and provide a rationale
justifying why their answer is true. Workers were paid at 22
cents per question, answer, and rationale.

Over what time frame was the data collected? Au-
gust to October 2018.

Does the dataset contain all possible instances? No.
Visual Commonsense Inference is very broad, and we fo-
cused on a limited set of (interesting) phenomena. Beyond
looking at di↵erent types of movies, or looking at the world

beyond still photographs, there are also di↵erent types of
inferences that we didn’t cover in our work.

If the dataset is a sample, then what is the popula-
tion? The population is that of movie images that were
deemed interesting by our interestingness filter (having at
least three object detections, of which at least two are peo-
ple).

G.4. Data Preprocessing
What preprocessing was done? The line between

data preprocessing and dataset collection is blurry for VCR.
After obtaining crowdsourced questions, answers, and ra-
tionales, we applied Adversarial Matching, turning raw data
into a multiple choice task. We also tokenized the text
spans.

Was the raw data saved in addition to the cleaned
data? Yes - the raw data is the correct answers (and as
such is a subset of the ‘cleaned’ data).

Does this dataset collection/preprocessing procedure
achieve the initial motivation? At this point, we think
so. Our dataset is challenging for existing VQA systems,
but easy for humans.

G.5. Dataset Distribution
How is the dataset distributed? VCR is freely avail-

able for research use at visualcommonsense.com.

G.6. Legal and Ethical Considerations
Were workers told what the dataset would be used

for and did they consent? Yes - the instructions said that
workers answers would be used in a dataset. We tried to be
as upfront as possible to workers. Workers also consented to
have their responses used in this way through the Amazon
Mechanical Turk Participation Agreement.

If it relates to people, could this dataset expose people
to harm or legal action? No - the questions, answers,
and responses don’t contain personal info about the crowd
workers.

If it relates to people, does it unfairly advantage or
disadvantage a particular social group? Unfortunately,
movie data is highly biased against women and minorities
[71, 69]. Our data, deriving from movies as well as from
worker elicitations [68], is no di↵erent. For these reasons,
we recommend that users do not deploy models trained on
VCR in the real world.

H. Additional qualitative results
In this section, we present additional qualitative results

from R2C. Our use of attention mechanisms allow us to
better gain insight into how the model arrives at its deci-
sions. In particular, the model uses the answer to attend

22

https://visualcommonsense.com

over the question, and it uses the answer to attend over rel-
evant objects in the image. Looking at the attention maps
help to visualize which items in the question are important
(usually, the model focuses on the second half of the ques-
tion, like ‘covering his face’ in Figure 14), as well as which
objects are important (usually, the objects referred to by the
answer are assigned the most weight).

23

Figure 14: An example from the Q ! A task. Each super-row is a response choice (four in total). The first super-column
is the question: Here, ‘Why is [person1] covering his face?’ and the second super-column represents the relevant
objects in the image that R2C attends to. Accordingly, each block is a heatmap of the attention between each response choice
and the query, as well as each response choice and the objects. The final prediction is given by the bar graph on the left: The
model is 60% confident that the right answer is b., which is correct.

24

Figure 15: An example from the QA ! R task. Each super-row is a response choice (four in total). The first super-column
is the query, and the second super-column holds the relevant objects (here just a single person, as no other objects were
mentioned by the query or responses). Each block is a heatmap of the attention between each response choice and the query,
as well as the attention between each response choice and the objects. The final prediction is given by the bar graph on the
left: The model is 71% confident that the right rationale is b., which is correct.

25

Figure 16: An example from the Q ! A task. Each super-row is a response choice (four in total). The first super-column
is the question: Here, ‘What is [person13] doing?’ and the second super-column represents the relevant objects in the
image that R2C attends to. Accordingly, each block is a heatmap of the attention between each response choice and the
query, as well as each response choice and the objects. The final prediction is given by the bar graph on the left: The model
is 86% confident that the right answer is d., which is correct.

26

Figure 17: An example from the QA ! R task. Each super-row is a response choice (four in total). The first super-column
is the query, and the second super-column holds the relevant objects. Each block is a heatmap of the attention between each
response choice and the query, as well as the attention between each response choice and the objects. The final prediction is
given by the bar graph on the left: The model is 86% confident that the right rationale is b., which is incorrect - the correct
choice is a.

27

Figure 18: An example from the Q ! A task. Each super-row is a response choice (four in total). The first super-column
is the question: Here, ‘Why is [person2] here on this deck?’ and the second super-column represents the relevant
objects in the image that R2C attends to. Accordingly, each block is a heatmap of the attention between each response choice
and the query, as well as each response choice and the objects. The final prediction is given by the bar graph on the left: The
model is 33% confident that the right answer is d., which is incorrect - the correct answer is correct answer is c.

28

Figure 19: An example from the QA ! R task. Each super-row is a response choice (four in total). The first super-column
is the query, and the second super-column holds the relevant objects. Each block is a heatmap of the attention between each
response choice and the query, as well as the attention between each response choice and the objects. The final prediction is
given by the bar graph on the left: The model is 98% confident that the right rationale is c., which is correct.

29

