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1. Introduction

In this supplementary material, we discuss the data prun-
ing process for Matterport3D [2] test set, then illustrate the
network architecture details regarding the fusion network
and confidence map estimation module. Additionally, we
present more visual comparisons of surface normal estima-
tion with competing schemes, with extra evaluation focus-
ing on object details. Finally, more objective and visual re-
sults of variants of the proposed HFM-Net are presented for
better understanding of the network.

2. Data Pruning

Since ground-truth normal data in the Matterport3D suf-
fer from reconstruction noise, we remove the samples in
Matterport3D testing set with large error using the follow-
ing procedures:

• Compute the angle difference between ground-truth
normal and results of two state-of-the-art methods
(Skip-Net [1] and Zhang’s method [7]);

• Remove the data item if the percentage of average nor-
mal angle difference within 45 degree is smaller than
90%.

• Manually check all erroneous samples to ensure that
these samples suffers from incorrect multi-view recon-
struction, e.g., due to outdoor scenes or mirror area.

Finally 782 out of 12084 test images are removed. Note
that data pruning is not applied on Matterport3D training set
since the effect of erroneous data is reduced with the hybrid
loss, nor on ScanNet dataset where the size of erroneous
area is acceptable.

∗indicates equal contribution.

3. HFM-Net Architecture

Details of the HFM-Net architecture are demonstrated
in Fig. 2. Convolution and deconvolution layers are de-
noted as Conv(in, out, k, s) and Deconv(in, out, k, s),
where in and out are input and output channel numbers,
k is the kernel size and s is the stride. Max-pooling
and max-unpooling layers are denoted as Maxpool(k, s)
and MaxUnpool(k, s), where k is the kernel size and s
is the stride. Instance normalization is shortened as IN .
LeakyRelu functions in confidence map estimation mod-
ule are set with negative slope 0.01.

⊕
stands for con-

catenation, and
⊗

stands for element-wise multiplication.
Repeat layer is to increase the channel number of confi-
dence map from one to that of the corresponding depth fea-
ture to facilitate subsequent element-wise multiplication.

Note that MaxUnpool layers in RGB decoder share the
pooling indices used in MaxPool in RGB encoder.

3.1. Additional Layers for Multi-Scale Output

To compute hybrid loss on multi-scale output in Eq. (4)
in the paper, for each scale, we additionally add one convo-
lution layer taking the feature output from the deconvolu-
tion layer before MaxUnpool in RGB branch as the input,
and outputs a 3-channel output using kernel size 3 and stride
1. In this way, the multi-scale outputs are generated to en-
able hybrid loss computation. These layers are removed in
the testing mode.

4. Main Results

In this section, more visual comparison results with com-
peting normal estimation schemes on Matterport3D [2] and
ScanNet [3] are presented in Fig. 3, 4, 5, and 6. The col-
ormap for visualization is illustrated in Fig. 1.

While RGB-based methods, i.e., Skip-Net [1] and
Zhang’s algorithm [8], generate overall reasonable results,
fine details are missing and the edges are blurred out. This



Figure 1: Surface normal visualization colormap. Red for
left, green for up and blue for outward.

is because RGB-based methods suppress the sensitivity to
sharp changes or fine textures to avoid mistakes at these re-
gions, but in turn blur the edges in the final results. For
results generated from depth with pre-processing, i.e., in-
painting with Levin’s algorithm [5] and depth completion
(DC) [7], the inpainted area is not as accurate as that pre-
dicted from RGB-D fusion methods. For results generated
from alternative RGB-D fusion schemes, i.e., incorporat-
ing depth input into RGB branch with methods in GeoNet
(GeoNet-D) [6] or GFMM [4], the depth input is converted
to normal map and then used to refine normal prediction in
RGB branch, thus the results of GeoNet-D and GFMM are
similar. Since the depth information is not fully utilized,
the results are still blurry though additional details are in-
troduced from depth input. On the other hand, HFM-Net
provides more visually appealing results, with smooth sur-
faces and sharp details.

In addition, we visualize the normal results in 3D, in
Fig. 7, 8, 9 and 10. We first convert the ground-truth depth
map to the world coordinates with the provided intrinsic
camera parameters to obtain corresponding point cloud,
which is then rendered with normal estimation as texture.
As shown in the figures, HFM-Net provides more accurate
result in inpainted area compared to depth based methods,
and preserves more details and sharp edges compared to
RGB based and RGB-D methods.

Moreover, to stress the importance of fine details around
objects, we additionally evaluate the performance in the ob-
ject regions for ScanNet dataset [3] by computing pixels
belonging to particular objects. Specifically, semantic seg-
mentation results provided in ScanNet dataset are used to
mask objects of interest, i.e., bed, sofa, chair, and quantita-
tive results of different approaches are shown in Table 1. As
can be seen, HFM-Net outperforms the competing schemes
by a large margin, which is consistent with the visual re-
sults in Fig. 3, 4, 5, 6. For example, by comparing with
the state-of-the-art DC, we achieve 5.03-13.50% increase
in the terms of the fraction of pixels with angle error within
11.25◦, indicating a better detail preservation.

Table 1: Performance of surface normal prediction for lo-
cal object layout on ScanNet dataset. The best results are
highlighted in boldface.

RGB-based Depth-based RGBD-based Preposed

Objects Metrics Skip-Net Zhang’s Levin’s DC GeoNet-D GFMM
[1] [8] [5] [7] [6] [4] HFM-Net

mean 28.918 28.045 20.621 17.854 21.866 21.044 14.288
median 25.381 23.777 12.991 11.673 18.604 17.853 9.740

Bed 11.25◦ 17.19 23.42 52.79 55.26 26.68 31.93 60.29
22.5◦ 45.05 49.73 71.79 75.96 63.42 63.66 82.12
30◦ 60.30 62.53 77.93 82.37 75.75 76.62 88.32

mean 25.801 25.31 22.391 19.056 22.479 21.527 13.325
median 21.153 20.800 15.027 13.400 18.864 17.853 8.737

Sofa 11.25◦ 24.95 26.29 50.97 52.77 28.28 30.98 66.27
22.5◦ 55.68 56.31 68.95 75.11 63.45 66.54 84.77
30◦ 68.65 69.38 74.88 81.66 77.21 79.57 89.53

mean 34.209 32.601 34.950 27.640 28.958 28.268 22.009
median 29.555 27.528 26.453 18.073 23.705 22.937 13.840

Chair 11.25◦ 14.43 17.88 33.33 40.91 19.62 21.66 48.75
22.5◦ 39.00 42.97 48.42 60.88 49.56 51.70 69.10
30◦ 52.37 55.93 55.56 68.59 64.21 65.80 76.28

5. Ablation Study

In this section, we present a complete comparison with
variants of the HFM-Net for understanding the role of each
component in the network. We evaluate two categories of
HFM-Net variants, one to validate fusion scheme, and the
other to test loss function. Apart from that, we examine the
effectiveness of confidence map, and compare the result of
single branch and the complete HFM-Net.

5.1. Fusion Schemes

In the first category, we test on different fusion schemes,
i.e., early fusion (Early-F) and late fusion (Late-F), and keep
masking and loss function unchanged if needed in the fu-
sion. Multi-scale output is not involved in Early-F and Late-
F, thus L1 loss is used for training.

Visual comparison with Early-F and Late-F is shown in
Fig. 11, where HF has smoother transition along the bound-
ary of the depth holes. For example in the second row of
Fig. 11, the boundary of the chair back marked with orange
rectangle is smoother in the HFM-Net result.

Additionally, in category “Fusion(binary mask+hybrid)”
of Table 2, HF outperforms Early-F and Late-F in all met-
rics. For example, for results of ScanNet dataset, HF out-
performs Early-F and Late-F by 4.25 and 9.41%, suggesting
a better detail preservation.

5.2. Loss Function

In the second category, we test on different loss func-
tions. Besides to the comparison between L2 loss and hy-
brid loss on HF with confidence map, we additionally com-
pare L2 and L1 loss on the model used in Zhang’s scheme
[8] with RGB input. As shown in Fig. 12, hybrid/L1 loss
generates sharper edges and suppress errors in planar area.
This is consistent with the results in Table 2, where “RGB
L1” and “HF hybrid” outperforms “RGB L2” and “HF L2”
respectively, especially in terms of percentage of angle er-



Table 2: Performance of different variants of HFM-Net with
hybrid loss to evaluate: hierarchical fusion scheme (HF)
compared with early fusion (Early-F) and late fusion (Late-
F), usage of confidence map compared with binary mask,
hybrid loss compared with L2 loss. The best results are
highlighted in boldface.

Dataset Metrics

Variants of HFM-Net
Fusion (binary mask+hybrid) Loss (HF with Map)
Early-F Late-F HF RGB L2 RGB L1 HF L2 HF hybrid

Matterport3D

mean 13.968 13.645 13.437 19.346 18.913 13.688 13.062
median 6.855 6.567 6.507 12.070 10.751 7.235 6.090
11.25◦ 71.93 70.79 70.98 52.64 56.60 69.21 72.23
22.5◦ 83.54 83.68 83.96 72.12 73.51 83.45 84.41
30◦ 87.44 87.75 88.05 79.44 79.82 87.94 88.31

ScanNet

mean 16.045 17.425 14.696 23.306 22.575 14.946 14.590
median 8.949 10.277 7.545 15.950 13.633 8.322 7.468
11.25◦ 61.17 56.01 65.42 40.43 47.06 62.87 65.65
22.5◦ 79.32 76.93 81.10 63.08 66.93 80.12 81.21
30◦ 84.87 83.26 86.11 71.88 74.06 85.72 86.21

Table 3: Performance of single branch network and HFM-
Net. The best results are highlighted in boldface.

Dataset Metrics RGB branch Depth branch HMF-Net

Matterport3D

mean 19.346 15.161 13.062
median 12.070 8.148 6.090
11.25 52.64 66.12 72.23
22.5 72.12 81.12 84.41
30 79.44 85.90 88.31

ScanNet

mean 23.306 16.689 14.590
median 15.95 9.688 7.468
11.25 40.43 58.55 65.65
22.5 63.08 78.43 81.21
30 71.88 84.31 86.21

ror under 11.25◦ because the performance improvement fo-
cuses on detail refinement.

5.3. Confidence Map

Furthermore, to evaluate the effectiveness of confidence
map, we compare results of HF with binary mask (from
the first category) and with confidence map (from the sec-
ond category) and show in Fig. 13, which are denoted as
HF(Mask) and HF(Map) respectively. With confidence
map, the transition along depth holes are more accurate,
which is further validated in Table 2 where “HF hybrid”
in the second category provides better results than “HF” in
the first category.

5.4. Single Branch Output

We also compare the result of using the single RGB
branch, the single depth branch and the whole HFM-Net,
and show in Table 3. Single RGB branch is the same
as Zhang’s [7]. It can be concluded from the result that
the HFM-Net successfully integrates the features of two
branches and achieves higher performance than a single
branch.
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Figure 2: Details of HFM-Net architecture

(a) RGB Input (b) Depth Input (c) Ground-truth (d) Skip-Net (e) Zhang’s

(f) Levin’s (g) DC (h) GeoNet-D (i) GFMM (j) HFM-Net

Figure 3: Surface normal estimation with different schemes, tested on ScanNet dataset.



(a) RGB Input (b) Depth Input (c) Ground-truth (d) Skip-Net (e) Zhang’s

(f) Levin’s (g) DC (h) GeoNet-D (i) GFMM (j) HFM-Net

Figure 4: Surface normal estimation with different schemes, tested on ScanNet dataset.

(a) RGB Input (b) Depth Input (c) Ground-truth (d) Skip-Net (e) Zhang’s

(f) Levin’s (g) DC (h) GeoNet-D (i) GFMM (j) HFM-Net

Figure 5: Surface normal estimation with different schemes, tested on Matterport3D dataset.

(a) RGB Input (b) Depth Input (c) Ground-truth (d) Skip-Net (e) Zhang’s

(f) Levin’s (g) DC (h) GeoNet-D (i) GFMM (j) HFM-Net

Figure 6: Surface normal estimation with different schemes, tested on Matterport3D dataset.



(a) RGB Input (b) Depth Input (c) Ground-truth (d) Skip-Net (e) Zhang’s

(f) Levin’s (g) DC-inpainting (h) GeoNet-D (i) GFMM (j) HFM-Net

Figure 7: 3D visualization of normal estimation with different schemes, tested on Matterport3D dataset.

(a) RGB Input (b) Depth Input (c) Ground-truth (d) Skip-Net (e) Zhang’s

(f) Levin’s (g) DC-inpainting (h) GeoNet-D (i) GFMM (j) HFM-Net

Figure 8: 3D visualization of normal estimation with different schemes, tested on Matterport3D dataset.

(a) RGB Input (b) Depth Input (c) Ground-truth (d) Skip-Net (e) Zhang’s

(f) Levin’s (g) DC-inpainting (h) GeoNet-D (i) GFMM (j) HFM-Net

Figure 9: 3D visualization of normal estimation with different schemes, tested on ScanNet dataset.



(a) RGB Input (b) Depth Input (c) Ground-truth (d) Skip-Net (e) Zhang’s

(f) Levin’s (g) DC-inpainting (h) GeoNet-D (i) GFMM (j) HFM-Net

Figure 10: 3D visualization of normal estimation with different schemes, tested on ScanNet dataset.

Figure 11: Surface normal estimation with different fusion schemes.



Figure 12: Surface normal estimation with different loss functions.

Figure 13: Surface normal estimation with binary mask and confidence map.
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