
A. Proof of Theorems and Propositions
A.1. Proof of Proposition 1

To show that F is path-invariant, it suffices to prove that
fp = fq for every path pair (p, q) ∈ Gpair. But by Definition
7, (p, q) is either in Gpair or can be induced from a finite
number of operations with merge, stitch and/or cut. So if
we can show that the output path pair in every round of
operation keeps consistency on the map network F , given
the input path pairs are consistent, then all path pairs on G
would be path-invariant by employing an induction proof.
Next we achieve this goal by considering three operations
respectively.

• merge. The merge operation takes as input two path
pairs (p, q), (p′, q′) ∈ Gpair where p′ = r ∼ p ∼ r′,
i.e., p′ is formed by stitching three sub-paths r, p and
r′ in order. By Definition 2, it is easy to see that

fp′ = fr′ ◦ fp ◦ fr.

But we are given thatF is consistent on the input pairs,
or equivalently,

fp = fq, fp′ = fq′ .

Hence

fq′ = fp′ = fr′ ◦ fq ◦ fr = fr∼q∼r′ .

So F is also consistent on path pair (r ∼ q ∼ r′, q′).

• stitch. The stitch operation takes as input two path
pairs (p, q), (p′, q′) where p, q ∈ Gpath(u, v) and
p′, q′ ∈ Gpath(v, w). Since F is consistent on (p, q)
and (p′, q′), it follows immediately

fp∼p′ = fp′ ◦ fp = fq′ ◦ fq = fq∼q′ ,

which means F is also consistent on (p ∼ p′, q ∼ q′).

• cut. The cut operation takes as input two path pairs
(C1,∅) and (C2,∅), where C1 and C2 are two com-
mon vertices u, v and share a common intermediate
path from v to u. The two cycles can be represented

by u
p−→ v

q−→ u and u
p′−→ v

q−→ u where p, p′ ∈
Gpath(u, v) and q ∈ Gpath(v, u). Since F is consistent
on (C1,∅) and (C2,∅), we have

fp∼q = fq ◦ fp = I, fp′∼q = fq ◦ fp′ = I.

However, it is known that the inverse of some function
must be unique, giving the following result

fp′ = fp,

or in other words, F is consistent on path pair (p, p′).

The consistency of F on the output pairs for all three
operations given the consistency on their input pairs ensures
our proposition.

A.2. Proof of Theorem 3.1

The algorithm adds exactly |E| edges in total. And dur-
ing each edge insertion, at most |P| ≤ |V| path pairs
would be added to Bdag(σ), thus it follows immediately that
|Bdag(σ)| ≤ |V||E|.

Next we show that Bdag(σ) indeed is a path-invariance
basis for G. To this end, we will verify that every path pair
in Gpair can be induced from a subset of Bdag(σ) by opera-
tions, using a induction proof. In particular, we claim that
at all time points, all path pairs in Gcur can be induced from
Bdag(σ) by a series of operations. Initially, this inductive
assumption holds trivially since Gcur is an empty set.

w

w′

m

u

q1

s1

v

p

s2

Figure 7: An Illus-
tration for Path-Pair
Generation

Suppose now we were process-
ing an edge (u, v) ∈ E (so (u, v) 6∈
Gcur(σ) at this time point) and let
G′cur = Gcur ∪ {(u, v)}. By in-
ductive assumption, all path pairs in
Gcur can be induced from Bdag(σ).
After inserting (u, v) into Gcur, it
suffices to consider path pairs that
contain edge (u, v) since all other
path pairs have been guaranteed by
inductive assumption. Let (p, q) be
a path pair in G′cur containing (u, v).
Without loss of generality, suppose
p, q ∈ Gpath(w, v) and

p = p1 ∼ (r, v), q = q1 ∼ (u, v).

If r = u, then (p, q) can be induced
by stitching (p1, q1) and ((u, v), (u, v)) where (p1, q1) ∈
Gcur. We assume r 6= u, and then p would be a path from
w to v in Gcur and q1 would be a path from w to u in Gcur.

Recall the definition of P and P . w ∈ P immediately
follows. If w 6∈ P , then there exists w′ 6= w such that w
can reach w′ in Gcur and w′ ∈ P and denote such path as
m. For convenience, we let w′ = w and m = ∅ when
w ∈ P . Every vertex in P corresponds to a path-invariance
pair to be added to Bdag by our algorithm. Here we assume
that it is (s1 ∼ (u, v), s2) for w′ where s1 ∈ Gpath(w′, u),
s2 ∈ Gpath(w′, v) and s2 is within Gcur.

By the property of DAG and the order of edge inser-
tion, all paths from w to u in G are also in Gcur since
(u, v) ∈ E . Thus (q1,m ∼ s1) can be induced from
Bdag(σ) by inductive assumption. Similarly, as s2 is within
Gcur, (p,m ∼ s2) is also a path-invariance pair, which can
be induced from Bdag(σ). Next we give the operation steps

to build (p, q):

(m,m) + (s1 ∼ (u, v), s2)

stitch−−−−→ (m ∼ s1 ∼ (u, v),m ∼ s2) (6)
(m ∼ s1 ∼ (u, v),m ∼ s2) + (q1,m ∼ s1)

merge−−−−→ (q1 ∼ (u, v),m ∼ s2) (7)
(q1 ∼ (u, v),m ∼ s2) + (p,m ∼ s2)

merge−−−−→ (p, q) (8)

For the last step, notice that q = q1 ∼ (u, v) and (p, q)
is equivalent to (q, p). Thus all path pairs in G′cur can be
induced by path pairs in Bdag(σ) with a series of operations,
which completes our proof by induction.

A.3. Proof of Proposition 2
Before proving Proposition 2, we first introduce some

well-known terms for depth-first search. There are two time
stamps d[v] and f [v] for each vertex v, where d is defined as
the time point when it visits v for the first time and f as the
time point when it finishes visiting v. Some edge (u, v) in E
can be classified into one of four disjoint types as follows:

• Tree Edge: v is visited for the first time as we traverse
the edge (u, v). In this case (u, v) will be added into
the resulting DFS spanning tree. For tree edge we have

d[u] < d[v], f [u] > f [v].

• Back Edge: v is visited and is an ancestor of u in the
current spanning tree. For back edge we have

d[u] > d[v], f [u] < f [v].

• Forward Edge: u is visited and is an ancestor of v in
the current spanning tree. For forward edge we have

d[u] < d[v], f [u] > f [v].

• Cross Edge: v is visited and is neither an ancestor nor
descendant of u in the current spanning tree. For cross
edge we have

d[u] > d[v], f [u] > f [v].

Using these definitions, we prove that:
Any cycle C in G have a vertex u in C such that all other

vertices are located within the sub-tree rooted at u, i.e., are
the descendants of u in T .

Let
C : u1 → u2 → · · · → uk → u1.

Without loss of generality, u1 is assumed to be the one with
smallest d among all {ui}. If not all ui are descendants
of u1, we choose ut to be the one with smallest t, which

means ut−1 is a descendant of u1 but ut is not. Obviously
(ut−1, ut) cannot be a tree edge or forward edge, which
causes ut to be a descendant of ut−1 and also a descen-
dant of u1. If (ut−1, ut) is a back edge, then ut is not
a descendant of u1 if and only if ut−1 = u1 since there
is in fact unique back path in the spanning tree T . But
ut−1 = u1 means ut is a parent of u1, and thus there ex-
ists a smaller d than u1, which results in a contradiction.
Also (ut−1, ut) cannot be a cross edge. In fact, since ut−1

is a descendant of u1, we have f [ut−1] < f [u1]. Together
with f [ut] < f [ut−1] from cross edge property, we have
f [ut] < f [u1]. But ut is not a descendant or ancestor
of u1, which means the sub-tree rooted at u1 is disjoint
from the sub-tree rooted at ut, so intervals [d[u1], f [u1]] and
[d[ut], f [ut]] must be disjoint by the property of depth-first
search. As thus f [ut] < f [u1] implies d[ut] < d[u1], which
contradicts the assumption that d[u1] is smallest among ui.
Hence all ui are descendants of u1.

Now come back to the original proposition. Continue
using the notation C defined above. In addition we define Ci
as the sub-path from u1 to ui, i.e.,

Ci : u1 → u2 → · · · → ui.

We will show C can be induced from B by a finite num-
ber of operations with merge, stitch and cut. Above all, we
have assumed the property of path-invariance on T by The-
orem 3.1. Given u1 is the common ancestor of all ui, we
inductively prove the following statement:

The path u1 → u2 → · · · → ut (t ≤ k) is equivalent to
the tree path from u1 to ut. Here tree path means a path in
which all edges are in the spanning tree T .

The base case is trivial. Now suppose u1 → u2 → · · · →
ut (t < k) is equivalent to tree path P from u1 to ut and we
continue to check u1 → u2 → · · · → ut+1.

• If (ut, ut+1) is a tree edge, then P ∼ (ut, ut+1) is still
a tree path and a stitch operation on path pair (Ct, P)
and ((ut, ut+1), (ut, ut+1)) gives the equivalency that
we want.

• If (ut, ut+1) is a forward edge, then there exists a
tree path P1 from ut to ut+1. By path-invariance on
Gdag , we can stitch two path-invariance pair (Ct, P)
and ((ut, ut+1), P1) to obtain the desired equivalency.

• If (ut, ut+1) is a back edge, then there exists a tree
path P1 from ut+1 to ut. In addition by our construc-
tion the cycle P1 ∼ (ut, ut+1) has been added into our
basis set B. Denote the tree path from u1 to ut+1 as
P2, then stitching (P2, P2) and (P1 ∼ (ut, ut+1),∅)
gives (P2 ∼ P1 ∼ (ut, ut+1), P2). On the other hand,
by inductive assumption we have path-invariance pair
(P2 ∼ P1, Ct) since P2 ∼ P1 is just the tree path
from u1 to ut. Thus by merging (P2 ∼ P1, Ct) and
(P2 ∼ P1 ∼ (ut, ut+1), P2) we obtain the path pair
(Ct ∼ (ut, ut+1), P2), or equivalently, (Ct+1, P2).

• If (ut, ut+1) is a cross edge, then (ut, ut+1) has been
included in Gdag . Denote by P1 the tree path from u1

to ut. In this way all P1 ∼ (ut, ut+1) would be equiv-
alent to another tree path P2 from u1 to ut+1 since all
edges involved here are within Gdag which maintains
all possible path-invariance pairs. By merging path
pairs (P1 ∼ (ut, ut+1), P2) and (P1, Ct) we obtain
path pair (Ct ∼ (ut, ut+1), P2), or (Ct+1, P2), which
is exactly we want to verify.

As thus we finished our inductive proof. In particular,
the path (also a cycle) u1 → · · · → uk → u1 is equivalent
to ∅, or more precisely, the path pair (C,∅) can be induced
from B by a finite number of merge and stitch operations.

To complete our proof, we need to show that all path
pairs in G instead of just Gdag can be induced from B. This
is relatively easy. Consider two path P1 and P2 both from u
to v. Since G is strongly connected, there must exist some
path P3 from v to u. The cut operation on P1 ∼ P3 and
P2 ∼ P3 for the common vertices u and v immediately
gives the path pair (P1, P2).

A.4. Proof of Theorem 3.2
To prove this theorem, we first prove the following

lemma:
Lemma Suppose Gi and Gj are two strongly connected
components in G with (Gi,Gj) ∈ Gdag . Given any ver-
tices u, u′ ∈ Gi and v, v′ ∈ Gj with (u, v), (u′, v′) ∈ Eij ,
and paths p ∈ Gpath(u, u′), p′ ∈ Gpath(v, v′), we claim that
p ∼ (u′, v′) is equivalent to (u, v) ∼ p′ under B.

In fact since B ensures equivalence for all path pairs in-
side the same SCC, the specific p, p′ does not matter. We
only care about the starting and ending points when every-
thing happens inside a single SCC. So in the following proof
we will use P (x, y) to denote some path from x to y inside
the single SCC but not mentioning the intermediate vertices.
Recall that we built a (undirected) spanning tree T on E2

ij .
Thus we have an edge sequence

(u1, v1), (u2, v2), . . . , (uk, vk)

where u1 = u, v1 = v, uk = u′, vk = v′, and edge pair

((ul, vl), (ul+1, vl+1))

are in T for all l = 1, . . . , k − 1. Next we inductively
prove that P (u1, ut) ∼ (ut, vt) is equivalent to (u1, v1) ∼
P (v1, vt) for t = 1, . . . , k. The base case where t = 1
is trivial. Given the correctness for t, consider t + 1.
It is known that (ut, vt) ∼ P (vt, vt+1) is equivalent to
P (ut, ut+1) ∼ (ut+1, vt+1) by the construction of T and
P (u1, ut) ∼ (ut, vt) is equivalent to (u1, v1) ∼ P (v1, vt)
by inductive assumption. By successively applying two
merge operations on path

(u1, v1) ∼ P (v1, vt) ∼ P (vt, vt+1)

we obtain the equivalent path

P (u1, ut) ∼ P (ut, ut+1) ∼ (ut+1, vt+1).

But it is straightforward that P (u1, ut) ∼ P (ut, ut+1) is
equivalent to P (u1, ut+1) under B since u1, ut, ut+1 are
in the same SCC. Similarly, P (v1, vt) ∼ P (vt, vt+1) is
equivalent to P (v1, vt+1). Thus finally we obtain the equiv-
alency on P (u1, ut+1) ∼ (ut+1, vt+1) and (u1, v1) ∼
P (v1, vt+1), which completes our inductive proof and the
lemma immediately follows.

Come back to the original theorem. With notation
P (x, y), we can express an arbitrary path p in G from u
to v as

p : P (u1, v1) ∼ (v1, u2) ∼ P (u2, v2) ∼
· · · ∼ (vk−1, uk) ∼ P (uk, vk)

where u1 = u, vk = v, and ui, vi are in the same SCC Gbi .
Similarly write another path p′ from u to v this way:

p′ : P (u′1, v
′
1) ∼ (v′1, u

′
2) ∼ P (u′2, v

′
2) ∼

· · · ∼ (v′k−1, u
′
k) ∼ P (u′k, v

′
k)

where u′1 = u, v′k = v, and ui, vi are in the same SCC
Gb′i with obvious constraints b1 = b′1 and bk = b′k. As we
extend Bdag that maintains the equivalency on all possible
pairs in Gdag to G, there would be a path pair

q : P (α1, β1) ∼ (β1, α2) ∼ P (α2, β2) ∼
· · · ∼ (βk−1, αk) ∼ P (αk, βk)

q′ : P (α′1, β
′
1) ∼ (β′1, α

′
2) ∼ P (α′2, β

′
2) ∼

· · · ∼ (β′k−1, α
′
k) ∼ P (α′k, β

′
k)

in the extended Bdag where α1 = α′1, βk = β′k, and αi, βi
are in the same SCC Gbi while α′i, β

′
i in Gb′i . Thus it suffices

to prove that p is equivalent to P (u1, α1) ∼ q ∼ P (βk, vk)
while p′ equivalent to P (u′1, α

′
1) ∼ q′ ∼ P (β′k, v

′
k). (Recall

that u′1 = u1, etc.) Since the proofs for them are essentially
identical, we only consider p.

In fact, P (u1, α1) ∼ q ∼ P (βk, vk) can be equivalently
expressed as

P (u1, v1) ∼ P (v1, β1) ∼ (β1, α2) ∼ P (α2, u2)

∼ P (u2, v2) ∼ P (v2, β2) ∼ . . .
∼ P (βk−1, αk) ∼ (αk, uk) ∼ P (uk, vk).

In other words, we split P (αi, βi) into P (αi, ui) ∼
P (ui, vi) ∼ P (vi, βi) for i = 2, . . . , k − 1. However, our
lemma just states that

P (vi, βi) ∼ (βi, αi+1)

is equivalent to

(vi, ui+1) ∼ P (ui+1, αi+1).

Source Target Congealing RASL CollectionFlow DSP FlowWeb Ours

Figure 8: Visual comparison between our approach and state-of-the-art approaches. This figure is best viewed in color, zoomed in.

Thus by series of merge operations, P (u1, α1) ∼ q ∼
P (βk, vk) can be shown to be equivalent to

P (u1, v1) ∼ (v1, u2) ∼ P (u2, α2) ∼ P (α2, u2)

∼ P (u2, v2) ∼ P (v2, u3) ∼ . . .
∼ P (uk, αk) ∼ P (αk, uk) ∼ P (uk, vk),

which is clearly p by cancelling all consecutive P ’s.

A.5. Proof of Proposition 3

First note that in fact the bound |V||E| theorem 3.1 can
be improved to (|V| − 1)|E| since |P| ≤ |V| − 1 all time.

In this way the size of Bi is bounded by
|E(Bi)|(|V(Bi)| − 1). Suppose there are k strongly
connected components in G and c edges across different
SCCs. Then there are at most c edges in

⋃
i,j Bij since the

edge number of a spanning tree is less than that of vertices
by 1. Notice c is also the edge number of contracted graph
Gdag . Hence for the Gdag , there are would be at most
(k − 1)× c items in Bdag . Also observe that each SCC can
have at most |V| − k + 1 vertices when there are k SCCs.
So the size of B would be bounded by

(k − 1)c+ c+ (|V| − k)|E|
≤k|E|+ (|V| − k)|E|
=|V||E|

B. Additional Details of Joint Dense Image
Map

B.1. Training Details
We applied ADAM [27] to solve the following optimiza-

tion problem for predicting dense image correspondences.

min
θ

∑
(i,j)∈E

‖fθij − f inij ‖1 + λ
∑

(p,q)∈B

‖fθp − fθq ‖2F (9)

We initialize fθ by directly fitting it to the input image
flows between pairs of images. We then impose the path-
invariance regularization term to improve the network flow.

B.2. More Qualitative Evaluations
Figure 8 and Figure 9 provide more qualitative evalu-

ations of our approach on the PASCAL Rigid categories.
Besides the two categories shown in the main paper (Car
and Aeroplane), we pick one example from the remaining
10 rigid categories. Note that our approach is consistently
better than all baseline approaches.

B.3. Comparison to [56]
We run additional experiments to compare our approach

against [56] (using DSP as input) on the Car dataset, where
we used 1000 additional synthetic images. Table 2 shows
the performance of different baselines. Our approach is su-
perior to [56]. The improvement comes from using the net-
work to propagate learned flows between similar images.
Note that [56] essentially enforces consistency among se-
lected 4-cycles (two synthetic and two real), so its perfor-
mance is similar to Ours-Dense, which involves 3-cycles.

Source Target Congealing RASL CollectionFlow DSP FlowWeb Ours

Figure 9: Visual comparison between our approach and state-of-the-art approaches. This figure is best viewed in color, zoomed in.

Ours (Real-only) [56] Ours-Dense Ours
PCK 0.65 0.59 0.60 0.68

Table 2: Additional comparison to [56].

C. Additional Details of 3D Semantic Scene
Segmentation

C.1. Network Architecture and Training Details

For point cloud semantic segmentation network, we fol-
low the same configuration from PointNet++ [37]. For
voxel semantic segmentation network, we use the same
network architecture proposed in 3D U-Net[9]. To gen-
erate training data from ScanNet scenes, following Point-
Net++ [37], we sample 1.5m by 1.5m by 3m cubes from the
initial scenes. We sample such training cubes on the fly and
randomly rotate each sample along the up-right axis. Dur-
ing test time, we split the test scene into smaller cubes first,
and then merge label prediction in all the cubes from the
same scene. Note that this is done for the prediction using
each 3D representation in isolation.

We applied ADAM [27] to solve the optimization prob-
lem for predicting semantic labels in 3D scenes. We first
initialize network parameters using the pre-trained weight
on labeled data, and then impose the path-invariance regu-
larization term to improve the network performance.

C.2. More Quantitative Evaluations
Table 3 shows per-class semantic voxel label prediction

accuracy on ScanNet [12] test scenes. Compared to baseline
methods, our approach shows consistently better perfor-
mance compared to using 8% labeled data, and competitive
results compared to using 30% and 100% labeled data, es-
pecially on frequently appeared classes, such as floor, wall,
chair, sofa, and etc.

C.3. More Qualitative Evaluations
Figure 10 presents more qualitative comparisons be-

tween our approach and baselines. Consistently, using 8%
labeled data and 92% unlabeled data, our approach achieved
competing performance as using 30% to 100% labeled data
when trained on each individual representation, and better
performance as using 8% labeled data.

D. Additional Details of Joint Shape Matching
D.1. Training Details

We applied ADAM [27] to solve the following optimiza-
tion problem:∑

(i,j)∈E

‖Xij −X in
ij ‖1 + λ

∑
(p,q)∈B

‖Xp −Xq‖2F (10)

Initially, we set Xij = X in
ij . We also tried reweighted non-

linear least squares and used Gauss-Newton optimization

Floor Wall Chair Sofa Table Door Cabinet Bed Desk Toilet Sink Window Picture BookSh Curtain ShowerC Counter Fridge Bathtub OtherF Total
Weight 35.7 38.8 3.8 2.5 3.3 2.2 2.4 2.0 1.7 0.2 0.2 0.4 0.2 1.6 0.7 0.04 0.6 0.3 0.2 2.9 -

PCI

90.9 98.1 58.4 45.4 40.2 47.4 36.4 62.8 21.8 35.4 32.0 16.7 21.5 0.0 0.0 1.3 0.0 0.0 19.7 9.6 79.2
93.3 98.4 70.3 54.8 50.0 49.2 80.9 87.1 18.4 83.7 58.9 8.4 0.2 1.0 1.8 2.9 3.7 0.0 13.0 5.7 82.3
88.0 97.8 76.3 62.7 19.9 63.5 65.5 59.7 52.5 63.9 76.2 17.4 27.1 17.0 12.2 56.1 0.0 0.0 25.7 22.0 80.8
90.8 98.2 78.0 67.5 42.8 74.8 79.6 79.8 58.2 78.0 82.1 53.1 42.3 12.1 28.2 70.0 52.7 0.0 37.3 18.7 84.2

PCII

91.5 97.2 49.4 32.2 32.4 44.3 30.8 70.1 24.9 45.0 35.0 29.2 23.9 0.0 10.6 1.1 0.0 0.0 18.0 10.0 78.3
94.9 98.4 65.0 58.1 48.0 41.7 65.4 89.6 31.2 81.0 62.9 4.6 4.6 0.0 0.4 3.7 0.0 0.0 17.5 4.5 82.5
90.8 98.5 74.4 54.6 34.4 49.3 46.7 77.3 39.3 74.8 71.9 22.8 35.6 0.0 0.0 24.8 0.0 0.0 25.4 11.7 81.9
92.8 98.0 86.4 64.2 29.8 55.0 59.2 75.3 37.6 86.5 67.6 9.3 25.3 23.5 19.0 46.6 43.1 0.0 25.0 13.7 83.3

PCIII

92.7 96.7 73.3 52.9 16.7 36.4 1.3 55.7 12.1 27.0 27.1 16.6 11.5 0.0 0.2 8.9 0.0 0.0 15.0 1.6 78.4
93.7 98.1 71.4 58.9 50.0 54.4 59.9 74.8 30.6 82.8 65.1 10.6 1.6 1.4 0.8 21.5 0.0 0.0 20.3 8.7 82.3
90.8 98.5 74.4 54.6 34.4 49.3 46.7 77.3 39.3 74.8 71.9 22.8 35.6 0.0 0.0 24.8 0.0 0.0 25.4 11.7 81.2
90.4 97.6 76.1 65.0 45.5 80.6 70.9 75.3 32.4 82.0 73.9 48.0 49.8 13.5 16.9 64.4 46.7 0.0 42.0 13.0 83.4

VOLI

93.4 97.3 71.9 68.0 16.2 0.2 0.0 58.1 34.3 25.1 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.3 8.6 78.7
93.5 97.6 70.7 61.2 55.7 39.1 55.0 76.7 11.5 81.3 68.8 0.3 2.3 2.2 0.0 2.0 0.0 0.0 16.8 10.2 81.6
94.0 97.6 68.0 68.2 16.7 41.2 0.0 75.1 0.0 70.2 30.4 0.0 0.0 0.4 0.0 0.0 0.0 0.0 24.9 6.9 80.3
92.5 97.5 74.2 67.2 25.0 55.0 59.5 62.9 0.0 85.4 0.0 3.9 38.5 0.4 0.0 0.0 42.5 0.0 37.8 14.2 81.9

VOLII

94.8 97.5 56.0 0.0 42.3 19.8 28.3 57.3 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.5 5.1 77.4
92.8 97.7 69.6 0.0 53.8 31.6 66.4 68.2 11.4 77.3 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 19.8 9.8 79.0
92.5 98.1 62.4 54.4 15.3 50.0 0.0 59.1 0.0 74.5 61.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.0 9.3 79.5
91.0 96.9 68.4 60.5 31.4 59.1 70.0 81.2 0.0 86.3 0.0 11.1 0.0 0.0 1.4 0.0 0.0 0.0 50.1 15.1 81.5

Table 3: Per-class semantic voxel label prediction accuracy on ScanNet test scenes. All numbers are in percentages. The first row indicates
the percentages of each class in all test scenes, and then for 4 rows in each representation, we show the per-class prediction accuracy in
4 configurations: 8% Label, 8% Label + 92%Unlabel, 30% Label and 100% Label. (BookSh, ShowerC and OtherF are short Bookshelf,
Shower Curtain and Other furniture, respectively.)

to solve the induced non-linear least square problem (we
used conjugate gradient to solve the induced linear system)
. We found that the optimal solutions of both approaches
are similar, suggesting both of them reached a strong local
minimum. Computationally, we find the ADAM optimizer
to be more efficient.

D.2. Annotated Feature Points
D.2.1 SHREC07

We used annotated feature points provided by [26]. The
number of key points per category range from 11 (e.g.
Plane) to 36 (Human).

D.2.2 ShapeCoSeg

Note that the models in ShapeCoSeg [50] are originally as-
sociated with annotations of semantic segments. Such an-
notations, however, are not ideal for establishing dense cor-
respondences. To address this issue, we employed AMT
to annotate semantic feature correspondences across the en-
tire dataset. Note that in some cases, the feature correspon-
dences are not purely based on 1-1 correspondences (e.g.,
multiple handles). When performing experimental evalua-
tion, we evaluate the geodesic error to the closest feature
point of the same type for experimental evaluation.

Ground Truth 8% Label 30% Label 100% Label 8% Label + 92%Unlabel

