Supplementary Materials for Bayesian Hierarchical Dynamic Model for Human
Action Recognition

Rui Zhao', Wanru Xu?, Hui Su'?, Qiang Ji'
IRPI, 2Beijing Jiaotong University, *IBM Research

{zhaorui.zju,bjtuxuwanru}@gmail.com, huisuibmres@us.ibm.com, gji@ecse.rpi.edu

1. Parameterization of HDM

We use multinomial distributions for initial and transition distributions. We use Poisson distribution for duration distribu-
tion. We assume the duration value is drawn only when entering a state. And then the state chain remains at the same state
for the drawn duration. A regular transition happens at the end of the duration. Using the notation introduced in the main
paper. The conditional probability are defined as follows.
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where m; > 0,A4;; > 0,7 > 0and Y2 m; = 1,2, Ay = LAy = 0,¥i = 1,..,Q. 6(i,j) = 1if i = jand 0
otherwise. We forbid self-transition i.e. A;; = 0 to disambiguate the duration count used during inference [8]]. For emission
distribution, we use a mixture of Gaussian.
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where M is the number of mixtures and Wy is the weight of k" mixture under i state with Ziw:l Wik =1, Wi > 0,Vi =
1., Q. pir. € RO, 31, € ROXO are mean and covariance matrix of k™ mixture under i state respectively. We assume the
same number of mixtures under different states.

We place a conjugate prior for each parameter. For the multinomial parameters 7, A and W, Dirichlet priors are used
with hyperparameters respectively 1y &€ Rf,n € REXQ and v € Rf. For the Poisson parameters 7, we use Gamma

prior £ = {a € R%b € Rf} For emission mean p and covariance Y, Normal-Inverse-Wishart priors are used with
hyperparameters {10, k0, Ao, Vo }, where g € R9, kg > 0, Ag € RO*9 positive definite and 19 > O — 1.



Specifically, we have
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2. MAP-EM algorithm

The MAP-EM algorithm solves the following optimization problem on parameters 6 given hyperparameters ¢ and a set of
observations {X, }.
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Due to the presence of hidden variables, the marginal likelihood must be evaluated by summing over all the hidden
variables {Z,,D,}. We adopt Expectation-Maximization (EM) algorithm to handle the learning with hidden variables,
where we iterate between E-step, which computes a tight lower bound to the marginal log-likelihood and M-step, which
maximizes the lower bound with respect to model parameters. In our case, M-step needs to be modified to incorporate the
effect of prior distributions in a similar way to [3].

Specifically, for E-step, we compute Q(6, ) = Epz.px )10 P(X,Z,D|0)], where 0 is current estimate of parame-
ters. Given the parameterization as described in Section |1} the joint distribution P(X,Z, D|0) belongs to the exponential
family. Then it can be shown that Q (6, é) can be decomposed into summation of expected sufficient statistics over individual
parameter. Leveraging on the chain structure and the explicit duration assumption, we can extend the forward-backward
algorithm used in HMM to efficiently compute the inquired expected sufficient statistics. Following the notation of [8], we
define the following quantities.
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For compactness, we define notation b;(0;) = P(X; = 0¢|Z; = i). The forward messages « and backward messages /3 can
be computed using the following recursions.
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with initial condition « (i, d) = m;b;(01)Ciq, Br(i,d) = 1. After computing the messages, we can compute the following



probabilities, which are used to compute expected sufficient statistics involved in ).
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where P(X) =3,

;o (i,d) B (4, d), Vt. To compute (i), we use the following recursion.
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The recursion is result of the following equality
P(Zy =iX) — P(Zy =i, Zty1 # i|X) = P(Zy1 = i|X) — P(Zy # 4, Zey1 = i1X) (20)

The initial condition is y7 (i) = )~ ar(i,d). To avoid numerical underflow. The forward-backward inference is per-
formed in log domain as suggested in [7].
For M-step, we compute the updates of parameters by solving the following problem.
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where R(60,0) = Q(6,6) + log P(0]¢). Due to the hierarchical structure, initial state parameter 7, transition parameter A,
duration parameter 7 are different for different sequences. Thus they are updated for individual sequence. While emission
parameters { W, u, X} are shared across sequences and updated once for all sequences.

Provided that we can compute expected sufficient statistics using Eq. (16)-(I8) and we choose conjugate prior, the solution
for 7,,, A, have closed-form solution similar to the results in HMM derived in [3]. 7,, can also be computed using a similar
derivation. The updates are as follows.

P(Z1 = ilXn) + noi

T = (22)
> Mo

e S PR =i 2 = %) o
" (P2 =, 2 = 1K) £ 1)
. D2 a<a<t P20 =1, 27 #14, D = d|X,)d + a;
Y Y Y<a<t P27 =4, 27 #4, DY = d|X,) +b;
We now consider the updates for emission parameters W, 1, .. We introduce another variable M} to indicate the mixture
component index for n sequence ™ frame. The update of W;;, can be done in a similar way to temporal parameters.
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where s is a constant independent of W;;,. Maximize R(W, é) with respect to W;;, subject to Z,I:[:l Wi =1 yield
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'We use posterior mean as estimate instead of the exact MAP estimate to ensure positive estimated values on parameters in case the expected sufficient
statistics are less than 1 due to data scarcity. For exact MAP estimate, we need to use substitution in Eq. @-@ with 7g; < no; — 1,155 < n55 — 1.
2Similar to Eq. lH} for exact MAP estimate, we need to use substitution in Eq. 1) with vy, < v — 1.




For MoG parameters, we have
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where tr(A) is the trace of matrix A. s is a constant that does not depend on fs;x, ¥;%. Then
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where s is a constant that does not depend on y;, 3;x. Set the gradient of R(pu;x, Xk, 0) with respect to ;5 and ;5 to zero,
we can obtain the updates for p;; and X;; as follows.
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3. MLE estimate of hyperparameters

For 7y, n, &, v, they are solved by maximizing the likelihood of corresponding Dirichlet distribution. We use a fixed-
point update proposed in [S)]. For ¢, maximum likelihood estimate of corresponding Gamma distribution is computed using
gradient based update proposed in [6]]. For emission hyperparameters, we set the ko = 1 and vy = O + 2 as fixed and solve
for o, Ap by maximizing the corresponding Normal-Inverse-Wishart distribution, where closed-form solution exists with
fixed kg and vy.

4. Computing the total covariance
Here we prove the first equality of Eq. (9) in the main paper.
V[yIX] = Elyy" 1X] - Bly|X]E[y|X]"
= Bo[Blyy" X, 0] — Eo[Ely|X, 0] Eo[E[y| X, 6]
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+ Fy [E[y|X, 9]E[y|X, Q]T] — Ey [E[y|X, 9]]E0 [E[y|X, 9“T
= Ep[V[yX, 0] + Vo[ Ely|X, 0]



5. More results of uncertainty analysis

Here we compare the confusion matrix of classification with the corresponding covariance matrix C' of the categorical
distribution of label vector. The diagonal entries of the covariance matrix reflect the within-class uncertainty level. The
higher the value, the more uncertainty. The off-diagonal entries of the covariance matrix reflect the pair-wise between-class
uncertainty. The value should be close to 0 if the between-class uncertainty is low. Here we report the average covariance
over all testing data. For example, as shown in Figure m the four actions draw x, draw circle, draw circle counter-clockwise,
and draw triangle have both high within-class uncertainty and high between-class uncertainty. This is consistent with the
confusion matrix where draw circle counter-clockwise are mostly confused with draw triangle. Similarly in Figure 2} we
observe hand catch, high throw, and draw x are likely to be confused with each other. In Figure |3 one action aim and fire
gun has high within-class uncertainty and high between-class uncertainty with a few other actions. The classification results
also show confusion of aim and fire gun with these actions. Similarly in Figure[d] the action tennis forehand has the highest
within class uncertainty and tend to be confused with actions like golf swing, baseball pitch. Based on these results, we argue
it is important to consider the uncertainty level before making a classification prediction.
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(b) Label distribution covariance

Figure 1. More results on UTD dataset [2].
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(b) Label distribution covariance

Figure 2. More results on MSRAction3D dataset [4].
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(b) Label distribution covariance

Figure 3. More results on G3D dataset [1].
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Figure 4. More results on Penn dataset [9].
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