
Multi-Agent Tensor Fusion for Contextual Trajectory Prediction

Tianyang Zhao2,3, Yifei Xu1,3, Mathew Monfort1,4, Wongun Choi1, Chris Baker1, Yibiao Zhao 1,
Yizhou Wang2, Ying Nian Wu1,3

1ISEE.AI, 2Peking University, 3UCLA, 4MIT CSAIL
{zhaotianyang, yizhou.wang}@pku.edu.cn, {mmonfort, wchoi, chrisbaker, yz}@isee.ai, fei960922@ucla.edu, ywu@stat.ucla.edu

1. Supplementary Material: Implementation
Details

This section presents learning details for the Convolu-
tional Spatial Fusion architecture.

For the image encoder, we use shallow CNNs for the
driving datasets, considering that static scene context im-
ages from these datasets have already been annotated se-
mantically; while we use a U-Net-like architecture which
includes a pretrained ResNet as image encoder for Stanford
Drone dataset, considering that raw images are fed. Archi-
tecture of the shallow CNNs is presented as follows. In-
put images are resized into 3 × 60 × 60 (channel × width
× height) and then go through 3 Convolutional layers with
kernel sizes of 3, 4, 5, filters 16, 16, 32, paddings 1, 2, 2 re-
spectively, all with ReLU activations and Batch Normaliza-
tion. Max Pooling of kernel size 2, stride 2 is operated after
the second Convolutional layer. Architecture for the ResNet
encoder is presented as follows. A pretrained ResNet18 on
ImageNet is included. Output feature maps from the 2nd
Convolutional module is concatenated with up-scaled out-
put feature maps from the 3-rd and the 4-th Convolutional
modules, where the up-scaling layers are Transpose Convo-
lutional layers of filters 128, 128, kernel sizes 3, 7, strides
2, 4, paddings 1, 3, output paddings 1, 3 respectively, all
with ReLU activations and Batch Normalization. The con-
catenated output is then upsampled to shape 384× 30× 30,
and go through a 1 × 1 Convolutional bottleneck to reduce
its channels to 32. The output feature map of this scene
encoding module, either the shallow encoder or the ResNet
one, is of shape 32 × 30 × 30.

For the agent encoder, one-layer LSTMs of hidden state
dimensions 32 are used. The input x, y coordinates are pro-
cessed to be ∆x,∆y, and are then embedded linearly to
dimension 32 as inputs to the LSTMs. Dropout ratio in
LTSMs are set to be 0.3 for training. The state tuples of the
LSTMs are initialized as 0. Individual encoding of a given
agent is its final state vector h of shape 32 of the LSTM.

The Multi-Agent Scene Spatial Fusion module operates

at a resolution level of 30 × 30 with a U-Net-like architec-
ture. The encoded agent grid and the encoded context grid
are concatenated in their channel dimension to form a spa-
tial grid of shape 64 × 30 × 30. This input grid goes into 3
Convolutional layers sequentially of filters 32, 32, 32, ker-
nel sizes 3, 3, 4, strides 1, 1, 1, paddings 1, 1, 1. After the
first and the second layer, Max Pooling of kernel sizes 2, 2
and strides 2, 2 are performed respectively. The final out-
put of this fusion module is the sum of 3 features maps: the
output of the 1st Convolutional layer is added together with
up-scaled feature maps of the 2nd and the 3rd feature maps.
The up-scalings are performed with a Transpose Convolu-
tional layer of kernel size 4, stride 2, padding 1, and an Up-
sampling layer of scale factor 5 respectively. All Convo-
lutional and Transpose Convolutional layers operate ReLU
activations and Batch Normalization. The output fused fea-
ture map is of shape 32 × 30 × 30.

For the agent decoder, one-layer LSTMs of hidden state
dimension 48 are used. Its state tuples of the LSTMs are
initialized in the following way: h is initialized as 0, and
c is initialized as x′

i + x′′
i (See Section 3.2) concatenated

with a 16-dim z. z is 0 for all deterministic models and is
sampled from Gaussian distribution for all stochastic mod-
els. The decoder decodes LSTM outputs ht to ∆x̂t,∆ŷt
linearly. These predicted ∆xt,∆yt are embedded linearly
to dimension 48 as inputs to the LSTMs on future times-
tamps iteratively. ∆x̂t,∆ŷt are processed to form x̂t, ŷt at
last for calculating losses. Dropout ratio in LTSMs are set
to be 0.3 for training.

The classifier of the discriminator is an MLP with a hid-
den layer size 512 and Leaky ReLU activation. Sigmoid
activation is operated at last for 0 − 1 classification.

We schedule the learning process as follows: only train
LSTM, then train Multi Agent or Single Agent Scene from
pretrained parameters of LSTM to learn residuals, then
Multi Agent Scene, and finally Individual D or Joint D. Al-
though all these architectures can be trained from scratch
directly, this scheduled training process accelerates conver-

http://isee.ai


gence. While training Multi Agent Scene, the context scene
image is randomly dropout of p = 0.5 to encourage the
module not to be dependent too much on either scene or
multi-agent information too much. We iteratively train the
network with a batch size of 32 (note that 32 scenes per
batch indicates much more than 32 agents given our multi-
agent scenario) using Adam with an initial learning rate of
0.001. We use PyTorch for implementation.


