
A. Additional Examples

We first show our results on center hole completion, in relation to those from other methods trained on corresponding
datasets. As for random irregular and regular holes, we simply present our results so that readers may appreciate the multiple
diverse results we can get with differently sized and shaped holes. Finally, we show the interesting application on face editing.

A.1. Comparison with Existing Work on Center Hole Completion

(a) Input (b) CE (c) Shift-Net (d) PICNet-regular

Figure A.1. Additional results on the Paris variation set for center hole completion. This variation dataset contains 100 images, for which
we obtained generally more realistic results than the existing methods of CE and Shift-Net. Furthermore, our multiple results had a diverse
range of sizes, shapes, colors and textures. Best viewed by zooming in.

(a) Input (b) CA (c) PICNet-regular

Figure A.2. Additional results on the CelebA-HQ test set for center hole completion. Examples have different genders, skin tones, views
and partial visible expressions. Since the occluded content in the large center holes was not repeated in visible regions, CA was unable to
create results that were as visually realistic as ours. Moreover, our multiple outputs have different shapes, sizes and colors for eyes, noses
and mouths. The details can be viewed by zooming in. Note that, no any other attribute labels (e.g. smile) were applied in our approach.

(a) Input (b) GL (c) CA (d) PICNet-regular

Figure A.3. Additional results on the Places2 variation set for center hole completion. Compared with existing state-of-the-art methods,
our model not only generated completion results of comparable quality, but also provided multiple plausible results, with different shapes,
colors, textures and content. The shape variations in generating the various prominent hills are obvious. Some changes were at finer scale,
e.g. color changes of the flowers and texture changes in the boulder are better viewed by zooming in.

(a) Input (b) CE (c) GL (d) CA (e) PICNet-regular

Figure A.4. Additional results for center holes on the ImageNet variation set used in Context Encoder (CE). For our results, four completed
images were selected and included failure cases in the last column. The first four rows show examples in which our model generated more
visually realistic results than other methods. The next four rows show examples in which the methods all performed with similar realism,
while the final row shows an example in which the Context Attention (CA) had the most realistic result.

A.2. Additional Results on Random and Irregular Hole Completion

(a) Input (b) PICNet-random
Figure A.5. Additional results on the CelebA-HQ test set for random and irregular hole completion. One interesting observation is that
natural facial symmetry exerts a strong constraint on the completion results. In the examples where both eyes and/or mouth are masked
out, the completion results exhibit substantial variation for those facial features when sampled. However, when only one eye is masked out
or half of the mouth is visible (last three rows), the completion results for the other eye or the other half of mouth have little variation when
sampled. Even when part of an eye is visible (fourth row), it exerts a strong constraint on the variation.

A.3. Additional Results on Free-Form Mask Using Our Interactive Demo

Original Free-form Input PICNet-Result Original Free-form Input PICNet-Result
Figure A.6. Face image editing results from our online interactive demo. The white mask regions will be normalized to gray mask as the
input. It shows that our PICNet can be used to object removal and face editing.

A.4. Video for Additional Results

Besides this document, we also included two video clips of additional results as part of the supplemental material. The first
video, shows free-from mask results on various datasets. The second video consists of four parts to show multiple examples
of center hole completion, random hole completion, comparison results with different training strategies and face editing of
my self-portraits.

http://www.chuanxiaz.com/project/pluralistic/
https://youtu.be/tplhXSYX9us
https://youtu.be/9V7rNoLVmSs

B. Mathematical Derivation and Analysis
B.1. Difficulties with Using the Classical CVAE for Image Completion

Here we elaborate on the difficulties encountered when using the classical CVAE formulation for pluralistic image com-
pletion, expanding on the shorter description in section 3.1.

B.1.1 Background: Derivation of the Conditional Variational Auto-Encoder (CVAE)

The broad CVAE framework of Sohn et al. [34] is a straightforward conditioning of the classical VAE. Using the notation in
our main paper, a latent variable zc is assumed to stochastically generate the hidden partial image Ic. When conditioned on
the visible partial image Im, we get the conditional probability:

p(Ic|Im) =

∫
pφ(zc|Im)pθ(Ic|zc, Im)dzc (B.1)

The variance of the Monte Carlo estimate can be reduced by importance sampling to get

p(Ic|Im) =

∫
qψ(zc|Ic, Im)

pφ(zc|Im)

qψ(zc|Ic, Im)
pθ(Ic|zc, Im)dzc

= Ezc∼qψ(zc|Ic,Im)

[
pφ(zc|Im)

qψ(zc|Ic, Im)
pθ(Ic|zc, Im)

]
(B.2)

Taking logs and apply Jensen’s inequality leads to

log p(Ic|Im) ≥ Ezc∼qψ(zc|Ic,Im)

[
log pθ(Ic|zc, Im)− log

qψ(zc|Ic, Im)

pφ(zc|Im)

]
V = Ezc∼qψ(zc|Ic,Im) [log pθ(Ic|zc, Im)]−KL (qψ(zc|Ic, Im)||pφ(zc|Im)) (B.3)

The variational lower bound V totaled over all training data is jointly maximized w.r.t. the network parameters θ, φ and ψ in
attempting to maximize the total log likelihood of the observed training instances.

B.1.2 Single Instance Per Conditioning Label

As is typically the case for image completion, there is only one training instance of Ic for each unique Im. This means
that for the function qψ(zc|Ic, Im), Ic can simply be learnt into the network as a hardcoded dependency of the input Im, so
qψ(zc|Ic, Im) ∼= q̂ψ(zc|Im). Assuming that the network for pφ(zc|Im) has similar or higher modeling power and there are
no other explicit constraints imposed on it, then in training pφ(zc|Im)→ q̂ψ(zc|Im), and the KL divergence in (B.3) goes to
zero.

In this situation of zero KL divergence, we can rewrite the variational lower bound and replace q̂ψ(zc|Im) with pφ(zc|Im)
without loss of generality, as

V = Ezc∼pφ(zc|Im) [log pθ(Ic|zc, Im)] (B.4)

B.1.3 Unconstrained Learning of the Conditional Prior

We can analyze howV can be maximized, by using Jensen’s inequality again (reversing earlier use)

V ≤ logEzc∼pφ(zc|Im) [pθ(Ic|zc, Im)]

= log

∫
pφ(zc|Im)pθ(Ic|zc, Im)dzc (B.5)

By further applying Hölder’s inequality (i.e. ‖fg‖1 ≤ ‖f‖p ‖g‖q for 1/p+ 1/q = 1), we get

V ≤ log

[∣∣∣∣∫ |pφ(zc|Im)| dzc
∣∣∣∣ ∣∣∣∣∫ |pθ(Ic|zc, Im)|∞ dzc

∣∣∣∣ 1
∞
]

(by setting p = 1, q =∞)

= log

[
1 ·max

zc
pθ(Ic|zc, Im)

]
= max

zc
log pθ(Ic|zc, Im) (B.6)

Assuming that there is a unique global maximum for log pφ(zc|Im), the bound achieves equality when the conditional prior
becomes a Dirac delta function centered at the maximum latent likelihood point

pφ(zc|Im)→ δ(zc − z∗c) where z∗c = argmax
zc

log pθ(Ic|zc, Im) (B.7)

Intuitively, subject to the vagaries of stochastic gradient descent, the network for pφ(zc|Im) without further constraints will
learn a narrow delta-like function that sifts out maximum latent likelihood value of log pθ(Ic|zc, Im).

As mentioned in section 3.1, although this narrow conditional prior may be helpful in estimating a single solution for Ic
given Im during testing during testing, this is poor for sampling a diversity of solutions. In our framework, the (unconditional)
latent priors are imposed for the partial images themselves, which prevent this delta function degeneracy.

B.1.4 CVAE with Fixed Prior

An alternative CVAE variant [37] assumes that conditional prior is independent of the Im and fixed, so p(zc|Im) ∼= p(zc),
where p(zc) is a fixed distribution (e.g. standard normal). This means

p(Ic|Im) =

∫
p(Ic|zc, Im)p(zc)dzc (B.8)

Now we can consider the case for a fixed Im = I∗m, and rewrite (B.8) as

pI∗m(Ic) =

∫
pI∗m(Ic|zc)p(zc)dzc (B.9)

Doing so makes it obvious we can then derive the standard (unconditional) VAE formulation from here. Thus an appropriate
interpretation of this CVAE variant is that it uses Im as a “switch” parameeter to choose between different VAE models that
are trained for the specific conditions.

Once again, this is fine if there are multiple training instances per conditional label. However, in the image completion
problem, there is only one Ic per unique Im, so the condition-specific VAE model will simply ignore the sampling “noise” and
learn to predict the single instance of Ic from Im directly, i.e. p(Ic|zc, Im) ≈ p(Ic|Im), which incidentally achieves equality
for the variational lower bound. This results in negligible variation of output despite now sampling from p(zc) = N (0, 1).

Our framework resolves this in part by defining all (unconditional) partial images of Ic as sharing a common latent space
with adaptive priors, with the likelihood parameters learned as an unconditional VAE, and further coupling on the conditional
portion (i.e. the generative path) to get a more distinct but regularized estimate for p(zc|Im).

B.2. Joint Maximization of Unconditional and Conditional Variational Lower Bounds

The overall training loss function (5) used in our framework has a direct link to jointly maximizing the unconditional and
unconditional variational lower bounds, respectively expressed by (2) and (4). Using simplified notation, we rewrite these
bounds respectively as:

B1 = Eqψ log prθ −KL(qψ||pzc)
B2 = λ

(
Eqψ log prθ −KL(qψ||pzc)

)
+ Epφ log p

g
θ (B.10)

To clarify, B1 is the lower bound related to the unconditional log likelihood of observing Ic, while B2 relates to the log like-
lihood of observing Ic conditioned on Im. The expression of B2 reflects a blend of conditional likelihood formulations with
and without the use of importance sampling, which are matched to different likelihood models, as explained in section 3.1.
Note that the (1− λ) coefficient from (4) is left out here for simplicity, but there is no loss of generality since we can ignore
a constant factor of the true lower bound if we are simply maximizing it.

We can then define a combined objective function as our maximization goal

B = β B1 + B2
= (β + λ)Eqψ log prθ + Epφ log p

g
θ − [βKL(qψ||pzc) + λKL(qψ||pφ)] (B.11)

with β ≥ 0.

To understand the relation between B in (B.11) and L in (5), we consider the equivalence of:

− B ∼= L = αKL(LrKL + LgKL) + αapp(Lrapp + Lgapp) + αad(Lrad + Lgad) (B.12)

Comparing terms
LrKL

∼= KL(qψ||pzc), LgKL
∼= KL(qψ||pφ) ⇒ β = λ = αKL (B.13)

For the reconstructive path that involves sampling from the (posterior) importance function qψ(zc|Ic) of (3), we can
substitute (β + λ) = 2αKL and get the reconstructive log likelihood formulation as

− Eqψ log prθ
∼=

αapp

2αKL
Lrapp +

αad

2αKL
Lrad (B.14)

Here, Ic is available, with Lrapp reconstructing both Ic and Im as in (8), while Lrad involves GAN-based pairwise feature
matching (10).

For the generative path that involves sampling from the conditional prior pφ(zc|Im), we have the generative log likelihood
formulation as

− Epφ log p
g
θ
∼= αappLgapp + αadLgad (B.15)

As explained in sections 3.1 and 3.2, the generative path does not have direct access to Ic, and this is reflected in the likelihood
pgθ in which the instances of Ic are ignored. Thus Lgapp is only for reconstructing Im in a deterministic auto-encoder fashion
as per (9), while Lgad in (11) only tries to enforce that the generated distribution be consistent with the training set distribution
(hence without per-instance knowledge), as implemented in the form of a GAN.

C. Architectural Details
Our pluralistic image completion network (PICNet) architecture is inspired by SA-GAN [43] and BigGAN, but features

several important modifications that enable us to train for this image-conditional generation task. We first replace the batch
normalization with instance normalization in the generation network (ResBlock up in Fig. C.7), and remove the batch
normalization in our other networks, (i.e. the representation, inference and discriminator networks comprising ResBlock
start and ResBlock in Fig. C.7), because different holes will affect the means and variances in each batch. ResBlock down
is similar to ResBlock, in which we add the average pooling layer after Conv3× 3 and Conv1× 1.

Conv3X3

LeakyReLU(0.1)

Conv3X3

AvgPool2d

Sum

AvgPool2d

Conv1X1

Conv3X3

LeakyReLU(0.1)

LeakyReLU(0.1)

Conv3X3

Conv1X1

Sum

InstanceNorm

LeakyReLU(0.1)

Conv3X3

InstanceNorm

LeakyReLU(0.1)

ConvTrans3X3

ConvTrans3X3

Sum

(a) ResBlock start (b) ResBlock (c) ResBlock up
Figure C.7. Illustration of the Residual Block used in our model. (a) The starter Residual Block for the encoder (representation) and
discriminator networks. (b) A Residual Block in the encoder (representation), inference and discriminator networks. (c) A Residual Block
in the decoder (generator) network.

ResBlock

ResBlock up0

ResBlock up1

ResBlock up2

ResBlock up3

ResBlock up4

Sum

Output1

Output2

Output3

Output4

Short+long attention layer

(a) Decoder (Generator)

RGB image x ∈ R256×256×3

ResBlock start 128× 128× 1 · ch

ResBlock down 64× 64× 2 · ch

ResBlock down 32× 32× 4 · ch

ResBlock down 16× 16× 4 · ch

ResBlock down 8× 8× 4 · ch

(b) Encoder (Representation)

RGB image x ∈ R256×256×3

ResBlock start 128× 128× 1 · ch

ResBlock down 64× 64× 2 · ch

ResBlock down 32× 32× 4 · ch

Self-Attention Layer 32× 32× 4 · ch

ResBlock down 16× 16× 4 · ch

ResBlock down 8× 8× 4 · ch

ResBlock 7× 7× 4 · ch

LeakyReLU(0.1), Conv, 6× 6× 1

(c) Discriminator

Table C.1. Architectures for our framework, where ch represents the base channel width. For the output layer, we use the LeakyReLU(0.1),
Conv3× 3 and Tanh at all scales.

The Infer1 network only consists of one Residual Block, for self-inferring the latent distribution of the ground truth Ic
(treated as known in the reconstructive path), while the Infer2 network consists of seven Residual Blocks, which are applied
to predict the latent distribution of Ic (treated as unknown in the generative path) based on the visible pixels Im.

D. Experimental Details
Our network is implemented in Pytorch v0.4.0, and employs the architectures of Appendix C. To reduce memory cost, we

restrained the feature channel width to 4 · ch and selected ch = 32. We experimented with different channels with largest
being 16 · ch = 1024, but found that the improvement was not obvious. In addition, we applied the self-attention layer of
the discriminator and the short+long term attention layer of the generator on a 32×32 feature size. Spectral Normalization is
used in all networks. All networks are initialized with Orthogonal Initialization and trained from scratch with a fixed learning
rate of λ = 10−4. We used the Adam optimizer with β1 = 0 and β2 = 0.999.

The final weights we used were αKL = αapp=20, αad=1. The KL loss and appearance matching loss weights come from
the variational lower bound. Since the appearance matching loss is used in four output scales, the final weight for the KL
loss is αKL = αKL ×Nscale, where Nscale is the number of output scales. We also tried different values of αKL and αapp, and
found that the bigger the KL loss weight, the greater the diversity of the generated I

′

c, but it was also harder to retain the
appearance consistency of the generated I

′

c to the visible region Im. The values of αapp and αad were obtained from α-GAN.
We experimented with the number of D steps per G step (varying it from 1 to 5), and found that one D step per G step gave
the best results. When αapp is smaller than 1, we can use two or four D steps per G step, but the full generated I

′

g does not
reconstruct the original conditional visible regions Im well. When αapp is larger than 100, we needed two or four G steps per
D step, if not the discriminator loss will become zero and the generated I

′

c will be blurry.
We trained each model on a single GPU, with a batch size of 20 on a GTX 1080TI (11GB) and 32 on a NVIDIA V100

(16GB). Training models for centered holes of Paris and CelebA-HQ takes roughly 3 days, while for ImageNet and Places2 it
takes roughly 2 weeks. On the other hand, training models for random irregular and un-centered holes takes about twice the
time compared to models for centered holes. Moreover, since the prior distribution of random holes p(z) = Nm(0, σ2(n)I)
is changed with the number of pixels in each hole n, the training loss may sometimes change abruptly due to the KL loss
component.

