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1. Processing Speed in the Test Phase
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| Input Size (Pixel) | Speed (FPS)

C3D 112 x 112 123.08
TSN-RGB 224 x 224 30.96
TSN-Optical Flow 224 x 224 150.15

Table 1: Testing speed (FPS) of our models on a Titan-
XP GPU. Note that the reported result includes all pre-
processing operations, such as resizing, 10-crop oversam-
pling, zero-centering, efc.

Our approach of directly utilizing action classifiers for
anomaly detection has great computational efficiency. As
shown in Table 1, we report the frame per second (FPS) per-
formance of the two types of action classifiers. Although the
time-consuming pre-processes (e.g., 10-crop oversampling)
are taken into consideration, the three action classifiers still
have the real-time or even the super real-time performance.

2. Implementation of Label Noise Cleaner

At the first cleaning step, we select the 30% and 60%
highest-confidence snippets as H for two-stream and C3D
networks respectively if not specified, and increase the car-
dinality of H by 30% at each step. To learn an unbi-
ased model, we also include normal videos in training data.
To generate the label assignments of action classifiers, we
concentrate the output probability into a single anomaly
category with a min-max normalization. The output di-
mensions of the first two fully connected layers are 512
and 128 respectively, at the 60% dropout [10] rate. Both
the graph modules have two convolutional layers: a 32-
unit hidden layer activated by ReLu and the last 1-unit
output layer. Due to the limited memory of GPUs, we
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at most sample 1,600 high-confidence snippets with not
more than 8 neighbours respectively in a video. We im-
plement our noise cleaner upon Pytorch [8] with the fol-
lowing hyper-parameters: base_learning_rate = 0.0001,
momentum = 0.9 and weight_decay = 0.0005. In pre-
liminary experiments, we observe that three iterations are
sufficient in most cases. Therefore we repeat the alternate
optimization until the 3" step and compare the last (not al-
ways the best) results with other methods.

3. More Comparisons on UCSD-Peds

Several unary-classification works in 2018 also conduct
experiments on UCSD-Peds. As shown in Table 3 and the
main body of our paper, their default implementations are
not directly comparable with ours because of different data
splits. For some open-source works, we hereby reproduce
experiments on the data split in [/] as ours, while the re-
sults in their original papers are also provided within square
parentheses “[]” for reference as reported in Table 2. Since
UCF-Crime is released at Github on June 10%" 2018 lately,
except the official reference [!1] and its comparisons, nei-
ther public reporting of results nor source codes can be
found, and we hope that our work can fill in the blanks.

4. Vectorized Feature Similarity Module

Following the main body of our paper, we denote the
feature similarity graph as ' = (V,E,X) , where V is
the vertex set, E is the edge set, and X is the attribute of
vertexes. In particular, V' is a video, F describes the feature
similarity amongst snippets, and X € RN*9 represents the
d-dimensional feature of these N snippets. The adjacency
matrix A € RVXN of F is defined as:

A g = exp(X; - X — maz(X; - X)), ¢))



Method

Publication AUC (%)

Unary-classification Paradigm

TC'I." [9]

WACYV 2018 No source codes [88.4]

Frame Prediction [0] CVPR 2018 92.6 + 1.1 [95.4]
C2ST [7] BMVC 2018 81.4 + 2.8 [87.5]
Binary-classification Paradigm
AL [1] J-Mult. Nov. 2018 90.1
Ours-TSNGray—scale - 93.2 £2.3
Ours-TSNOpticalFllow - 928+ 1.6

Table 2: Comparison on UCSD-Peds in 2018. The results of their original papers under data split [5] are reported within “[]”.

e Train

Splitting Approach Normal — Abnormal Test
Following [5] 16 0 12
Following [1] 4 6 18

Table 3: Difference in splitting UCSD-Peds. The random
selection is repeated 10 times in [1].

where the element A ; ;y measures the feature similarly be-
tween the i and j*" snippets. Here is an equivalent vec-
torization of Equation 1:

A = exp(XXT — torch.maz(XXT,dim = 1)), (2)

where the torch.max function takes the maximum value
over dimension 1.

The nearby vertexes are driven to have the same anomaly
label via the graph-Laplacian operation approximated with
a renormalization trick [3]:

A=D:AD:, 3)

where the self-loop adjacency matrix A=A+ I,, and
I, € RV i the identity matrix; D is the corresponding
degree matrix:

Doy =) A - @)
J

The vectorization of Equation 4 is implemented with the
vectorized summation and the broadcasting diagonal func-
tions of Pytorch:

D = torch.diag(torch.sum(A, dim = 1)) . (5)

Finally, the output H of a feature similarity graph mod-
ule layer is computed as:

H = ¢(AXW), (©6)

where W is a trainable parametric matrix, and o is an acti-
vation function.

Since the whole computational procedure is differen-
tiable, our feature similarity graph module can be trained
in an end-to-end fashion. Therefore, neural networks are
capable of seamlessly incorporating the single or multiple
stacked modules. The temporal similarity module can be
also rewritten as its corresponding vectorized implementa-
tion in a similar manner.

5. Details of Indirectly Supervised Loss Term

Our indirectly supervised term of the loss function can be
viewed as a temporal ensembling strategy [4]. The pseudo
code is shown in Algorithm 1. In practice, we set v as 0.5
in all of the experiments. Since we have already obtained a
set of rough predictions from the action classifier, the “cool
start” initialization and the bias correction of the original
temporal ensembling method [4] are not required as illus-
trated on the 1°¢ and the 8 statements.

6. Reorganization of ShanghaiTech

| Training Set Test Set | Total

Normal Videos || 175 155 330
Anomaly Videos || 63 44 107
Total || 238 199 437

Table 4: The number of videos on our reorganized Shang-
haiTech.

In total, there are 437 videos on ShanghaiTech. As
shown in Table 4, we split the data into two subsets: the
training set is made up of 238 videos, and the testing set
contains 199 videos. In each scene, the numbers of nor-
mal and anomaly videos w.r.t. the two subsets are de-
picted in Figure 1 and Figure 2, respectively. The new



data split is available at https://github.com/jx-zhong-for-
academic-purpose/GCN-Anomaly-Detection.

7. Discuss the Formulation

Following the reviewer’s suggestion, we discuss our
noisy-labeled problem formulation and the EM-like opti-
mization mechanism under this formulation in more detail.

7.1. Concept: MIL vs Noisy-labeled Learning

Conceptually, the two formulations mainly differ in their
emphases. Given a positive bag Y = 1, the MIL usually
focuses on positive instances y; = 1, whereas the noisy-
labeled training pays attention to noisy labels y; = 0 and
the remaining ones are y; = 1. The two conceptions are
complementary and have transformational relations.

7.2. Practice: EM-like MIL vs Ours

Practically, in terms of selection criteria on “seed ex-
amples”, the EM-like MIL focuses on the most-likely posi-
tive instances, while our noisy-labeled optimization prefers
the most-likely reliable predictions. Take the three MIL
models the reviewer mentioned for examples. If the 10-
crop prediction of a snippet within an anomalous video is
{0.2, 0.2, ..., 0.2}, He er al. [1] will not update their “an-
chor dictionary” with it for its low anomaly score (mean
value=0.2), Hou et al. [2] will exclude it because it is
“non-discriminative” (without “the same label” as the cor-
responding video), Zhang et al. [12] will neglect it since
their E-step is to seek the most “responsible” instance to the
bag annotation, but we will select it to supervise our GCN
because it is highly certain and noiseless (predictive vari-
ance=0).

7.3. Terminology: EM-like vs EM-based

As pointed out in the main body of this paper, our up-
dating method is “EM-like” instead of “EM-based”. The
resemblance between our optimization mechanism and the
EM-based approach is that they both alternately repeat
update-and-fix processes. However, our method is not
“EM-based” since we do not explicitly estimate mathemat-
ical expectation in the training process.
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Algorithm 1 Indirectly Supervised Loss Term.
Note that the practical computational processes are incrementally implemented, while in this pseudo code all of them are
calculated from the 15 epoch for clarity.
Input:
V = {v;}}¥: a video with N snippets
Y = {5:}¥,: the rough snippet-wise anomaly probabilities from the last action classifier
pe(v;): the GCN predictions of video clips v; with trainable parameters 6
a(v;): the stochastic augmentation (such as dropout and random cropping) function of input snippets v;
~: a hyper-parametric discount factor within the range of (0, 1)
Output:
L7 the indirectly supervised loss at the j th epoch

1: Initialize the smooth target D;cq 5§ = Yie1,2,..,.N

2: repeat

3: Initialize the epoch counter j = 0

4 for each video V in the training set do

5 Obtain the GCN predictions of augmented snippets: p; = pg((v;))

6: Compute the loss under indirect supervision: £} = & SN b — Bl

7 Optimize the parameters 6 of the GCN

8 Update the smooth target: Dic12,..N = VPic1,2,..N T (1 —9)picr,2,..N
9: Update the epoch counter: j = j + 1
10: until j == current epoch number
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Figure 1: Training set on the reorganization of ShanghaiTech.
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Figure 2: Testing set on the reorganization of ShanghaiTech.



