
Graph Convolutional Label Noise Cleaner:

Train a Plug-and-play Action Classifier for Anomaly Detection

Supplementary Materials (Appendix)

Jia-Xing Zhong1,2 Nannan Li3,1,2 Weijie Kong1,2 Shan Liu4 Thomas H. Li1 Ge Li �1,2

1School of Electronic and Computer Engineering, Peking University 2Peng Cheng Laboratory
3Institute of Intelligent Video Audio Technology, Longgang Shenzhen 4Tencent America

jxzhong@pku.edu.cn lnnsiat@gmail.com weijie.kong@pku.edu.cn

shanl@tencent.com tli@aiit.org.cn geli@ece.pku.edu.cn

1. Processing Speed in the Test Phase

Input Size (Pixel) Speed (FPS)

C3D 112× 112 123.08
TSN-RGB 224× 224 30.96

TSN-Optical Flow 224× 224 150.15

Table 1: Testing speed (FPS) of our models on a Titan-

XP GPU. Note that the reported result includes all pre-

processing operations, such as resizing, 10-crop oversam-

pling, zero-centering, etc.

Our approach of directly utilizing action classifiers for

anomaly detection has great computational efficiency. As

shown in Table 1, we report the frame per second (FPS) per-

formance of the two types of action classifiers. Although the

time-consuming pre-processes (e.g., 10-crop oversampling)

are taken into consideration, the three action classifiers still

have the real-time or even the super real-time performance.

2. Implementation of Label Noise Cleaner

At the first cleaning step, we select the 30% and 60%

highest-confidence snippets as H for two-stream and C3D

networks respectively if not specified, and increase the car-

dinality of H by 30% at each step. To learn an unbi-

ased model, we also include normal videos in training data.

To generate the label assignments of action classifiers, we

concentrate the output probability into a single anomaly

category with a min-max normalization. The output di-

mensions of the first two fully connected layers are 512

and 128 respectively, at the 60% dropout [10] rate. Both

the graph modules have two convolutional layers: a 32-

unit hidden layer activated by ReLu and the last 1-unit

output layer. Due to the limited memory of GPUs, we

at most sample 1,600 high-confidence snippets with not

more than 8 neighbours respectively in a video. We im-

plement our noise cleaner upon Pytorch [8] with the fol-

lowing hyper-parameters: base learning rate = 0.0001,

momentum = 0.9 and weight decay = 0.0005. In pre-

liminary experiments, we observe that three iterations are

sufficient in most cases. Therefore we repeat the alternate

optimization until the 3rd step and compare the last (not al-

ways the best) results with other methods.

3. More Comparisons on UCSD-Peds

Several unary-classification works in 2018 also conduct

experiments on UCSD-Peds. As shown in Table 3 and the

main body of our paper, their default implementations are

not directly comparable with ours because of different data

splits. For some open-source works, we hereby reproduce

experiments on the data split in [1] as ours, while the re-

sults in their original papers are also provided within square

parentheses “[]” for reference as reported in Table 2. Since

UCF-Crime is released at Github on June 10th 2018 lately,

except the official reference [11] and its comparisons, nei-

ther public reporting of results nor source codes can be

found, and we hope that our work can fill in the blanks.

4. Vectorized Feature Similarity Module

Following the main body of our paper, we denote the

feature similarity graph as F = (V,E,X) , where V is

the vertex set, E is the edge set, and X is the attribute of

vertexes. In particular, V is a video, E describes the feature

similarity amongst snippets, and X ∈ R
N×d represents the

d-dimensional feature of these N snippets. The adjacency

matrix A ∈ R
N×N of F is defined as:

A(i,j) = exp(Xi ·Xj −max(Xi ·X)) , (1)

1

Method Publication AUC (%)

Unary-classification Paradigm

...

TCP [9] WACV 2018 No source codes [88.4]

Frame Prediction [6] CVPR 2018 92.6 ± 1.1 [95.4]

C2ST [7] BMVC 2018 81.4 ± 2.8 [87.5]

Binary-classification Paradigm

AL [1] J-Mult. Nov. 2018 90.1

Ours-TSNGray−scale – 93.2 ± 2.3

Ours-TSNOpticalF low – 92.8 ± 1.6

Table 2: Comparison on UCSD-Peds in 2018. The results of their original papers under data split [5] are reported within “[]”.

Splitting Approach
Train

Test
Normal Abnormal

Following [5] 16 0 12

Following [1] 4 6 18

Table 3: Difference in splitting UCSD-Peds. The random

selection is repeated 10 times in [1].

where the element A(i,j) measures the feature similarly be-

tween the ith and jth snippets. Here is an equivalent vec-

torization of Equation 1:

A = exp(XX
T − torch.max(XX

T , dim = 1)) , (2)

where the torch.max function takes the maximum value

over dimension 1.

The nearby vertexes are driven to have the same anomaly

label via the graph-Laplacian operation approximated with

a renormalization trick [3]:

Â = D̃
−

1

2 ÃD̃
−

1

2 , (3)

where the self-loop adjacency matrix Ã = A + In, and

In ∈ R
N×N is the identity matrix; D̃ is the corresponding

degree matrix:

D̃(i,i) =
∑

j

Ã(i,j) . (4)

The vectorization of Equation 4 is implemented with the

vectorized summation and the broadcasting diagonal func-

tions of Pytorch:

D̃ = torch.diag(torch.sum(Ã, dim = 1)) . (5)

Finally, the output H of a feature similarity graph mod-

ule layer is computed as:

H = σ(ÂXW) , (6)

where W is a trainable parametric matrix, and σ is an acti-

vation function.

Since the whole computational procedure is differen-

tiable, our feature similarity graph module can be trained

in an end-to-end fashion. Therefore, neural networks are

capable of seamlessly incorporating the single or multiple

stacked modules. The temporal similarity module can be

also rewritten as its corresponding vectorized implementa-

tion in a similar manner.

5. Details of Indirectly Supervised Loss Term

Our indirectly supervised term of the loss function can be

viewed as a temporal ensembling strategy [4]. The pseudo

code is shown in Algorithm 1. In practice, we set γ as 0.5

in all of the experiments. Since we have already obtained a

set of rough predictions from the action classifier, the “cool

start” initialization and the bias correction of the original

temporal ensembling method [4] are not required as illus-

trated on the 1st and the 8th statements.

6. Reorganization of ShanghaiTech

Training Set Test Set Total

Normal Videos 175 155 330

Anomaly Videos 63 44 107

Total 238 199 437

Table 4: The number of videos on our reorganized Shang-

haiTech.

In total, there are 437 videos on ShanghaiTech. As

shown in Table 4, we split the data into two subsets: the

training set is made up of 238 videos, and the testing set

contains 199 videos. In each scene, the numbers of nor-

mal and anomaly videos w.r.t. the two subsets are de-

picted in Figure 1 and Figure 2, respectively. The new

data split is available at https://github.com/jx-zhong-for-

academic-purpose/GCN-Anomaly-Detection.

7. Discuss the Formulation

Following the reviewer’s suggestion, we discuss our

noisy-labeled problem formulation and the EM-like opti-

mization mechanism under this formulation in more detail.

7.1. Concept: MIL vs Noisy­labeled Learning

Conceptually, the two formulations mainly differ in their

emphases. Given a positive bag Y = 1, the MIL usually

focuses on positive instances yi = 1, whereas the noisy-

labeled training pays attention to noisy labels yi = 0 and

the remaining ones are yi = 1. The two conceptions are

complementary and have transformational relations.

7.2. Practice: EM­like MIL vs Ours

Practically, in terms of selection criteria on “seed ex-

amples”, the EM-like MIL focuses on the most-likely posi-

tive instances, while our noisy-labeled optimization prefers

the most-likely reliable predictions. Take the three MIL

models the reviewer mentioned for examples. If the 10-

crop prediction of a snippet within an anomalous video is

{0.2, 0.2, ..., 0.2}, He et al. [1] will not update their “an-

chor dictionary” with it for its low anomaly score (mean

value=0.2), Hou et al. [2] will exclude it because it is

“non-discriminative” (without “the same label” as the cor-

responding video), Zhang et al. [12] will neglect it since

their E-step is to seek the most “responsible” instance to the

bag annotation, but we will select it to supervise our GCN

because it is highly certain and noiseless (predictive vari-

ance=0).

7.3. Terminology: EM­like vs EM­based

As pointed out in the main body of this paper, our up-

dating method is “EM-like” instead of “EM-based”. The

resemblance between our optimization mechanism and the

EM-based approach is that they both alternately repeat

update-and-fix processes. However, our method is not

“EM-based” since we do not explicitly estimate mathemat-

ical expectation in the training process.

References

[1] Chengkun He, Jie Shao, and Jiayu Sun. An anomaly-

introduced learning method for abnormal event detection.

Multimedia Tools and Applications, 77(22):29573–29588,

Nov 2018. 1, 2, 3

[2] L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis,

and J. H. Saltz. Patch-based convolutional neural network

for whole slide tissue image classification. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2424–2433, June 2016. 3

[3] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. In Proceedings

of the International Conference on Learning Representations

(ICLR), 2017. 2

[4] Samuli Matias Laine and Timo Oskari Aila. Temporal en-

sembling for semi-supervised learning, Apr. 12 2018. US

Patent App. 15/721,433. 2

[5] W. Li, V. Mahadevan, and N. Vasconcelos. Anomaly de-

tection and localization in crowded scenes. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 36:18–

32, 2014. 2

[6] W. Liu, W. Luo, D. Lian, and S. Gao. Future frame prediction

for anomaly detection a new baseline. In CVPR, June 2018.

2

[7] Yusha Liu, Chun-Liang Li, and Barnabás Póczos. Classifier

two-sample test for video anomaly detections. In BMVC,

2018. 2

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 1

[9] M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, and

N. Sebe. Plug-and-play cnn for crowd motion analysis: An

application in abnormal event detection. In WACV, 2018. 2

[10] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15:1929–1958, 2014. 1

[11] Waqas Sultani, Chen Chen, and Mubarak Shah. Real-world

anomaly detection in surveillance videos. In CVPR, June

2018. 1

[12] Qi Zhang and Sally A Goldman. Em-dd: An improved

multiple-instance learning technique. In Advances in neu-

ral information processing systems, pages 1073–1080, 2002.

3

https://github.com/jx-zhong-for-academic-purpose/GCN-Anomaly-Detection
https://github.com/jx-zhong-for-academic-purpose/GCN-Anomaly-Detection

Algorithm 1 Indirectly Supervised Loss Term.

Note that the practical computational processes are incrementally implemented, while in this pseudo code all of them are

calculated from the 1st epoch for clarity.

Input:

V = {vi}
N
i=1: a video with N snippets

Ỹ = {ỹi}
N
i=1: the rough snippet-wise anomaly probabilities from the last action classifier

pθ(vi): the GCN predictions of video clips vi with trainable parameters θ

α(vi): the stochastic augmentation (such as dropout and random cropping) function of input snippets vi
γ: a hyper-parametric discount factor within the range of (0, 1)

Output:

Lj
I : the indirectly supervised loss at the jth epoch

1: Initialize the smooth target pi∈1,2,..,N = ỹi∈1,2,..,N

2: repeat

3: Initialize the epoch counter j = 0
4: for each video V in the training set do

5: Obtain the GCN predictions of augmented snippets: pi = pθ(α(vi))

6: Compute the loss under indirect supervision: Lj
I = 1

N

∑N

i=1 |pi − pi|
7: Optimize the parameters θ of the GCN

8: Update the smooth target: pi∈1,2,..,N = γpi∈1,2,..,N + (1− γ)pi∈1,2,..,N

9: Update the epoch counter: j = j + 1
10: until j == current epoch number

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12 13

V
id

e
o
 C

o
u

n
t

Scene ID

Normal Anomaly

Figure 1: Training set on the reorganization of ShanghaiTech.

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12 13

V
id

e
o
 C

o
u

n
t

Scene ID

Normal Anomaly

Figure 2: Testing set on the reorganization of ShanghaiTech.

