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In this supplementary material, we first provide additional
analyses to Sec. 3 and Sec. 4.3 of the main paper. We then
present additional results on both synthetic and real data. Fi-
nally, we provide additional details of sequences for training
and testing and implementations of competing methods.

1. Additional Analyses

1.1. Degeneracy Analysis on Pure Translation with
tz = 0

In Sec. 3 of the main paper, we have analysed the degener-
acy in RS two-view geometry in the case of pure translation
with tz 6= 0. Below we will discuss the remaining case of
pure translation with tz = 0. Before that, we would like to
clarify that the pure translational camera motion here refers
to the camera motion throughout the two images of interest,
not just the camera motion within the exposure period of
each individual image. Furthermore, pit and qjt represent
the per-scanline camera positions in the world coordinate
system, which is defined as that of the first scanline in the
first image (i.e. p1 = 0), and hence the projection matri-
ces Pi and Pj can be expressed as Pi = [I −pit] and
Pj = [I −qjt].

In the case of pure translation with tz = 0, i.e. camera
motion is lateral, we denote T ij = [T ij

X , T ij
Y , 0]> = (qj −

pi)t, and still, the 3D points S1 and S2 can be related by
S2 = S1 −T ij . Projecting this relationship into 2D images,
we get the below equation, which corresponds to Eq. (1) in
the main paper,

s2 = s1 −
1

Z1
[T ij

X , T ij
Y ]> = s1 −

(qj − pi)

Z1
[tx, ty]

>.

(S1)
This equation indicates that all 2D points move in the same
direction, i.e. [tx, ty]>, which is also what happens when a
GS camera is used. We illustrate such ambiguity in Fig. S1.

Moreover, even if the camera being used for capturing
the 2D point displacements is known to be a RS one, the per-
scanline camera positions along the translational direction,
i.e. pi and qj , cannot be determined from 2D correspon-
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Figure S1. Degeneracy in RS two-view geometry. Both RS and GS
lateral translation in (a) produce parallel displacement in the 2D
points in (b). The red and blue lines in (a) represent the scanlines
in the image planes.

dences only. This is because, beyond the global scale ambi-
guity, there are still infinite number of fake p′i and q′j that can
produce physically possible (i.e. positive) and yet distorted
depth Z ′1 =

(q′j−p
′
i)

(qj−pi)
Z1 such that Eq. (S1) still holds.

We note here that assuming constant velocity throughout
the exposure period of the two images does not remove the
degeneracy. If the two images are taken from two consec-
utive frames from a video and the readout time is further
assumed known, as was done in [5], the degeneracy dis-
appears. However, readout time calibration is nontrivial;
thus, this requirement poses significant restrictions on the
applications.

1.2. Ambiguity between wx-Induced Distortion and
Vertical Image Resizing

In Sec. 4.3 of the main paper, we have discussed this am-
biguity under the case of pure rotational camera motion wx

for ease and clarity of explanation. One should realize that,
for the more general 6-DOF camera motion that is simulated
for each RS image in the training data, such confounding is
reduced due to the (un-)distortion flow induced by the other
5 DOFs. However, the overall confounding effect of this
ambiguity still exists, and as shown empirically in Sec. 5.1
of the main paper, the training (on RS images with 6-DOF
camera motions) is still affected. We also note that since
resizing changes the focal length associated with the image,
it is thus possible to distinguish the resizing effect by embed-
ding the appropriately updated focal length into the training;
however, cropping is a more straightforward solution.
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Figure S2. Training and testing errors at different epochs.

2. Additional Results
2.1. Camera Velocity Estimation Errors

Although the quality of RS rectification is the main focus
of our evaluation, to better understand the behavior of our
method, we also report camera velocity estimation errors
at different epochs during training and testing. To make
the results more intuitive, we plot the errors of (N − 1)v
and (N − 1)w, which correspond respectively to the total
translation and total rotation between the first scanline and
last scanline. As shown in Fig. S2, despite its ill-posed
nature, our network can indeed learn to predict reasonable
camera motion from the distortion in the image appearance.

2.2. Additional Results on Synthetic Data

We show a few additional results on synthetic RS images
in Fig. S3. In particular, (a) represents a typical example in
which MH and 2DCNN are only able to rectify some regions
of the image (e.g. see red boxes) but not for other regions
(e.g. see blue boxes), whereas our method can undistort the
entire image relatively well. (b) shows a typical example
where the distortions are subtle, however, our method can
predict the camera motion and remove most of the subtle
distortions effectively. (c) and (d) represent two cluttered
scenes, which pose extra challenges for RS correction. Nev-
ertheless, the results show that our method is able to extract
the underlying geometry from the complicated scenes and
achieve satisfactory rectification results.

2.3. Additional Results on Real Data

Fig. S4 presents some additional results on real RS im-
ages. In general, our method achieves superior performances
compared to those of MH and 2DCNN. In particular, we note
that although all methods can rectify the distortion in the
background house in (a) reasonably well, only our method
can remove the marginal deformation in the rear of the car
(i.e. see red boxes). In (b), one can clearly see that the rectan-
gular shape of the street sign is best recovered by our method
(i.e. see red boxes). In (c), the curves are rectified as straight

lines more effectively by our method (e.g. see red boxes). (d)
represents a typical example where MH may return grossly
erroneous results if the lines forming the Manhattan world
are not presented in the input image or not detected properly.
In addition, although the pole remains slightly bended in our
rectified image, it is still visually better than that of 2DCNN.
Similarly, superior performances of our method are observed
in (e), (f) and (g).

3. Additional Details
3.1. Sequences for Training and Testing

We exploit the ‘City’ and ‘Residential’ categories of the
KITTI Raw dataset [1] to generate synthetic RS images
for training and testing. In particular, for rendering testing
images, we use the 2 sequences ‘2011 10 03 drive 0027’
and ‘2011 09 29 drive 0071’, which are representatives of
uncluttered and cluttered traffic scenes respectively and com-
prise more than 5,500 frames. For synthesizing training
images, we use all the remaining sequences in the ‘City’ and
‘Residential’ categories except for the 5 sequences where
the scenes are mostly static (the vehicle is stopped), in-
cluding ‘2011 09 26 drive 0017’, ’2011 09 26 drive 0018’,
‘2011 09 26 drive 0057’, ‘2011 09 26 drive 0060’, and
‘2011 09 28 drive 0002’, This results in totally 42 sequences
with around 30,000 frames for generating training images.

3.2. Implementations of Competing Methods

For both MH [2] and 2DCNN [3], we use the source
codes provided by the authors in all of our experiments.
The rectified images are taken directly from the outputs of
their codes for qualitative evaluation. In addition, we update
their codes to produce the undistortion flows for quantitative
evaluation.
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Figure S3. Additional qualitative comparisons on synthetic RS images. For each example (a)-(d), the first row shows the input RS image,
input RS image overlaid on ground truth GS image, ground truth undistortion flow, and ground truth depth map respectively, while the next
three rows plot the results of our method (SMARSC), MH, and 2DCNN respectively with each row showing from left to right the rectified
image, rectified image overlaid on ground truth GS image, estimated undistortion flow, and estimated depth map. Note that since MH and
2DCNN do not predict depths, we instead show the line detection result for MH (different colors indicate the associations with different
vanishing points) and leave an empty figure for 2DCNN. The undistortion flow is visualized following [4]. In the depth map, bright and dark
colors mean small and large depth values respectively.
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Figure S4. Additional qualitative comparisons on real RS images. For each scene (a)-(g), the first row shows from left to right the input RS
image and the rectified images by our method (SMARSC), MH, and 2DCNN respectively. The second row shows the estimated depth map
by our method and the undistortion flows by our method, MH, and 2DCNN respectively.


