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Figure 1: Approaches to train deep learning based denois-
ers.

CS-MRI measurements

In order to train deep learning based image denoisers,
there have been two approaches so far: supervised training
with pairs of noisy and ground truth images (e.g., [9, 2, 3])
and recently investigated unsupervised training with noisy
images only (e.g., [4, 8]). Contrary to above-mentioned
methods, we tackled the problem of unsupervised training
of image denoisers with undersampled CS measurements.
Figure 1 illustrates the clear distinctions between the meth-
ods.

1. On training parameters

In this section, we describe how to select tuning hyper-
parameters such as e for MC-SURE estimation based on [8]
and provide results that demonstrate the importance of our
proposed noise estimation method (Eq. (7)) over the previ-
ous method ((6) in the main paper) [7].

We selected the value of ¢ in MC-SURE (Eq. (5)) fol-
lowing [8] as shown below:

e=0x14x107* for o€[0—255].

Following the training method of DnCNN [9], MC-SURE
was also calculated separately for each 50x50 patch in a
batch during the training.

The original noise estimation method (Eq. (6)) was not
accurate enough for training with MC-SURE. We observed
that LDAMP SURE trained with this original method
yielded the worst results. Our proposed noise estimation
method (Eq. (7)) significantly improved the performance of
our LDAMP SURE (see Table 1). We compared the follow-
ing four methods: BM3D-AMP [5, 6], LDAMP BM3D (the
same method as [7], but trained with the results of BM3D-
AMP as the ground truth using MSE), LDAMP SURE w/
Prev. Noise Est. (our proposed method, but using the pre-
vious noise estimation in [7]), and LDAMP SURE w/ Pro-
posed Noise Est. (our proposed method with the new noise
estimation). LDAMP SURE w/ Prev. Noise Est. yielded
10 dB lower than conventional BM3D-AMP, indicating that
accurate noise estimation is one of the key factors for suc-
cessful denoiser training using MC-SURE without ground
truth and without additional image prior. In the main pa-
per, we denote “LDAMP SURE w/ Proposed Noise Est.” as
“LDAMP SURE”.

Method M =25%
BM3D-AMP 31.40 dB
LDAMP BM3D 31.65 dB
LDAMP SURE w/ Proposed Noise Est. ~ 33.26 dB
LDAMP SURE w/ Prev. Noise Est. 21.40 dB

Table 1: Avg. PSNR of 100 images of four different meth-
ods including our proposed method for CDP measurements.

2. Towards a single denoiser

An extensive study has been performed to understand
how the number of denoisers can affect the performance of
LDAMP network with the goal of reducing the number of



Networks Gaussian CDP CS-MRI Trained noise range

LDAMP-9 31.30 3507 3141 o <€[0-—10,10—20,...,300 — 500]
LDAMP-4 31.19 3284 29.64 o €[0—50,50— 100,100 — 200, 200 — 500]
LDAMP-3 31.35 3296 2942 o €[0— 50,50 — 150,150 — 500]

LDAMP-3 30.92 33.06 2947 o €[0— 100,100 — 200,200 — 500]
LDAMP-1 28.45 31.00 2856 o € [0—500]

LDAMP with BM3D  31.65 3388  31.33 ¢ € [0 — 55] and BM3D for larger noise

Table 2: Performance of LDAMP networks on 100 test images with 180x 180 for % = 25% sampling rate.

denoisers from 9 [7] to 1 or more without losing much per-
formance. All networks were trained on BSD-500 dataset
and with a mean square error (MSE) as a loss function. The
results are tabulated in Table 2, where the number indicates
the number of denoisers in LDAMP. For instance, LDAMP-
3 means LDAMP with 3 DnCNN denoisers trained on noise
ranges specified in the “Trained noise range” column. It
turned out that the more number of DnCNN denoisers and
the finer discretization of the noise range are used, the better
performance of an LDAMP can be obtained.

On the other hand, we found that the hybrid approach us-
ing LDAMP and BM3D could achieve comparable perfor-
mance with only 1 DnCNN. When we utilized state-of-the-
art BM3D denoiser for larger noise levels and use DnCNN
at low noise range, comparable reconstruction performance
to LDAMP-9 was achieved using only 1 DnCNN. This re-
duces the network training time significantly. This hybrid
method is our proposed LDAMP SURE method in the main
paper.

In most cases, our hybrid approach uses only 1 DnCNN
denoiser. However, for highly undersampled cases (e.g.
% = 5%), using more denoisers was necessary to main-
tain the performance. Thus, we used three blind DnCNN
denoisers that were trained for oy € [0, 55], o2 € [55,110],
and o5 € [110, 165] noise ranges respectively, for 3 = 5%.

3. LDAMP pretrained with TVAL3

In our work we reported the results of LDAMP SURE
that was pretrained with BM3D-AMP and then fine-tuned
with compressive sensing measurements for all 3 measure-
ment matrices. However, we can also pretrain LDAMP
SURE with TVALS3 instead of BM3D-AMP. Thus follow-
ing the same steps as described in our paper, DnCNN
can be pre-trained with the outputs of TVAL3 (we denote
this as LDAMP-TVAL3) and then can be fine-tuned us-
ing compressive sensing measurements using our proposed
LDAMP SURE (we denote this as LDAMP SURE¥*). These
results are reported in Table 3. In our main paper, LDAMP
SURE was not able to surpass TVAL3 for CDP case when
undersampled measurements are only % = 5%. However,

by using a different pre-trained network, the same proposed
method outperformed other methods including TVAL3.

Methods PSNR (dB)
NLR-CS 19.00
BM3D-AMP 21.66
TVAL3 22.57
LDAMP-TVAL3 22.72
LDAMP SURE* 22.88

Table 3: Average PSNRs of 100 test images with 180180
reconstructed for CDP at ™ = 5%.

4. Additional results

We report more results for i.i.d Gaussian, CDP, and CS-
MRI cases with different compressive sampling ratios in
Figures 2 - 7. These results were not included in the main
paper due to the page limit. All of our proposed methods
here were pretrained with BM3D-AMP and then fine-tuned
with compressive sensing measurements. Also, 25 standard
grayscale test images can be found in Figure 8.
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Figure 2: Reconstructions of 180 180 test image (DIV2K dataset [ 1]) with 4.7.d. Gaussian measurement matrix for % =0.15
sampling rate.
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Figure 3: Reconstructions of 180 180 test image (DIV2K dataset [1]) with 4.7.d. Gaussian measurement matrix for % =0.25
sampling rate.
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(a) PSNR (b) 29.49 dB (c)32.83dB (d) 24.98 dB (e) 34.76 dB (f) 34.34 dB

Figure 4: Reconstructions of 180x 180 test image with CDP measurement matrix for * = 0.15 sampling rate.
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Figure 5: Reconstructions of 180x 180 “Boat” test image with CDP measurement matrix for ”* = 0.25 sampling rate.



Ground truth BM3D-AMP
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Figure 6: Reconstructions of 180x 180 test image with CS-MRI measurement matrix for 7> = 0.50 sampling rate. Red box
corresponds to a residual between the ground truth and reconstructed image, while green box is an enlarged region of the
recovered image.
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Figure 7: Reconstructions of 180x 180 test image with CS-MRI measurement matrix for * = 0.60 sampling rate. Red box
corresponds to a residual between the ground truth and reconstructed image, while yellow box is an enlarged region of the
recovered image.



Figure 8: The twenty five standard test images used as a part of the test dataset for Gaussian measurement matrix and CDP
experiments.



