
A Local Block Coordinate Descent Algorithm for the CSC Model
Supplementary Material

Ev Zisselman
ev zis@campus.technion.ac.il

Jeremias Sulam
jsulam1@jhu.edu

Michael Elad
elad@cs.technion.ac.il

This Supplementary material elaborates on the LoBCoD
algorithm and our experiments. In Section A we provide
proofs for our derivations of the LoBCoD algorithm and its
stochastic version. Section B analyzes the complexity of
our approach and compares it to contending batch and on-
line algorithms. Section C details the algorithm for image
fusion and in Section D we specify the implementation de-
tails and parameters settings of our experiments. Lastly, in
Section E we demonstrate the advantages of LoBCoD on
two additional applications: multi-exposure image fusion
and salt-and-pepper text image denosing.

A. Mathematical proofs

A.1. Transitioning from a high dimensional prob-
lem to a low dimensional problem

Transition from minimization problem (7) to (8) in
the main paper. We denote pi as the patch that fully con-
tains the slice si = DLαi, and define a patch-layer Lĩ as
the set of non-overlapping patches taken from the image
that contains the patch pi. We can write the identity ma-
trix as a sum of non-overlapping patch-extraction matrices∑
k∈Lĩ

PTkPk = I, where Pi is one of these matrices. By
using these definitions and writing the definition of Ri (the
residual image without the contribution of the i-th needle)
we can write the l2 fidelity term of Equation (7) as

arg min
αi

1

2
‖
∑
k∈Lĩ

PTkPkRi −PTi DLαi‖22 =

arg min
αi

1

2
‖
∑
k∈Lĩ

PTkPk(X −
N∑
j=1

j 6=i

PTj DLαj)−PTi DLαi‖22 =

arg min
αi

1

2
‖
∑
k 6=i

k∈Lĩ

PTkPk(X −
N∑
j=1

j 6=i

PTj DLαj) +

PTi (Pi(X −
N∑
j=1

j 6=i

PTj DLαj)−DLαi)‖22.

(A.1)

Since the patch-extraction matrix PTi is orthogonal to all
the matrices PTk for k 6= i, the previous problem (A.1) is
equal to

arg min
αi

1

2
‖
∑
k∈L

ĩ
k 6=i

PTkPk(X −
N∑
j=1

j 6=i

PTj DLαj)‖22 +

‖PTi (Pi(X −
N∑
j=1

j 6=i

PTj DLαj)−DLαi)‖22.

(A.2)
Note that the first term of the above objective does not de-
pend on αi, and thus we can ignore this term in our mini-
mization of the objective:

arg min
αi

1

2
‖PTi (Pi(X −

N∑
j=1

j 6=i

PTj DLαj)−DLαi)‖22.

(A.3)
In addition, the matrix PTi translates a patch-size vector
to the i-th position in the global vector padded with zeros.
Hence, we can ignore all the zero-entries in the resulting
vector, and the problem becomes equivalent to solving the
following reduced minimization problem:

arg min
αi

1

2
‖Pi(X −

N∑
j=1

j 6=i

PTj DLαj)−DLαi‖22 =

arg min
αi

1

2
‖PiRi −DLαi‖22,

(A.4)

where Ri = X −
∑N

j=1

j 6=i
PTj DLαj .

A.2. Local dictionary update - gradient calculation

The derivation of the gradient, Equation (11) in the
main paper. We can rewrite DL as a column vector dL and
write problem (10) as:

arg min
DL

1

2
‖X −

N∑
i=1

PTi (αi ⊗ In×n)dL‖22, (A.5)

1

where we denote ⊗ as the Kronecker matrix product and
apply property no. (40) from [9].
By defining Ai = (αi ⊗ In×n), the above problem can be
rewritten as

arg min
DL

1

2
‖X −

N∑
i=1

PTi AidL‖22. (A.6)

Now it easy to see that the gradient of problem (A.6) w.r.t.
dL is given by

∇dL = −(

N∑
i=1

PTi Ai)
T (X −

N∑
i=1

PTi AidL) =

−
N∑
i=1

AT
i Pi(X −

N∑
i=1

PTi AidL) =

−
N∑
i=1

AT
i Pi(X − X̂).

(A.7)
Note that Pi(X−X̂) is the i-th patch of the residual image,
and by substituting back the definition of Ai, and using the
same property as before (see [9] property no. (40)) we can
write the gradient as

∇dL = −
N∑
i=1

(αi ⊗ In×n)TPi(X − X̂) =

−
N∑
i=1

vec(Pi(X − X̂) · αTi),

(A.8)

where vec(·) denotes the vec-operator that stacks the
columns of the gradient matrix into a vector, so by reshap-
ing the above expression we get the final expression for the
gradient (11)

∇DL
= −

N∑
i=1

Pi(X − X̂)·αTi . (A.9)

B. Complexity Analysis
This section details the computational complexity analysis
of our algorithm and compares it to previous methods.

We assume that the number of the non-zeros in every
needle is limited to at most k non-zeros, and we denote
by I the number of the training images. We evaluate the
complexity of every outer iteration (single epoch) of our al-
gorithm and compare it to the complexity of executing an
epoch in the alternative algorithms. Every inner iteration
of our algorithm (Algorithm 1 in the main paper) operates
on a layer of N/n needles, while the global iteration oper-
ates on the whole dataset. The resulting computational cost
of the residuals Rj for all the layers is O(IN(nk + n)),

which is comprised of O(INnk) for computing all the N
slices DLαi of all the I images, and O(INn) computa-
tions for subtracting them from the global residual. Given
the residuals, every iteration applies the LARS algorithm
for solving the local sparse pursuit for all the NI nee-
dles, requiring O(k3 + mk2 + nm) per needle [8], and
O(IN(k3 +mk2 + nm) + n2m2) computations for all the
N needles in all the I images. The latter term, n2m2, corre-
sponds to the precomputation of the Gram matrix of the dic-
tionary DL at every layer, which is usually negligible since
it is computed once for all the needle in the layer. Next, we
evaluate the complexity of reconstructing the signal. Di-
rect computation requires O(IN(nk + n+ k)) operations,
which is effectively O(INnk), since this is the dominant
term. The computation of the global residual requires an-
other O(IN) operations. These last two phases are negligi-
ble compared to the sparse pursuit stage, and are therefore
omitted from the final expression. Finally, the computation
of the gradient isO(IN(n+nk)), and the dictionary update
stage is O(INm) (updating the dictionary requires O(mn)
computations and occurs IN/n times in every epoch). We
summarize the above analysis in Table 1 in the main paper,
and compare it to the complexity analysis of the SBDL al-
gorithm [10]. In addition, Table 1 presents the complexity
of executing an epoch of the two SGD based online algo-
rithms that were introduced in [6], where q corresponds to
the number of inner iterations of the sparse pursuit stage
(preformed in the Fourier domain).

The most demanding stage, in both the SBDL algorithm
and in our approach, is the local sparse pursuit, which is
O(IN(k3 + mk2 + nm)). Assuming that the needles are
very sparse k � m, which is often the case with real-world
signals, the complexity of the local sparse pursuit stage is
governed by O(NInm) in both algorithms. This implies
that our algorithm is of comparable order of complexity1

as SBDL, which is a batch algorithm. On the other hand,
the complexity of the online algorithm in [6] is dominated
by the computation of the FFT in the pursuit stage, which
is O(qImNlog(N)), meaning that their algorithm scales
as O(Nlog(N)) with the global dimension of the signals,
while our algorithm grows linearly.

C. Multi-focus
In this section we address the task of multi-focus image
fusion and further detail our implementation.

We denote the set of source images to fuse as {Y k}Lk=1,
and assume that a pretrained dictionary {di}mi=1 is provided.
Each image Y k is decomposed into a base component Y kb ,
which is a smooth piece-wise constant image, and an edge

1While the complexity of our algorithm is of the same order as the com-
plexity of SBDL, we empirically demonstrated that our method converges
faster (see Figure 2 in the main paper).

2

component Y ke that contains the high frequency elements:

Y k = Y kb + Y ke , (C.1)

where the separation is performed by means of applying dis-
tinctive priors. The base component is usually extracted by
imposing a prior which penalizes the l2 norm of its gradient.
Modeling the edge component, however, is more involved
and has been the subject matter of many image-processing
algorithms [3, 5, 13, 14, 16, 17]. In this work, we employ
the CSC model to describe the edge components, as it has
shown promising results in [7].

Using the aforementioned priors, the separation of the
image to its components amounts to solving the following
optimization problem:

min
Γk
e ,Y

k
b

1

2
‖Y k −DeΓ

k
e − Y kb ‖22 + λ‖Γke‖1 + µ

1

2
‖∇Y kb ‖22,

(C.2)
where Γke is the sparse representation of Y ke , under the
given convolutional dictionary De, i.e. Y ke = DeΓ

k
e , and

‖∇Y kb ‖22 is given by

‖∇Y kb ‖22 = ‖gx ∗ Y kb ‖22 + ‖gy ∗ Y kb ‖22, (C.3)

where gx = [−1 1] and gy = [−1 1]T are the horizontal
and vertical gradient operators, respectively.

By taking similar steps to those presented in Section 3.1
in the main paper, we can rewrite the above optimization
problem as

min
{αk

j },Y k
b

1

2
‖Y k −

N∑
j=1

PTj DLα
k
j − Y kb ‖22

+λ

N∑
j=1

‖αkj ‖1 + µ
1

2
‖∇Y kb ‖22,

(C.4)

where {αkj }Nj=1 are the needles which compose the sparse
vector Γke , and DL is the local dictionary of De.

This problem can be solved by alternating between min-
imizing w.r.t. Y kb and Y ke , where the latter boils down to
seeking for the sparse needles {αkj }Nj=1. To that end, the
update rule of the {αkj }Nj=1 is the set of local pursuit prob-
lems:

min
{αk

j }

1

2
‖(Y k − Y kb)−

N∑
j=1

PTj DLα
k
j ‖22 + λ

N∑
j=1

‖αkj ‖1,

(C.5)
which can be solved using our proposed algorithm, whereas
the update rule of Yb is the following least square minimiza-
tion problem:

min
Y k
b

1

2
‖(Y k −DeΓ

k
e)− Y kb ‖22 + µ

1

2
‖∇Y kb ‖22. (C.6)

For solving problem C.6, we set its gradient w.r.t. Yb to zero
to obtain the following update rule:

Y kb = (I + µ(GTxGx +GTyGy))−1(Y k −DeΓ
k
e), (C.7)

where Gx and Gy are the matrix representations of the
gradient-operators.

Once these problems have been solved for all the in-
put images {Y k}Lk=1, we aim to merge each set of feature
maps2 {Zki }Lk=1 in a way that best captures the focused ob-
jects in the resulting images. For each image Y k, we gen-
erate an activity map based on the intensity of the l1-norm
of its feature maps. More specifically, we sum pixel-wise
the absolute value of its m feature maps {Zki }mi=1 to form
an activity map that matches the size of the image N :

Ãk(u, v) =

m∑
i=1

‖Zki (u, v)‖1. (C.8)

To make this method more robust and less susceptible to
misregistration, we convolve the above activity maps with a
uniform kernel Us, of a small support s× s, to produce the
final activity maps:

Ak = Ãk ∗ Us. (C.9)

Based on the observation that a significant value in the
activity map Ak indicates a sharp region in the image Y k,
we then reconstruct the all-in-focus edge component by se-
lectively assembling the most prominent regions from the
feature maps based on their pixel-wise values in the corre-
sponding activity maps:

Zfi (u, v) = Zk
∗

i (u, v), k∗ = arg max
k

(Ak(u, v)),

(C.10)
where {Zfi }mi=1 are the feature maps of the fused image.

Afterward, we fuse the base components, either by tak-
ing their average

Y fb =
1

N

L∑
k=1

Y kb , (C.11)

or by nominating regions of the base components according
to the maximum value in the respective activity maps, i.e.

Y fb (u, v) = Y k
∗

b (u, v), k∗ = arg max
k

(Ak(u, v)),

(C.12)
where Y fb is the base component of the fused image. Here,
we opt for the latter since it produces better results.

Finally, the fusion result Y f is obtained by gathering its
components:

Y f = Y fb +

m∑
i=1

di ∗ Zfi . (C.13)

2This set of feature maps refers to the i-th feature maps of the input
images.

3

D. Experiments

In this section we turn to describe the implantation details
of our experiments.

Throughout all our experiments we used a local dictio-
nary composed of m = 81 filters, each of size 8 × 8. In
addition, we used the LARS algorithm [1] for solving the
local sparse pursuit stage (problem (8) in the main paper).

Run time comparison of the batch methods (Figure
2 in the main paper). We used λ = 1 and the Fruit
dataset [2] for training the dictionaries. The dataset con-
tains 10 images of size 100×100 pixels. As a preprocessing
step, we mean-subtracted the images. The mean was com-
puted by convolving each image with an 8 × 8 uniform
kernel and subtracting the result from the original image.
Additionally, we used the ADAM algorithm in the initial 30
iterations, with η = 0.02, and set the ADAM parameters in
accordance with the authors’ recommendation: β1 = 0.9,
β2 = 0.999, and ε = 108. Subsequent iterations applied
the Momentum algorithm with η = 10−7 and γ = 0.8 until
convergence3.

Run time comparison of the online algorithms
(Figure 3 in the main paper). For training the dictionary
we used the MIRFLICKR-1M dataset [4], where we
sampled (without recurrence) 40 images for training and
an additional 5 images for testing. The images were
cropped to reduce their size from 512 × 512 to 256 × 256
pixels in both the training and testing sets to expedite the
computation. In addition, we divided the images by 255
and mean-subtracted them as previously described. In
this experiment, we used λ = 0.1 for all methods. For
our method we set the learning rate to η = 0.1, with
learning rate decay4 of η̃ = η/(1 + 3/t) updated every 5
epochs. Lastly, we setup the momentum parameter γ = 0.8.

Multi-focus image fusion (Section 7.3 in the main pa-
per). The dictionaries of both methods were pretrained on
the Fruit dataset [2]. In addition, we set the coefficients de-
scribed in Equation (C.2) to λ = 1 and µ = 5 for the sparse
pursuit (C.5) and the base-image extraction (C.6) stages, re-
spectively, and alternate between the stages at each itera-
tion. In practice, convergence was achieved within 2-4 iter-
ations of alternating between these two stages. For recon-
structing the image Barbara we used a reconstruction kernel
Us (Equation (C.9)) of size 9×9, and for the image Butterfly
we used a reconstruction kernel Us of size 8× 8.

For reconstructing the colored image Bird in the Lab
color space, we built the activity maps Ak based on their

3All our notations are in accordance with those presented in [12]
4t here denotes the numbers of the epochs.

(a) Under exposure (b) Over exposure

(c) Liu et al. [7] (d) Proposed

Figure 1: Multi-exposure fusion comparison of real images.
The red boxes indicate artifact suppression characteristics
of the proposed method.

L channel only, with kernel Us of size of 14 × 14. Then,
we reconstructed each channel from the Lab color space by
selecting regions based on the maximum pixel-wise value
of the activity maps. Finally for fusing the image-pair
Clocks we used a kernel Us of size 9× 9.

E. Additional Applications

We turn to demonstrate the benefits of LoBCoD on two
additional applications: Multi-exposure image fusion and
salt-and-pepper noise removal from text images.

Multi-exposure image fusion. To showcase the versa-
tility of the multi-focus LoBCoD application, we adapt it
to the task of multi-exposure image-fusion. The fusion is
preformed in the same manner as in the case of multi-focus
fusion (Section C), with a slight modification of handling
the base components. Here, we fuse the base components
by taking their weighted sum:

Y fb =

L∑
k=1

akY kb . (E.1)

4

Method PSNR [dB]

Noisy test set 13.37

Wohlberg [15] trained on clean training set 19.83

Plaut et al. [11] trained on clean training set 21.60

Proposed trained on clean training set 20.40

Wohlberg [15] trained on noisy test set 19.62

Plaut et al. [11] trained on noisy test set 22.30

Proposed trained on noisy test set 23.64

Table 1: Average PSNR comparison between our method
and the algorithms presented in [11] and [15]. The noisy im-
ages are corrupted by converting 10% of the image-pixels.

All other implementation details, including the parameters
λ and µ remain the same as in the multi-focus case. For
fusing the image Window (Figure 1) we used weights of 0.9
and 0.1 for the over and under exposed images, respectively,
as it yields a brighter combined image. For Us we chose a
reconstruction kernel of size of 6× 6.

Figure 1 compares our results with the results of an
adapted version of Liu et al. [7], demonstrating LoBCoD’s
superior performance.

Salt-and-pepper text image denoising. Salt-and-
pepper noise, also known as impulse noise, is characterized
by sparsely occurring white or black (maximum or mini-
mum value) pixels in an image. Here, unlike the inpainting
task, we do not assume prior knowledge of the noise mask
and we rely solely on the sparse prior to reconstruct the cor-
rupted image. Thus, for a given test image, we aim to solve
the following minimization problem:

min
Zi

m∑
i=0

‖Zi‖1 s.t ‖X −
m∑
i=0

di ∗ Zi‖22 < ε. (E.2)

In problem E.2 we adopt the approach presented in [11, 15]
and augment the dictionary {di}mi=1 with a single impulse
filter d0 = [1 0 0 ... 0]T to represent the impulse noise. For
solving problem (E.2), we use the Lagrangian formulation
as described in the main paper but with a small modifica-
tion of assigning a different λ for image reconstruction and
noise representation. This is because the sparsity ratio of
an image presented by the dictionary {di}mi=1 depends on
the complexity of the image, while the sparsity ratio of the
noise depends on the noise level (the amount of corrupted
pixels). Thus, the objective for our minimization can be

written as follows:

min
Zi

1

2
‖X −

m∑
i=1

di ∗ Zi − d0 ∗ Z0‖22

+λ1

m∑
i=1

‖Zi‖1 + λ0‖Z0‖1.
(E.3)

We minimize the objective (E.3) by splitting it into two
minimization sub-problems, one minimizes over Z0 leaving
{Zi}mi=1 fixed, and the other minimizes over {Zi}mi=1 with
Z0 fixed. Then we alternate between these two minimiza-
tion sub-problems for several iterations. In practice, 2-4 it-
erations were sufficient for convergence. For reconstructing
the restored image, we use only the dictionary {di}mi=1 with
its coefficients and zero the coefficient of the impulse atom.

We evaluate our proposed algorithm using text images
taken from the dataset in [11], which is a subset of scanned
pages taken from the book Aristotle’s Nicomachean Ethics.
Each training and test set are composed of 16 pages from
the book, each of size 493 × 383 pixels. The images are
gray scale images, normalized to the range [0, 1]. Since the
the dataset assigns a value of zero to text characters and one
to the image background, we employ a pre-processing step
of inverting the images as described in [11], and uninvert
the results to obtain black-over-white images at the end.

The images in the test set were corrupted by randomly in-
verting 10% of the pixels in every image, setting 5% of the
pixels to black and 5% of the pixels to white. Figure 2(a)
shows a portion of an original image taken from the test set
and Figure 2(b) shows its corrupted version. We apply our
algorithm to reconstruct the test set both in the case of train-
ing the dictionary on the clean training set and training on
the noisy test images, and compare our results to the meth-
ods presented in [11] and [15] using their published code.
In all evaluated methods, the dictionary was comprised of
100 atoms, each atom of size 11 × 11 pixels. Additionally,
when training each method on the noisy test set, we include
a pruning procedure of noisy atoms, as presented in [11].

Table 1 presents the resulting average PSNR of the dif-
ferent algorithms on the test set. The comparison illus-
trates that while [11] performs better when training on clean
images, the proposed method achieves better results when
training on the corrupted test images. Figure 2 compares
the various algorithms when applied to a single test exam-
ple. Here, the advantage of our approach is reiterated in the
case of training using noisy test images.

5

(a) Original image (b) Noisy image (c) Wohlberg [15] (Clean) (d) Plaut et al. [11] (Clean)

(e) Proposed (Clean) (f) Wohlberg [15] (Noisy) (g) Plaut et al. [11] (Noisy) (h) Proposed (Noisy)

Figure 2: Denoising performance comparison on a text image. (a) the original image; (b) the noisy image. PSNR: 13.53; (c)
denoising method [15], dictionary trained on clean images. PSNR: 19.23; (d) denoising method [11], dictionary trained on
clean images. PSNR: 20.68; (e) denoising using the proposed algorithm, dictionary trained on clean images. PSNR: 20.25;
(f) denoising method [15], dictionary trained on noisy images. PSNR: 18.51; (g) denoising method [11], dictionary trained on
noisy images. PSNR: 19.91; (f) denoising using the proposed algorithm, dictionary trained on noisy images. PSNR: 22.81.

References

[1] B. Efron, T. iHastie, I. Johnstone, R. Tibshirani, et al. Least
angle regression. The Annals of statistics, 32(2):407–499,
2004.

[2] R. Fergus, M. D. Zeiler, G. W. Taylor, and D. Krishnan.
Deconvolutional networks. In 2010 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recogni-
tion(CVPR), volume 00, pages 2528–2535, 2010.

[3] R. Gao and S. A. Vorobyov. Multi-focus image fusion via
coupled sparse representation and dictionary learning. arXiv
preprint arXiv:1705.10574, 2017.

[4] M. J. Huiskes, B. Thomee, and M. S. Lew. New trends and
ideas in visual concept detection: the mir flickr retrieval eval-
uation initiative. In Proceedings of the international confer-
ence on Multimedia information retrieval, pages 527–536.
ACM, 2010.

[5] H. Li, B. Manjunath, and S. K. Mitra. Multisensor image
fusion using the wavelet transform. Graphical models and
image processing, 57(3):235–245, 1995.

[6] J. Liu, C. Garcia-Cardona, B. Wohlberg, and W. Yin.
First-and second-order methods for online convolutional
dictionary learning. SIAM Journal on Imaging Sciences,
11(2):1589–1628, 2018.

[7] Y. Liu, X. Chen, R. K. Ward, and Z. J. Wang. Image fu-
sion with convolutional sparse representation. IEEE signal
processing letters, 23(12):1882–1886, 2016.

[8] J. Mairal, F. Bach, J. Ponce, et al. Sparse modeling for image
and vision processing. Foundations and Trends R© in Com-
puter Graphics and Vision, 8(2-3):85–283, 2014.

[9] T. P. Minka. Old and new matrix algebra useful for statistics.
See www. stat. cmu. edu/minka/papers/matrix. html, 2000.

[10] V. Papyan, Y. Romano, J. Sulam, and M. Elad. Convolu-
tional dictionary learning via local processing. In ICCV,
pages 5306–5314, 2017.

[11] E. Plaut and R. Giryes. A greedy approach to 0,-based convo-
lutional sparse coding. SIAM Journal on Imaging Sciences,
12(1):186–210, 2019.

[12] S. Ruder. An overview of gradient descent optimization al-
gorithms. arXiv preprint arXiv:1609.04747, 2016.

[13] S. Savić. Multifocus image fusion based on empirical mode
decomposition. In Twentieth International Electro technical
and Computer Science Conference, 2011.

[14] W. Wang and F. Chang. A multi-focus image fusion method
based on laplacian pyramid. JCP, 6(12):2559–2566, 2011.

[15] B. Wohlberg. Convolutional sparse representations as an
image model for impulse noise restoration. In 2016 IEEE
12th Image, Video, and Multidimensional Signal Processing
Workshop (IVMSP), pages 1–5. IEEE, 2016.

6

[16] B. Yang and S. Li. Multifocus image fusion and restoration
with sparse representation. IEEE Transactions on Instrumen-
tation and Measurement, 59(4):884–892, 2010.

[17] B. Yang and S. Li. Pixel-level image fusion with simul-
taneous orthogonal matching pursuit. Information fusion,
13(1):10–19, 2012.

7

