
CRAVES: Controlling Robotic Arm with a Vision-based Economic System

Supplementary Materials

Yiming Zuo1∗, Weichao Qiu2∗, Lingxi Xie2,4, Fangwei Zhong3, Yizhou Wang3,5,6, Alan L. Yuille2

1Tsinghua University 2Johns Hopkins University 3Peking University
4Noah’s Ark Lab, Huawei Inc. 5Peng Cheng Laboratory 6DeepWise AI Lab

{zuoyiming17,qiuwch,198808xc,zfw1226,alan.l.yuille}@gmail.com, yizhou.wang@pku.edu.cn

1. Implementation Details of Reinforcement Learning

fc (512) fc (256) fc (256)

fc (128)

fc (128)fc (128) fc (128)

merge

�� � ሺ·, ��ሻ��−1

��
��

��−ସ

��−ଷ
��−ଷ

Actor Critic

concat

Figure 1. Details of the DDPG network for reaching a point.

We develop an RL-based agent to control the arm to reach a target point without collision. This section introduces the

implementation details of the training process, including the reward function, action, network, etc.

• Reward Shaping. Our goal is to train an agent to reach a target point as fast as possible and without collision. So,

the environment should provide a large positive reward when the goal is achieved, and a large negative reward (a.k.a.

penalty) when collision happens. At other steps, the definition of reward should encourage the grip to get closer to the

goal and reach the point using as few steps as possible. Considering the above requirements, the reward function is

shaped as below:

rβ =







10, if dt < D;

−10, if collision detected;

0.05(dt−1 − dt)− 0.1, otherwise.

(1)

Here, dt is the distance between the grip and the target point at time t. Note that an episode is done when the target is

reached, a collision is detected, or the maximum number of steps (200 in our experiments) is achieved.

• Action. An action at is a vector in a continuous space, with its values in each dimension corresponding to the expected

change of each angle. The value of each dimension is truncated by [−5◦, 5◦].

• Input. A state st is a 4-dimensional vector which describes the pose of the arm, i.e., each dimension indicates the angle

of one joint. The goal is a 3-dimensional vector gt representing the coordinate of the target point in the 3D space. The

∗This work was done when the first author was an intern at the Johns Hopkins University. The first two authors contributed equally.

1



Synthetic Lab YouTube

Source UE4 Webcam YouTube

Total Videos N/A 20 109

Total Frames +∞ 21,720 503,6221

Training Labels 4,500 0 0

Testing Labels 500 428 275

Annotation Type 3D Pose 3D Pose 2D Keypoints
Table 1. Data statistics of different datasets. Note that, with 3D pose annotated, one can compute 2D keypoints with simple geometry.

input of the agent network is composed of three parts, namely, the state vector st, the goal vector gt, and the action

taken at the previous step at−1. For providing richer temporal information, we stack the above input vectors from the

4 most recent frames.

• Network. The agent is an actor-critic network (see Figure 1), in which the actor is a policy function at = π(·; ξ),
mapping the input to an action at, and the citric predicts the expected discounted future reward, Q(·,at), which is used

for training the actor.

• Training. The network is trained with the DDPG [1] algorithm. To accelerate the learning process, we use a prioritized

experience replay with a buffer size of 100K. The learning rate is 0.001 for the critic and 0.0001 for the actor. To

encourage the actor to explore, we add Ornstein-Uhlenbeck noise to the output action. The factor of the noise decays

linearly from 1 to 0.1 in the first 100K steps and remains a constant afterwards. The entire training process contains

400K steps. Note that we use the ground-truth arm pose as the state input during training. At the beginning of each

episode, we randomly reset the target coordinate and the initial arm pose.

2. Video Demonstrations

2.1. Reach above a Target Point

In reach point.mp4, we demonstrate a video on the task for quantitative evaluation, i.e., controlling the arm to reach above

target points. The video is shown in the first-person view, which is exactly what the vision algorithm takes as input. The

video contains 18 clips, including 14 success cases and 4 failure cases produced by our vision-based robotic arm.

2.2. Move Dices into a Box

In move dices.mp4, we show a video demo for moving a stack of dices into a box. To simplify deployment, we directly

feed the ground-truth locations of the dices as well as the box into the controller, instead of applying another vision-based

module to estimating these variables.

The successful rate of this task is not high, because it requires highly accurate pose control in both horizontal and vertical

directions. We have also provided some interesting failure cases at the end of the video. At the current point, this demo

reveals the potential of our vision-based control system, as well as advocates more advanced vision algorithms to be designed

to improve its performance.

3. Dataset Statistics

Detailed statistics of our datasets are shown in Table 1.

4. Example Images for Domain Adaptation

Finally, we show some images we used in the paper for domain adaptation. Figure 2 shows some close-ups of the images

from different domains. Figure 3 shows sample images generated by the CycleGAN [2] algorithm, including successful and

failure cases. Figure 4 shows some real images generated by background augmentation.

1Only part of these frames are usable. Some of them are introductions or about assembly, etc.



Graphics 

Rendered 

CycleGAN

Generated
Real

Figure 2. Comparison between close-ups of two graphics rendered images, two CycleGAN-generated images, and two real images. The

CycleGAN algorithm is able to learn some fine-scaled features (e.g., screws and wires) from real training images.

Figure 3. Sample images generated by CycleGAN. Each image pair consists of a source image (left) and a stylized image (right). Both

successful cases (top two rows) and failure cases (bottom row) are shown.



Figure 4. Real training samples after background augmentation. On an image captured in the lab environment, we segment the arm with a

pixel-wise color-based filter, and then place it onto a random image from the MS-COCO dataset.

References

[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep reinforcement

learning. In International Conference for Learning Representations, 2016. 2

[2] J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In

International Conference on Computer Vision, 2017. 2


