
Supplementary Material:
Reversible GANs for Memory-efficient Image-to-Image Translation

Tycho F.A. van der Ouderaa
University of Amsterdam

tychovdo@gmail.com

Daniel E. Worrall
University of Amsterdam

d.e.worrall@uva.nl

1. Implementation Details

We provide a Pytorch [9] implementation on Github.
Our code extends the image-to-image translation frame-
work from [13] with several reversible models in 2D and
3D. The reversible blocks are implemented using a modi-
fied version of MemCNN [12].

1.1. Generator architecture

2d Architecture All 2d models adapt network architec-
tures similar to those used in [13] and [4]. The encoders
EncX ,DecY consist of a 7×7 convolutional layer that maps
3 input channels to K channels, followed by two 3 × 3
convolutional layers with stride 2 that spatially downsam-
ple (/4) the signal and increase (×2) the channel dimen-
sion. We also refer to K as the width of our network. As
reversible core C, we use R sequential reversible residual
layers (withR = 6 for 128×128 Cityscapes data andR = 9
for 256 × 256 Maps data). We consider the amount of re-
versible residual layers in the core to be the depth of our
network. The decoders DecX and DecY are build out of
two 3 × 3 fractionally-strided convolutional layers 1, fol-
lowed by a 7 × 7 convolutional layer projecting the final
features to 3 output channels.

We apply reflection padding before every convolution
to avoid spatial downsampling. Each convolutional layer
is followed by an instance normalization layer [11] and a
ReLU nonlinearity, except for the last convolutional layer
which is directly followed by a Tanh non-linearity to scale
the output within [−1, 1], just like the normalized data.

A full schematic version of the 2D architecture can be
found in Figure 1. A diagram of the (identical) NN1 and
NN2 functions used in the 2D reversible block are shown in
Figure 2.

1‘Fractionally-strided convolutional layers’ or ‘transposed convolu-
tions’ are sometimes referred to as ‘deconvolutions’ in literature. To avoid
confusion, especially in the context of invertibility, we follow this [2] guide
on convolutional arithmetic, and only refer to the term ’deconvolution’
when we speak of the mathematical inverse of a convolution, which is
different from the fractionally-strided convolution.

Input Image

7× 7 Conv

3× 3 Conv (stride 2)

3× 3 Conv (stride 2)

2D Reversible Block × R

3× 3 Transposed Conv

3× 3 Transposed Conv

7× 7 Conv

Output Image

3×W ×H

C ×W ×H

2C × 1
2W ×

1
2H

4C × 1
4W ×

1
4H

4C × 1
4W ×

1
4H

2C × 1
2W ×

1
2H

C ×W ×W

3×W ×H

Enc

Core

Dec

+ Instance norm + ReLU

+ Instance norm + ReLU

+ Instance norm + ReLU

(See Figure 2)

+ Instance norm + ReLU

+ Instance norm + ReLU

+ Tanh

Figure 1. 2D Generator Architecture

3× 3 Conv

Instance Normalization

ReLU

+

Cin ×Win ×Hin

Cin ×Win ×Hin

Cin ×Win ×Hin

Cin ×Win ×Hin

NN1

(a) NN1

3× 3 Conv

Instance Normalization

ReLU

+

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

NN2

(b) NN2
Figure 2. Schematic representation of NN1 and NN2 in 2D Re-
versible Residual Block.

1



3d Architecture For the 3-dimensional super-resolution
task (HTC Brains), we consider our input and output to
be equally sized. Therefore, we first up-sample the images
from the low-resolution input domain, before feeding them
to the model. It is known that this method also helps to pre-
vent checkerboard-like artifacts [8]. The first layer in our
model is a 3 × 3 × 3 convolution layer that increases the
channel dimension to K, and is directly followed by an in-
stance normalization layer and a ReLU non-linearity. Then
we apply an arbitrary amount of 3D reversible blocks using
additive coupling, with the following sequence for NN1 and
NN2: a 3 × 3 × 3 convolutional layer, an instance normal-
ization layer, a ReLU non-linearity and another 3 × 3 × 3
convolution. We use reflection padding of 1 to ensure that
the NN1 and NN2 are volume-preserving. Also, we initialize
the reversible blocks perform as the identity mapping, by
initializing the weights of the last convolutional layer in the
reversible block with zeros. This trick has previously shown
to be effective in the context of reversible networks [6].

A full schematic version of the 3D generator can be
found in Figure 3. A diagram illustrating NN1 and NN2 used
in the 3D reversible block is shown in Figure 4.

Input Image

3× 3× 3 Conv

3D Reversible Block × R

1× 1× 1 Conv

Output Image

6× 24× 24

K × 24× 24

K × 24× 24

6× 24× 24

+ Instance norm + ReLU

(See Figure 4)

+ Tanh

Enc

Core

Dec

Figure 3. 3D RevGAN Architecture

3× 3× 3 Conv

Instance Normalization

ReLU

3× 3× 3 Conv (0 init)

+

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

NN1

(a)

3× 3× 3 Conv

Instance Normalization

ReLU

3× 3× 3 Conv (0 init)

+

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

C ′ ×W ′ ×H ′

NN2

(b)
Figure 4. 3D RevGAN Architecture

1.2. Discriminator Architecture

For the discriminator, we adapt the same architecture
as used in [13], also known as PatchGAN. We use subse-
quent 4 × 4 convolutional layers with stride 2 followed by
LeakyReLU (with 0.2 slope) non-linearities. The first layer
projects the input to 64 layers, followed by three layers each
doubling the channel dimension. Finally, we obtain a 1-
dimensional outputs by applying a 1 × 1 convolution fol-
lowed by a Sigmoid. The 3D models use a very similar
architecture and solely replacing the 2D convolutional ker-
nels by equally sized 3D convolutional layers (e.g. 3 × 3
kernels become 3× 3× 3 kernels).

Input Image

2× 2 Conv (stride 2)

2× 2 Conv (stride 2)

2× 2 Conv (stride 2)

2× 2 Conv (stride 2)

1× 1 Conv

Output Image

6×W ×H

K × W
2 ×

H
2

2K × W
4 ×

H
4

4K × W
8 ×

H
8

8K × W
8 − 1× H

8 − 1

1× W
8 − 2× H

8 − 2

+ LeakyReLU (0.2 slope)

+ LeakyReLU (0.2 slope)

+ LeakyReLU (0.2 slope)

+ Sigmoid

Figure 5. 2D PatchGAN Discriminator

1.3. Hyper-parameters

A summary of the used hyper-parameters can be found
in Table 1 below.

Parameter 2D 3D
Data size 3× 128× 128 or

3× 256× 256
6× 24× 24× 24

Weight initialization N (µ = 0, σ = 0.02)
Normalization Instance Norm

Dropout No
Optimizer Adam [5]

Optimizer params β1 = 0.5, β2 = 0.999
Epochs 200 20

Batch size 1
Learning rate 0.002

Learning rate decay
Keep fixed first half of epochs.
Linearly decay to 0 in second half of
epochs.

Table 1. Summary of hyper-parameters

2



Depth Width Params
Naive Memory Saving

Memory Model + Activations Training Time (s / sample) + Activations Training Time (s / sample)
CycleGAN † 32 3.9 M 367.0 ± 0.00 650.0 ± 0.00 0.63 ± 0.02 n/a n/a
Unpaired RevGAN 32 1.3 M 334.8 ± 0.43 682.3 ± 0.43 0.67 ± 0.03 366.53 ± 0.50 0.63 ± 0.02
Unpaired RevGAN † 56 3.9 M 357.8 ± 0.43 1184.5 ± 0.50 0.91 ± 0.02 640.50 ± 0.50 1.03 ± 0.02
Pix2pix † 32 3.9 M 341.0 ± 0.00 163.0 ± 0.00 0.31 ± 0.00 n/a n/a
Paired RevGAN 32 1.3 M 333.5 ± 0.50 341.0 ± 1.00 0.46 ± 0.03 183.0 ± 0.00 0.44 ± 0.02
Paired RevGAN † 56 3.9 M 356.0 ± 0.00 592.0 ± 0.00 0.58 ± 0.02 320.0 ± 0.59 0.59 ± 0.02

Table 2. Measurements of memory usage and computation time while performing the Cityscapes experiments. LEFT Model configurations.
CENTER Memory usage to store model parameters. RIGHT Memory usage to store activations and training time per sample while taking
advantage of the memory-efficiency of reversible residual layers (Memory Saving) and without (Naive). TOP Unpaired models. BOTTOM

Paired models.

Model Width Params
Naive Memory Saving

Memory Model + Activations Training Time (s / sample) + Activations Training Time (s / sample)
CycleGAN † 32 5.7 M 391.0 ± 0.00 800.0 ± 0.00 0.73 ± 0.01 n/a n/a
Unpaired RevGAN 32 1.7 M 337.5 ± 0.50 844.5 ± 0.50 0.82 ± 0.02 338.3 ± 0.49 0.74 ± 0.01
Unpaired RevGAN † 58 5.6 M 371.1 ± 0.69 1540.0 ± 0.52 1.17 ± 0.02 663.7 ± 0.47 1.34 ± 0.02
Unpaired RevGAN 64 6.8 M 404.0 ± 0.00 1687.0 ± 0.00 1.19 ± 0.01 723.0 ± 0.00 1.39 ± 0.01
Pix2pix † 32 5.7 M 353.0 ± 0.00 200.0 ± 0.00 0.37 ± 0.00 n/a n/a
Paired RevGAN 32 1.7 M 336.0 ± 0.00 422.0 ± 0.00 0.54 ± 0.02 183.0 ± 0.00 0.50 ± 0.02
Paired RevGAN † 58 5.6 M 368.0 ± 0.00 770.0 ± 0.00 0.72 ± 0.02 332.0 ± 0.00 0.79 ± 0.01
Paired RevGAN 64 6.8 M 417.0 ± 0.00 830.0 ± 0.00 0.72 ± 0.01 361.0 ± 0.00 0.82 ± 0.01

Table 3. Measurements of memory usage and computation time while performing the Maps experiments. LEFT Model configurations.
CENTER Memory usage to store model parameters. RIGHT Memory usage to store activations and training time per sample while taking
advantage of the memory-efficiency of reversible residual layers (Memory Saving) and without (Naive). TOP Unpaired models. BOTTOM

Paired models.

Model Width Depth Params
Naive Memory Saving

Memory Model + Activations Training Time (s / sample) + Activations Training Time (s / sample)
CycleGAN 32 6 3.9 M 367.0 ± 0.00 650 ± 0.00 0.61 ± 0.02 n/a n/a
CycleGAN † 32 9 5.7 M 391.0 ± 0.00 800 ± 0.00 0.73 ± 0.01 n/a n/a
CycleGAN 32 12 7.5 M 415.7 ± 0.00 950 ± 0.00 0.84 ± 0.02 n/a n/a
CycleGAN 32 18 11.0 M 463.7 ± 0.00 1250 ± 0.00 1.07 ± 0.02 n/a n/a
CycleGAN 32 30 18.1 M 559.0 ± 0.00 1850 ± 0.00 1.51 ± 0.02 n/a n/a
Unpaired RevGAN 58 6 1.2 M 358.78 ± 0.64 1243.28 ± 0.72 0.95 ± 0.03 663.37 ± 0.70 1.10 ± 0.02
Unpaired RevGAN † 58 9 1.7 M 371.19 ± 0.78 1540.11 ± 0.53 1.16 ± 0.02 663.67 ± 0.47 1.35 ± 0.02
Unpaired RevGAN 58 12 2.1 M 382.87 ± 0.77 1837.33 ± 0.47 1.39 ± 0.02 663.50 ± 0.50 1.64 ± 0.02
Unpaired RevGAN 58 18 3.1 M 406.88 ± 0.32 2431.43 ± 0.59 1.83 ± 0.02 663.12 ± 0.32 2.18 ± 0.02
Unpaired RevGAN 58 30 4.8 M 454.69 ± 0.46 3619.00 ± 0.75 2.74 ± 0.03 663.31 ± 0.46 3.27 ± 0.01

Table 4. Measurements of memory usage and computation time while performing the Maps dataset using the CycleGAN and Unpaired
RevGAN model at different depths. LEFT Model configurations. CENTER Memory usage to store activations and training time per sample
while taking advantage of the memory-efficiency of reversible residual layers (Memory Saving) and without (Naive). TOP CycleGAN
models at different depths. BOTTOM Unpaired RevGAN models at different depths.

2. Memory Cost and Training Times

To further evaluate the model performance, we report the
memory cost split out in the cost to store the model param-
eters and the cost to store activations. For the latter, we
measure the memory consumption both using the memory-
efficiency of the reversible residual layers (Memory Sav-
ing), if possible, and without (Naive). For each experiment,
we also report the average training time per sample. In Ta-
ble 2, the memory costs and training time for the Cityscapes
experiments are shown. In Table 3, the memory costs and
training time for the experiments on the Maps dataset can
be found. In Table 4, the memory cost and training time
for CycleGAN and Unpaired RevGAN models at different
depths are given.

The measurements in Table 2, Table 3 and Table 4 were
obtained by training models on a NVIDIA K40m GPU us-
ing a warm-up period of 100 training samples after which

the GPU memory usage was measured over the next 100
samples by querying the nvidia-smi toolkit. We report
means and standard deviations.

3



3. Negative Results
• We tried to replace additive coupling with affine cou-

pling, which has been applied succesfully in the con-
text of reversible networks by [6]. In theory, affine
coupling layers are more general and more expres-
sive than additive coupling. We found, however, that
affine coupling degraded performance and made train-
ing more unstable. Nevertheless, it would be interest-
ing to see whether affine coupling outperforms additive
coupling combined with other architectures or hyper-
parameters.

• We tried to replace the down-sampling and up-
sampling layers with sub-pixel convolutions [10] in
our 2D and 3D models, which have also been applied
succesfully in the context of invertible architectures
[3], but found that it degraded performance. Sub-pixel
convolutions were originally proposed to save memory
in super-resolution problems by applying convolutions
in lower-dimensional space rather than in the higher-
dimensional target space. The RevGAN model, on the
other hand, saves memory by not having to store the
activations of the reversible layers.

• We tried to replace the transposed convolutions used
for up-sampling in our model with nearest-neighbour
and bilinear upsampling to prevent checkerboard-like
aftifacts as explained in [8], but found that it de-
graded performance. Furthermore, we observed that
the checkerboard appeared in early training stages, but
that they disappeared after a sufficient amount of train-
ing iterations.

• We tried Consensus Optimization [7] to stabilize train-
ing by encouraging agreement between the discrim-
inators and the generators. Consensus optimization
boils down to regularization term over the second-
order derivative over our gradients, which is a compu-
tationally intensive task. We stopped using it because
it slowed down training too much.

• We found that the invertible core can be replaced with
a continuous-depth residual networks introduced in [1]
of which the forward and inverse pass are trained using
an ordinary differential equation (ODE) solver. Due to
time constraints, we were not able to evaluate the per-
formance of this method. Some benefits of the method
are constant O(1) memory cost as a function of depth
(similar to reversible layers) and explicit control over
the numerical error. In future work we plan to explore
the use of neural ordinary (or even stochastic) differen-
tial equations in the context of image-to-image trans-
lation.

References
[1] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duve-

naud. Neural ordinary differential equations. arXiv preprint
arXiv:1806.07366, 2018.

[2] V. Dumoulin and F. Visin. A guide to convolution arithmetic
for deep learning. arXiv preprint arXiv:1603.07285, 2016.

[3] J.-H. Jacobsen, A. Smeulders, and E. Oyallon. i-revnet:
Deep invertible networks. arXiv preprint arXiv:1802.07088,
2018.

[4] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European
Conference on Computer Vision, pages 694–711. Springer,
2016.

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[6] D. P. Kingma and P. Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. arXiv preprint
arXiv:1807.03039, 2018.

[7] L. Mescheder, S. Nowozin, and A. Geiger. The numerics
of gans. In Advances in Neural Information Processing Sys-
tems, pages 1825–1835, 2017.

[8] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and
checkerboard artifacts. Distill, 2016.

[9] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. NIPS 2017 Workshop, 2017.

[10] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,
R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-
age and video super-resolution using an efficient sub-pixel
convolutional neural network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1874–1883, 2016.

[11] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance nor-
malization: the missing ingredient for fast stylization. corr
abs/1607.0 (2016).

[12] S. C. van de Leemput, J. Teuwen, and R. Manniesing. Mem-
cnn: a framework for developing memory efficient deep in-
vertible networks. ICLR 2018 Workshop, 2018.

[13] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. arXiv preprint, 2017.

4



Input CycleGAN Unpaired RevGAN (ours) Pix2pix Paired RevGAN (ours) Ground-truth

Figure 6. Additional image mappings for photo→label on the Cityscapes test set.

Input CycleGAN Unpaired RevGAN (ours) Pix2pix Paired RevGAN (ours) Ground-truth

Figure 7. Additional image mappings for label→photo on the Cityscapes test set.

5



Input CycleGAN Unpaired RevGAN (ours) Pix2pix Paired RevGAN (ours) Ground-truth

Figure 8. Additional image mappings for satellite→maps on Maps test set.

6



Input CycleGAN Unpaired RevGAN (ours) Pix2pix Paired RevGAN (ours) Ground-truth

Figure 9. Additional image mappings for maps→satellite on Maps test set.

7


