Image Processing Using Multi-Code GAN Prior

Jinjin Gu, Yujun Shen, Bolei Zhou; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 3012-3021


Despite the success of Generative Adversarial Networks (GANs) in image synthesis, applying trained GAN models to real image processing remains challenging. Previous methods typically invert a target image back to the latent space either by back-propagation or by learning an additional encoder. However, the reconstructions from both of the methods are far from ideal. In this work, we propose a novel approach, called mGANprior, to incorporate the well-trained GANs as effective prior to a variety of image processing tasks. In particular, we employ multiple latent codes to generate multiple feature maps at some intermediate layer of the generator, then compose them with adaptive channel importance to recover the input image. Such an over-parameterization of the latent space significantly improves the image reconstruction quality, outperforming existing competitors. The resulting high-fidelity image reconstruction enables the trained GAN models as prior to many real-world applications, such as image colorization, super-resolution, image inpainting, and semantic manipulation. We further analyze the properties of the layer-wise representation learned by GAN models and shed light on what knowledge each layer is capable of representing.

Related Material

[pdf] [arXiv]
author = {Gu, Jinjin and Shen, Yujun and Zhou, Bolei},
title = {Image Processing Using Multi-Code GAN Prior},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}