Multi-Modal Domain Adaptation for Fine-Grained Action Recognition

Jonathan Munro, Dima Damen; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 122-132

Abstract


Fine-grained action recognition datasets exhibit environmental bias, where multiple video sequences are captured from a limited number of environments. Training a model in one environment and deploying in another results in a drop in performance due to an unavoidable domain shift. Unsupervised Domain Adaptation (UDA) approaches have frequently utilised adversarial training between the source and target domains. However, these approaches have not explored the multi-modal nature of video within each domain. In this work we exploit the correspondence of modalities as a self-supervised alignment approach for UDA in addition to adversarial alignment (Fig. 1). We test our approach on three kitchens from the large-scale EPIC-Kitchens dataset, using two modalities commonly employed for action recognition: RGB and Optical Flow. We show that multi-modal self-supervision alone improves the performance over source-only training by 2.4% on average. We then combine adversarial training with multi-modal self-supervision, showing that our approach outperforms other UDA methods by 3%.

Related Material


[pdf]
[bibtex]
@InProceedings{Munro_2020_CVPR,
author = {Munro, Jonathan and Damen, Dima},
title = {Multi-Modal Domain Adaptation for Fine-Grained Action Recognition},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}