View-GCN: View-Based Graph Convolutional Network for 3D Shape Analysis

Xin Wei, Ruixuan Yu, Jian Sun; The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 1850-1859

Abstract


View-based approach that recognizes 3D shape through its projected 2D images has achieved state-of-the-art results for 3D shape recognition. The major challenge for view-based approach is how to aggregate multi-view features to be a global shape descriptor. In this work, we propose a novel view-based Graph Convolutional Neural Network, dubbed as view-GCN, to recognize 3D shape based on graph representation of multiple views in flexible view configurations. We first construct view-graph with multiple views as graph nodes, then design a graph convolutional neural network over view-graph to hierarchically learn discriminative shape descriptor considering relations of multiple views. The view-GCN is a hierarchical network based on local and non-local graph convolution for feature transform, and selective view-sampling for graph coarsening. Extensive experiments on benchmark datasets show that view-GCN achieves state-of-the-art results for 3D shape classification and retrieval.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Wei_2020_CVPR,
author = {Wei, Xin and Yu, Ruixuan and Sun, Jian},
title = {View-GCN: View-Based Graph Convolutional Network for 3D Shape Analysis},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}