Cogradient Descent for Bilinear Optimization
Li'an Zhuo, Baochang Zhang, Linlin Yang, Hanlin Chen, Qixiang Ye, David Doermann, Rongrong Ji, Guodong Guo; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 7959-7967
Abstract
Conventional learning methods simplify the bilinear model by regarding two intrinsically coupled factors independently, which degrades the optimization procedure. One reason lies in the insufficient training due to the asynchronous gradient descent, which results in vanishing gradients for the coupled variables. In this paper, we introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem, based on a theoretical framework to coordinate the gradient of hidden variables via a projection function. We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent to facilitate the optimization procedure. Our algorithm is applied to solve problems with one variable under the sparsity constraint, which is widely used in the learning paradigm. We validate our CoGD considering an extensive set of applications including image reconstruction, inpainting, and network pruning. Experiments show that it improves the state-of-the-art by a significant margin.
Related Material
[pdf]
[arXiv]
[
bibtex]
@InProceedings{Zhuo_2020_CVPR,
author = {Zhuo, Li'an and Zhang, Baochang and Yang, Linlin and Chen, Hanlin and Ye, Qixiang and Doermann, David and Ji, Rongrong and Guo, Guodong},
title = {Cogradient Descent for Bilinear Optimization},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}