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Abstract

Convolutional Neural Networks experience catastrophic

forgetting when optimized on a sequence of learning prob-

lems: as they meet the objective of the current training ex-

amples, their performance on previous tasks drops drasti-

cally. In this work, we introduce a novel framework to tackle

this problem with conditional computation. We equip each

convolutional layer with task-specific gating modules, se-

lecting which filters to apply on the given input. This way,

we achieve two appealing properties. Firstly, the execution

patterns of the gates allow to identify and protect important

filters, ensuring no loss in the performance of the model for

previously learned tasks. Secondly, by using a sparsity ob-

jective, we can promote the selection of a limited set of ker-

nels, allowing to retain sufficient model capacity to digest

new tasks. Existing solutions require, at test time, aware-

ness of the task to which each example belongs to. This

knowledge, however, may not be available in many practi-

cal scenarios. Therefore, we additionally introduce a task

classifier that predicts the task label of each example, to

deal with settings in which a task oracle is not available. We

validate our proposal on four continual learning datasets.

Results show that our model consistently outperforms exist-

ing methods both in the presence and the absence of a task

oracle. Notably, on Split SVHN and Imagenet-50 datasets,

our model yields up to 23.98% and 17.42% improvement in

accuracy w.r.t. competing methods.

1. Introduction

Machine learning and deep learning models are typically

trained offline, by sampling examples independently from

the distribution they are expected to deal with at test time.

However, when trained online in real-world settings, mod-

els may encounter multiple tasks as a sequential stream of
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activities, without having any knowledge about their re-

lationship or duration in time. Such challenges typically

arise in robotics [2], reinforcement learning [29], vision sys-

tems [26] and many more (cf. Chapter 4 in [7]). In such sce-

narios, deep learning models suffer from catastrophic for-

getting [23, 9], meaning they discard previously acquired

knowledge to fit the current observations. The underlying

reason is that, while learning the new task, models over-

write the parameters that were critical for previous tasks.

Continual learning research (also called lifelong or incre-

mental learning) tackles the above mentioned issues [7].

The typical setting considered in the literature is that of a

model learning disjoint classification problems one-by-one.

Depending on the application requirements, the task for

which the current input should be analyzed may or may not

be known. The majority of the methods in the literature as-

sume that the label of the task is provided during inference.

Such a continual learning setting is generally referred to as

task-incremental. In many real-world applications, such as

classification and anomaly detection systems, a model can

seamlessly instantiate a new task whenever novel classes

emerge from the training stream. However, once deployed

in the wild, it has to process inputs without knowing in

which training task similar observations were encountered.

Such a setting, in which task labels are available only dur-

ing training, is known as class-incremental [35]. Existing

methods employ different strategies to mitigate catastrophic

forgetting, such as memory buffers [27, 18], knowledge dis-

tillation [17], synaptic consolidation [14] and parameters

masking [21, 32]. However, recent evidence has shown that

existing solutions fail, even for simple datasets, whenever

task labels are not available at test time [35].

This paper introduces a solution based on conditional-

computing to tackle both task-incremental and class-

incremental learning problems. Specifically, our framework

relies on separate task-specific classification heads (multi-

head architecture), and it employs channel-gating [6, 3] in

every layer of the (shared) feature extractor. To this aim, we

introduce task-dedicated gating modules that dynamically

select which filters to apply conditioned on the input feature
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map. Along with a sparsity objective encouraging the use

of fewer units, this strategy enables per-sample model selec-

tion and can be easily queried for information about which

weights are essential for the current task. Those weights

are frozen when learning new tasks, but gating modules can

dynamically select to either use or discard them. Contrarily,

units that are never used by previous tasks are reinitialized

and made available for acquiring novel concepts. This pro-

cedure prevents any forgetting of past tasks and allows con-

siderable computational savings in the forward propagation.

Moreover, we obviate the need for a task label during infer-

ence by introducing a task classifier selecting which classi-

fication head should be queried for the class prediction. We

train the task classifier alongside the classification heads un-

der the same incremental learning constraints. To mitigate

forgetting on the task classification side, we rely on exam-

ple replay from either episodic or generative memories. In

both cases, we show the benefits of performing rehearsal

at a task-level, as opposed to previous replay methods that

operate at a class-level [27, 5]. To the best of our knowl-

edge, this is the first work that carries out supervised task

prediction in a class-incremental learning setting.

We perform extensive experiments on four datasets of in-

creasing difficulty, both in the presence and absence of a

task oracle at test time. Our results show that, whenever

task labels are available, our model effectively prevents the

forgetting problem, and performs similarly to or better than

state-of-the-art solutions. In the task agnostic setting, we

consistently outperform competing methods.

2. Related work

Continual learning. Catastrophic forgetting has been a

well-known problem of neural networks [23]. Early ap-

proaches to alleviate the issue involved orthogonal repre-

sentation learning and replay of prior samples [9]. The re-

cent advent in deep learning has led to the widespread use

of deep neural networks in the continual learning field. First

attempts, such as Progressive Neural Networks [30] tackle

the forgetting problem by introducing a new set of parame-

ters for each new task at the expense of limited scalability.

Another popular solution is to apply knowledge distillation

by using the past parametrizations of the model as a refer-

ence when learning new tasks [17].

Consolidation approaches emerged recently with the focus

of identifying the weights that are critically important for

prior tasks and preventing significant updates to them dur-

ing the learning of new tasks. The relevance/importance

estimation for each parameter can be carried out through

the Fisher Information Matrix [14], the path integral of loss

gradients [39], gradient magnitude [1] and a posteriori un-

certainty estimation in a Bayesian Neural Network [25].

Other popular consolidation strategies rely on the estima-

tion of binary masks that directly map each task to the set of

parameters responsible for it. Such masks can be estimated

either by random assignment [22], pruning [21] or gradient

descent [20, 32]. However, existing mask-based approaches

can only operate in the presence of an oracle providing the

task label. Our work is akin to the above-mentioned mod-

els, with two fundamental differences: i) our binary masks

(gates) are dynamically generated and depend on the net-

work input, and ii) we promote mask-based approaches to

class-incremental learning settings, by relying on a novel

architecture comprising a task classifier.

Several models allow access to a finite-capacity memory

buffer (episodic memory), holding examples from prior

tasks. A popular approach is iCaRL [27], which computes

class prototypes as the mean feature representation of

stored memories, and classifies test examples in a nearest-

neighbor fashion. Alternatively, other approaches intervene

in the training algorithm, proposing to adjust the gradient

computed on the current batch towards an update direc-

tion that guarantees non-destructive effects on the stored

examples [18, 5, 28]. Such an objective can imply the

formalization of constrained optimization problems [18, 5]

or the employment of meta-learning algorithms [28].

Differently, generative memories do not rely on the replay

of any real example whatsoever, in favor of generative

models from which fake examples of past tasks can be

efficiently sampled [34, 38, 26]. In this work, we also rely

on either episodic or generative memories to deal with the

class-incremental learning setting. However, we carry out

replay only to prevent forgetting of the task predictor, thus

avoiding to update task-specific classification heads.

Conditional computation. Conditional computation

research focuses on deep neural networks that adapt their

architecture to the given input. Although the first work

has been applied to language modeling [33], several works

applied such concept to computer vision problems. In this

respect, prior works employ binary gates deciding whether

a computational block has to be executed or skipped. Such

gates may either drop entire residual blocks [36, 37] or

specific units within a layer [6, 3]. In our work, we rely

on the latter strategy, learning a set of task-specific gating

modules selecting which kernels to apply on the given

input. To our knowledge, this is the first application of

data-dependent channel-gating in continual learning.

3. Model

3.1. Problem setting and objective

We are given a parametric model, i.e., a neural network,

called a backbone or learner network, which is exposed to

a sequence of N tasks to be learned, T = {T1, . . . , TN}.

Each task Ti takes the form of a classification problem, Ti =
{xj , yj}

ni

j=1, where xj ∈ R
m and yj ∈ {1, . . . , Ci}.
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A task-incremental setting requires to optimize:

max
θ

Et∼T

[

E(x,y)∼Tt
[log pθ(y|x, t)]

]

, (1)

where θ identifies the parametrization of the learner net-

work, and x, y and t are random variables associated with

the observation, the label and the task of each example, re-

spectively. Such a maximization problem is subject to the

continual learning constraints: as the model observes tasks

sequentially, the outer expectation in Eq. 1 is troublesome

to compute or approximate. Notably, this setting requires

the assumption that the identity of the task each example

belongs to is known at both training and test stages. Such

information can be exploited in practice to isolate relevant

output units of the classifier, preventing the competition be-

tween classes belonging to different tasks through the same

softmax layer (multi-head).

Class-incremental models solve the following optimization:

max
θ

Et∼T

[

E(x,y)∼Tt
[log pθ(y|x)]

]

. (2)

Here, the absence of task conditioning prevents any form of

task-aware reasoning in the model. This setting requires to

merge the output units into a single classifier (single-head)

in which classes from different tasks compete with each

other, often resulting in more severe forgetting [35].

Although the model could learn based on task information,

this information is not available during inference.

To deal with observations from unknown tasks, while re-

taining advantages of multi-head settings, we will jointly

optimize for class as well as task prediction, as follows:

max
θ

Et∼T

[

E(x,y)∼Tt
[log pθ(y, t|x)]

]

=

Et∼T

[

E(x,y)∼Tt
[log pθ(y|x, t) + log pθ(t|x)]

]

.
(3)

Eq. 3 describes a twofold objective. On the one hand, the

term log p(y|x, t) is responsible for the class classification

given the task, and resembles the multi-head objective in

Eq. 1. On the other hand, the term log p(t|x) aims at pre-

dicting the task from the observation. This prediction re-

lies on a task classifier, which is trained incrementally in a

single-head fashion. Notably, the objective in Eq. 3 shifts

the single-head complexities from a class prediction to a

task prediction level, with the following benefits:

• given the task label, there is no drop in class prediction

accuracy;

• classes from different tasks never compete with each

other, neither during training nor during test;

• the challenging single-head prediction step is shifted

from class to task level; as tasks and classes form a

two-level hierarchy, the prediction of the former is ar-

guably easier (as it acts at a coarser semantic level).
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Figure 1: The proposed gating scheme for a convolution

layer. Depending on the input feature map, the gating mod-

ule Gl
t decides which kernels should be used.

3.2. Multi­head learning of class labels

In this section, we introduce the conditional computation

model we used in our work. Fig. 1 illustrates the gating

mechanism used in our framework. We limit the discus-

sion of the gating mechanism to the case of convolutional

layers, as it also applies to other parametrized mappings

such as fully connected layers or residual blocks. Consider

hl ∈ R
cl
in

,h,w and hl+1 ∈ R
cl
out

,h′,w′

to be the input and

output feature maps of the l-th convolutional layer respec-

tively. Instead of hl+1, we will forward to the following

layer a sparse feature map ĥl+1, obtained by pruning unin-

formative channels. During the training of task t, the deci-

sion regarding which channels have to be activated is dele-

gated to a gating module Gl
t, that is conditioned on the input

feature map hl:

ĥl+1 = Gl
t(h

l)⊙ hl+1, (4)

where Gl
t(h

l) = [gl1, . . . , g
l
cl
out

], gli ∈ {0, 1}, and ⊙ refers

to channel-wise multiplication. To be compliant with the in-

cremental setting, we instantiate a new gating module each

time the model observes examples from a new task. How-

ever, each module is designed as a light-weight network

with negligible computation costs and number of parame-

ters. Specifically, each gating module comprises a Multi-

Layer Perceptron (MLP) with a single hidden layer featur-

ing 16 units, followed by a batch normalization layer [12]

and a ReLU activation. A final linear map provides log-

probabilities for each output channel of the convolution.

Back-propagating gradients through the gates is challeng-

ing, as non-differentiable thresholds are employed to take

binary on/off decisions. Therefore, we rely on the Gumbel-

Softmax sampling [13, 19], and get a biased estimate of the

gradient utilizing the straight-through estimator [4]. Specif-
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Figure 2: Illustration of the task prediction mechanism for a generic backbone architecture. First (block ‘a’), the l-th convo-

lutional layer is fed with multiple gated feature maps, each of which is relevant for a specific task. Every feature map is then

convolved with kernels selected by the corresponding gating module Gl
x, and forwarded to the next module. At the end of

the network the task classifier (block ‘b’) takes as input candidate feature maps and decides which task to solve.

ically, we employ the hard threshold in the forward pass

(zero-centered) and the sigmoid function in the backward

pass (with temperature τ = 2/3).

Moreover, we penalize the number of active convolutional

kernels with the sparsity objective:

Lsparse = E(x,y)∼Tt

[

λs

L

L
∑

l=1

‖Gl
t(h

l)‖1
clout

]

, (5)

where L is the total number of gated layers, and λs is a

coefficient controlling the level of sparsity. The sparsity ob-

jective instructs each gating module to select a minimal set

of kernels, allowing us to conserve filters for the optimiza-

tion of future tasks. Moreover, it allows us to effectively

adapt the capacity of the allocated network depending on

the difficulty of the task and the observation at hand. Such

a data-driven model selection contrasts with other continual

learning strategies that employ fixed ratios for model grow-

ing [30] or weight pruning [21].

At the end of the optimization for task t, we compute a rel-

evance score rlk for each unit in the l-th layer by estimating

the firing probability of their gates on a validation set T val
t :

rl,tk = E(x,y)∼Tval

t

[p(I[glk = 1])], (6)

where I[·] is an indicator function, and p(·) denotes a prob-

ability distribution. By thresholding such scores, we obtain

two sets of kernels. On the one hand, we freeze relevant

kernels for the task t, so that they will be available but not

updatable during future tasks. On the other hand, we re-

initialize non-relevant kernels, and leave them learnable by

subsequent tasks. In all our experiments, we use a threshold

equal to 0, which prevents any forgetting at the expense of

a reduced model capacity left for future tasks.

Note that within this framework, it is trivial to monitor the

number of learnable units left in each layer. As such, if the

capacity of the backbone model saturates, we can quickly

grow the network to digest new tasks. However, because the

gating modules of new tasks can dynamically choose to use

previously learned filters (if relevant for their input), learn-

ing of new tasks generally requires less learnable units. In

practice, we never experienced the saturation of the back-

bone model for learning new tasks. Apart from that, be-

cause of our conditional channel-gated network design, in-

creasing the model capacity for future tasks will have mini-

mal effects on the computation cost at inference, as reported

by the analysis in Sec. 4.5.

3.3. Single­head learning of task labels

The gating scheme presented in Sec. 3.2 allows the imme-

diate identification of important kernels for each past task.

However, it cannot be applied in the task-agnostic setting as

is, since it requires the knowledge about which gating mod-

ule Gl
x has to be applied for layer l, where x ∈ {1, . . . , t}

represents the unknown task. Our solution is to employ

all gating modules [Gl
1, . . . , G

l
t], and to propagate all gated

layer outputs [ĥl+1
1 , . . . , ĥl+1

t ] forward. In turn, the follow-

ing layer l+1 receives the list of gated outputs from layer l,
applies its gating modules [Gl+1

1 , . . . , Gl+1
t ] and yields the

list of outputs [ĥl+2
1 , . . . , ĥl+2

t ]. This mechanism generates

parallel streams of computation in the network, sharing the

same layers but selecting different sets of units to activate

for each of them (Fig. 2). Despite the fact that the num-

ber of parallel streams grows with the number of tasks, we

found our solution to be computationally cheaper than the

backbone network (see Sec. 4.5). This is because of the gat-
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ing modules which select a limited number of convolutional

filters in each stream.

After the last convolutional layer, indexed by L, we are

given a list of t candidate feature maps [ĥL+1
1 , . . . , ĥL+1

t ]
and as many classification heads. The task classifier is fed

with a concatenation of all feature maps:

h =

t
⊕

i=1

[µ(ĥL+1
i )], (7)

where µ denotes the global average pooling operator over

the spatial dimensions and
⊕

describes the concatenation

along the feature axis. The architecture of the task classifier

is based on a shallow MLP with one hidden layer featuring

64 ReLU units, followed by a softmax layer predicting the

task label. We use the standard cross-entropy objective to

train the task classifier. Optimization is carried out jointly

with the learning of class labels at task t. Thus, the network

not only learns features to discriminate the classes inside

task t, but also to allow easier discrimination of input data

from task t against all prior tasks.

The single-head task classifier is exposed to catastrophic

forgetting. Recent papers have shown that replay-based

strategies represent the most effective continual learning

strategy in single-head settings [35]. Therefore, we choose

to ameliorate the problem by rehearsal. In particular, we

consider the following approaches.

Episodic memory. A small subset of examples from

prior tasks is used to rehearse the task classifier. During the

training of task t, the buffer holds C random examples from

past tasks 1, . . . , t − 1 (where C denotes a fixed capacity).

Examples from the buffer and the current batch (from task

t) are re-sampled so that the distribution of task labels in

the rehearsal batch is uniform. At the end of task t, the

data in the buffer is subsampled so that each past task holds

m = C/t examples. Finally, m random examples from

task t are selected for storage.

Generative memory. A generative model is employed

for sampling fake data from prior tasks. Specifically,

we utilize Wasserstein GANs with Gradient Penalty

(WGAN-GP [10]). To overcome forgetting in the sampling

procedure, we use multiple generators, each of which

models the distribution of examples of a specific task.

In both cases, replay is only employed for rehearsing

the task classifier and not the classification heads. To

summarize, the complete objective of our model includes:

the cross-entropy at a class level (pθ(y|x, t) in Eq. 3), the

cross-entropy at a task level (pθ(t|x) in Eq. 3) and the

sparsity term (Lsparse in Eq. 5).

4. Experiments

4.1. Datasets and backbone architectures

We experiment with the following datasets:

• Split MNIST: the MNIST handwritten classification

benchmark [16] is split into 5 subsets of consecutive

classes. This results into 5 binary classification tasks

that are observed sequentially.

• Split SVHN: the same protocol applied as in Split

MNIST, but employing the SVHN dataset [24].

• Split CIFAR-10: the same protocol applied as in Split

MNIST, but employing the CIFAR-10 dataset [15].

• Imagenet-50 [26]: a subset of the iILSVRC-2012

dataset [8] containing 50 randomly sampled classes

and 1300 images per category, split into 5 consecutive

10-way classification problems. Images are resized to

a resolution of 32x32 pixels.

As for the backbone models, for the MNIST and SVHN

benchmarks, we employ a three-layer CNN with 100 fil-

ters per layer and ReLU activations (SimpleCNN in what

follows). All convolutions except for the last one are fol-

lowed by a 2x2 max-pooling layer. Gating is applied af-

ter the pooling layer. A final global average pooling fol-

lowed by a linear classifier yields class predictions. For

the CIFAR-10 and Imagenet-50 benchmarks we employed

a ResNet-18 [11] model as backbone. The gated version of

a ResNet basic block is represented in Fig. 3. As illustrated,

two independent sets of gates are applied after the first con-

volution and after the residual connection, respectively.

All models were trained with SGD with momentum un-

til convergence. After each task, model selection is per-

formed for all models by monitoring the corresponding ob-

jective on a held-out set of examples from the current task

(i.e., we don’t rely on examples of past tasks for validation

purposes). We apply the sparsity objective introduced in

Sec. 3.2 only after a predetermined number of epochs, to

provide the model the possibility to learn meaningful ker-

nels before starting pruning the uninformative ones. We

refer to the supplementary material for further implemen-

tation details.
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Figure 3: The gating scheme applied to ResNet-18 blocks.

Gating on the shortcut is only applied when downsampling.
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Split MNIST Split SVHN Split CIFAR-10

T1 T2 T3 T4 T5 avg T1 T2 T3 T4 T5 avg T1 T2 T3 T4 T5 avg

Joint (UB) 0.999 0.999 0.999 1.000 0.995 0.999 0.983 0.972 0.982 0.983 0.941 0.972 0.996 0.964 0.979 0.995 0.983 0.983

EWC-On 0.971 0.994 0.934 0.982 0.932 0.963 0.906 0.966 0.967 0.965 0.889 0.938 0.758 0.804 0.803 0.952 0.960 0.855

LwF 0.998 0.979 0.997 0.999 0.985 0.992 0.974 0.928 0.863 0.832 0.513 0.822 0.948 0.873 0.671 0.505 0.514 0.702

HAT 0.999 0.996 0.999 0.998 0.990 0.997 0.971 0.967 0.970 0.976 0.924 0.962 0.988 0.911 0.953 0.985 0.977 0.963

ours 1.00 0.994 1.00 0.999 0.993 0.997 0.978 0.972 0.983 0.988 0.946 0.974 0.994 0.917 0.950 0.983 0.978 0.964

Table 1: Task-incremental results. For each method, we report the final accuracy on all task after incremental training.

4.2. Task­incremental setting

In the task-incremental setting, an oracle can be queried for

task labels during test time. Therefore, we don’t rely on the

task classifier, exploiting ground-truth task labels to select

which gating modules and classification head should be ac-

tive. This section validates the suitability of the proposed

data-dependent gating scheme for continual learning. We

compare our model against several competing methods:

– Joint: the backbone model trained jointly on all tasks

while having access to the entire dataset. We consid-

ered its performance as the upper bound.

– Ewc-On [31]: the online version of Elastic Weight

Consolidation, relying on the latest MAP estimate of

the parameters and a running sum of Fisher matrices.

– LwF [17]: an approach in which the task loss is regu-

larized by a distillation objective, employing the initial

state of the model on the current task as a teacher.

– HAT [32]: a mask-based model conditioning the active

units in the network on the task label. Despite being

the most similar approach to our method, it can only

be applied in task-incremental settings.

Tab. 1 reports the comparison between methods, in terms of

accuracy on all tasks after the whole training procedure.

Despite performing very similarily for MNIST, the gap in

the consolidation capability of different models emerges as

the dataset grows more and more challenging. It is worth

mentioning several recurring patterns. First, LwF struggles

when the number of tasks grows larger than two. Although

its distillation objective is an excellent regularizer against

forgetting, it does not allow enough flexibility to the model

to acquire new knowledge. Consequently, its accuracy on

the most recent task gradually decreases during sequential

learning, whereas the performance on the first task is kept

very high. Moreover, results highlight the suitability of

gating-based schemes (HAT and ours) with respect to other

consolidation strategies such as EWC Online. Whereas the

former ones prevent any update of relevant parameters, the

latter approach only penalizes updating them, eventually in-

curring a significant degree of forgetting. Finally, the table

shows that our model either performs on-par or outperforms

HAT on all datasets, suggesting the beneficial effect of our

data-dependent gating scheme and sparsity objective.

4.3. Class­incremental with episodic memory

Next, we move to a class-incremental setting in which no

awareness of task labels is available at test time, signif-

icantly increasing the difficulty of the continual learning

problem. In this section, we set up an experiment for which

the storage of a limited amount of examples (buffer) is al-

lowed. We compare against:

– Full replay: upper bound performance given by replay

to the network of an unlimited number of examples.

– iCaRL [27] an approach based on a nearest-neighbor

classifier exploiting examples in the buffer. We report

the performances both with the original buffer-filling

strategy (iCaRL-mean) and with the randomized algo-

rithm used for our model (iCaRL-rand);

– A-GEM [5]: a buffer-based method correcting param-

eter updates on the current task so that they don’t con-

tradict the gradient computed on the stored examples.

Results are summarized in Fig. 4, illustrating the final av-

erage accuracy on all tasks at different buffer sizes for

the class-incremental Split-MNIST and Split-SVHN bench-

marks. The figure highlights several findings. Surprisingly,

A-GEM yields a very low performance on MNIST, while

providing higher results on SVHN. Further examination on

the former dataset revealed that it consistently reaches com-

petitive accuracy on the most recent task, while mostly for-

getting the prior ones. The performance of iCaRL, on the

other hand, does not seem to be significantly affected by

changing its buffer filling strategy. Moreover, its accuracy

seems not to scale with the number of stored examples.

In contrast to these methods, our model primarily utilizes

the few stored examples for the rehearsal of coarse-grained

task prediction, while retaining the accuracy of fine-grained

class prediction. As shown in Fig. 4, our approach con-

sistently outperforms competing approaches in the class-

incremental setting with episodic memory.

4.4. Class­incremental with generative memory

Next, we experiment with a class-incremental setting in

which no examples are allowed to be stored whatsoever. A

popular strategy in this framework is to employ generative

models to approximate the distribution of prior tasks and
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Figure 4: Final mean accuracy on all tasks when an episodic

memory is employed, as a function of the buffer capacity.

rehearse the backbone network by sampling fake observa-

tions from them. Among these, DGM [26] is the state-of-

the-art approach, which proposes a class-conditional GAN

architecture paired with a hard attention mechanism simi-

lar to the one of HAT [32]. Fake examples from the GAN

generator are replayed to the discriminator, which includes

an auxiliary classifier providing a class prediction. As for

our model, as mentioned in Sec. 3.3, we rely on multiple

task-specific generators. For a detailed discussion of the

architecture of the employed WGANs, we refer the reader

to the supplementary material. Tab. 2 compares the results

of DGM and our model for the class-incremental setting

with generative memory. Once again, our method of ex-

ploiting rehearsal for only the task classifier proves bene-

ficial. DGM performs particularly well on Split MNIST,

where hallucinated examples are almost indistinguishable

from real examples. On the contrary, results suggest that

class-conditional rehearsal becomes potentially unreward-

ing as the complexity of the modeled distribution increases,

and the visual quality of generated samples degrades.

4.5. Model analysis

Episodic vs. generative memory. To understand which

rehearsal strategy has to be preferred when dealing with

class-incremental learning problems, we raise the following

question: What is more beneficial between a limited

amount of real examples and a (potentially) unlimited

amount of generated examples? To shed light on this

matter, we report our models’ performances on Split SVHN

and Split CIFAR-10 as a function of memory budget.

Specifically, we compute the memory consumption of

episodic memories as the cumulative size of the stored

examples. As for generative memories, we consider the

number of bytes needed to store their parameters (in

single-precision floating-point format), discarding the

corresponding discriminators as well as inner activations

generated in the sampling process. Fig. 5 presents the

result of the analysis. As can be seen, the variant of our

model relying on memory buffers consistently outperforms

its counterpart relying on generative modeling. In the case

of CIFAR-10, the generative replay yields an accuracy

MNIST SVHN CIFAR-10 Imagenet-50

DGMw [26] 0.9646 0.7438 0.5621 0.1782

DGMa [26] 0.9792 0.6689 0.5175 0.1516

ours 0.9727 0.8341 0.7006 0.3524

Table 2: Class-incremental continual learning results, when

replayed examples are provided by a generative model.

comparable with an episodic memory of ≈ 1.5 MBs,

which is more than 20 times smaller than its generators.

The gap between the two strategies shrinks on SVHN, due

to the simpler image content resulting in better samples

from the generators. Finally, our method, when based on

memory buffers, outperforms the DGMw model [26] on

Split-SVHN, albeit requiring 3.6 times less memory.

Gate analysis. We provide a qualitative analysis of

the activation of gates across different tasks in Fig. 6.

Specifically, we use the validation sets of Split MNIST and

Imagenet-50 to compute the probability of each gate to be

triggered by images from different tasks1. The analysis

of the figure suggests two pieces of evidence: First, as

more tasks are observed, previously learned features are

re-used. This pattern shows that the model does not fall

into degenerate solutions, e.g., by completely isolating

tasks into different sub-networks. On the contrary, our

model profitably exploits pieces of knowledge acquired

from previous tasks for the optimization of the future ones.

Moreover, a significant number of gates never fire, suggest-

ing that a considerable portion of the backbone capacity

is available for learning even more tasks. Additionally,

we showcase how images from different tasks activating

the same filters show some resemblance in low-level or

semantic features (see the caption for details).

1we report such probabilities for specific layers: layer 1 for Split

MNIST (Simple CNN), block 5 for Imagenet-50 (ResNet-18).
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Figure 5: Accuracy as a function of replay memory budget.
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Figure 6: Illustration of the gate execution patterns for continually trained models on MNIST (left) and Imagenet-50 (right)

datasets. The histograms in the top left and top right show the firing probability of gates in the 1st layer and the 5th residual

block respectively. For better illustration, gates are sorted by overall execution rate over all tasks. The bottom-left box shows

images from different tasks either triggering or not triggering a specific gate on Split MNIST. The bottom-right box illustrates

how - on Imagenet-50 - correlated classes from different tasks fire the same gates (e.g., fishes, different breeds of dogs, birds).

On the cost of inference. We next measure the in-

ference cost of our model as the number of tasks increases.

Tab. 3 reports the average number of multiply-add oper-

ations (MAC count) of our model on the test set of Split

MNIST and Split CIFAR-10 after learning each task.

Moreover, we report the MACs of HAT [32] as well as

the cost of forward propagation in the backbone network

(i.e. the cost of any other competing method mentioned

it this section). In the task-incremental setting, our model

obtains a meaningful saving in the number of operations,

thanks to the data-dependent gating modules selecting

only a small subset of filters to apply. In contrast, forward

propagation in a class-incremental setting requires as many

computational streams as the number of tasks observed

so far. However, each of them is extremely cheap as

few convolutional units are active. As presented in the

table, also in the class-incremental setting, the number of

Split MNIST Split CIFAR-10

(Simple CNN) (ResNet-18)

HAT our our HAT our our

TI TI CI TI TI CI

Up to T1 0.151 0.064 0.064 31.937 2.650 2.650

Up to T2 0.168 0.101 0.209 32.234 4.628 9.199

Up to T3 0.194 0.137 0.428 36.328 5.028 15.024

Up to T4 0.221 0.136 0.559 38.040 5.181 20.680

Up to T5 0.240 0.142 0.725 39.835 5.005 24.927

backbone 0.926 479.920

Table 3: Average MAC counts (×106) of inference in Split

MNIST and Split CIFAR-10. We compute MACs on the test

sets, at different stages of the optimization (up to Tt), both

in task-incremental (TI) and class-incremental (CI) setups.

operations never exceeds the cost of forward propagation

in the backbone model. The reduction in inference cost is

particularly significant for Split CIFAR-10, which is based

on a ResNet-18 backbone.

Limitations and future works. Training our model

can require a lot of GPU memory for bigger backbones.

However, by exploiting the inherent sparsity of activation

maps, several optimizations are possible. Secondly, we

expect the task classifier to be susceptible to the degree

of semantic separation among tasks. For instance, a

setting where tasks are semantically well-defined, like

T1 = {cat,dog}, T2 = {car,truck} (animals / vehicles),

should favor the task classifier with respect to its transpose

T1 = {cat,car}, T2 = {dog,truck}. However, we remark

that in our experiments the assigment of classes to tasks is

always random. Therefore, our model could perform even

better in the presence of coherent tasks.

5. Conclusions

We presented a novel framework based on conditional com-

putation to tackle catastrophic forgetting in convolutional

neural networks. Having task-specific light-weight gating

modules allows us to prevent catastrophic forgetting of pre-

viously learned knowledge. Besides learning new features

for new tasks, the gates allow for dynamic usage of pre-

viously learned knowledge to improve performance. Our

method can be employed both in the presence and in the ab-

sence of task labels during test. In the latter case, a task clas-

sifier is trained to take the place of a task oracle. Through

extensive experiments, we validated the performance of our

model against existing methods both in task-incremental

and class-incremental settings and demonstrated state-of-

the-art results in four continual learning datasets.
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