
Image2StyleGAN++: How to Edit the Embedded Images?

Rameen Abdal

KAUST

rameen.abdal@kaust.edu.sa

Yipeng Qin

Cardiff University

qiny16@cardiff.ac.uk

Peter Wonka

KAUST

pwonka@gmail.com

(a) (b) (c) (d)

Figure 1: (a) and (b): input images; (c): the “two-face” generated by naively copying the left half from (a) and the right half

from (b); (d): the “two-face” generated by our Image2StyleGAN++ framework.

Abstract

We propose Image2StyleGAN++, a flexible image edit-

ing framework with many applications. Our framework ex-

tends the recent Image2StyleGAN [1] in three ways. First,

we introduce noise optimization as a complement to the W+

latent space embedding. Our noise optimization can restore

high frequency features in images and thus significantly im-

proves the quality of reconstructed images, e.g. a big in-

crease of PSNR from 20 dB to 45 dB. Second, we extend the

global W+ latent space embedding to enable local embed-

dings. Third, we combine embedding with activation tensor

manipulation to perform high quality local edits along with

global semantic edits on images. Such edits motivate vari-

ous high quality image editing applications, e.g. image re-

construction, image inpainting, image crossover, local style

transfer, image editing using scribbles, and attribute level

feature transfer. Examples of the edited images are shown

across the paper for visual inspection.

1. Introduction

Recent GANs [19, 6] demonstrated that synthetic im-

ages can be generated with very high quality. This mo-

tivates research into embedding algorithms that embed a

given photograph into a GAN latent space. Such embed-

ding algorithms can be used to analyze the limitations of

GANs [5], do image inpainting [8, 39, 38, 36], local im-

age editing [40, 17], global image transformations such as

image morphing and expression transfer [1], and few-shot

video generation [35, 34].

In this paper, we propose to extend a very recent em-

bedding algorithm, Image2StyleGAN [1]. In particular, we

would like to improve this previous algorithm in three as-

pects. First, we noticed that the embedding quality can

be further improved by including Noise space optimization

into the embedding framework. The key insight here is that

stable Noise space optimization can only be conducted if

the optimization is done sequentially with W+ space and

not jointly. Second, we would like to improve the capabili-

ties of the embedding algorithm to increase the local control

over the embedding. One way to improve local control is to

include masks in the embedding algorithm with undefined

content. The goal of the embedding algorithm should be to

find a plausible embedding for everything outside the mask,

while filling in reasonable semantic content in the masked

pixels. Similarly, we would like to provide the option of

approximate embeddings, where the specified pixel colors

are only a guide for the embedding. In this way, we aim to

achieve high quality embeddings that can be controlled by

user scribbles. In the third technical part of the paper, we

investigate the combination of embedding algorithm and di-

18296



rect manipulations of the activation maps (called activation

tensors in our paper).

Our main contributions are:

1. We propose Noise space optimization to restore the

high frequency features in an image that cannot be re-

produced by other latent space optimization of GANs.

The resulting images are very faithful reconstructions

of up to 45 dB compared to about 20 dB (PSNR) for

the previously best results.

2. We propose an extended embedding algorithm into the

W+ space of StyleGAN that allows for local modifica-

tions such as missing regions and locally approximate

embeddings.

3. We investigate the combination of embedding and acti-

vation tensor manipulation to perform high quality lo-

cal edits along with global semantic edits on images.

4. We apply our novel framework to multiple image edit-

ing and manipulation applications. The results show

that the method can be successfully used to develop a

state-of-the-art image editing software.

2. Related Work

Generative Adversarial Networks (GANs) [14, 29] are

one of the most popular generative models that have been

successfully applied to many computer vision applications,

e.g. object detection [23], texture synthesis [22, 37, 31],

image-to-image translation [16, 42, 28, 25] and video gen-

eration [33, 32, 35, 34]. Backing these applications are

the massive improvements on GANs in terms of architec-

ture [19, 6, 28, 16], loss function design [26, 2], and regu-

larization [27, 15]. On the bright side, such improvements

significantly boost the quality of the synthesized images. To

date, the two highest quality GANs are StyleGAN [19] and

BigGAN [6]. Between them, StyleGAN produces excellent

results for unconditional image synthesis tasks, especially

on face images; BigGAN produces the best results for con-

ditional image synthesis tasks (e.g. ImageNet [9]). While

on the dark side, these improvements make the training of

GANs more and more expensive that nowadays it is almost

a privilege of wealthy institutions to compete for the best

performance. As a result, methods built on pre-trained gen-

erators start to attract attention very recently. In the follow-

ing, we would like to discuss previous work of two such ap-

proaches: embedding images into a GAN latent space and

the manipulation of GAN activation tensors.

Latent Space Embedding. The embedding of an image

into the latent space is a longstanding topic in both machine

learning and computer vision. In general, the embedding

can be implemented in two ways: i) passing the input im-

age through an encoder neural network (e.g. the Variational

Auto-Encoder [21]); ii) optimizing a random initial latent

code to match the input image [41, 7]. Between them, the

first approach dominated for a long time. Although it has an

inherent problem to generalize beyond the training dataset,

it produces higher quality results than the naive latent code

optimization methods [41, 7]. While recently, Abdal et al.

[1] obtained excellent embedding results by optimizing the

latent codes in an enhanced W+ latent space instead of the

initial Z latent space. Their method suggests a new direc-

tion for various image editing applications and makes the

second approach interesting again.

Activation Tensor Manipulation. With fixed neural net-

work weights, the expression power of a generator can be

fully utilized by manipulating its activation tensors. Based

on this observation, Bau [4] et al. investigated what a GAN

can and cannot generate by locating and manipulating rel-

evant neurons in the activation tensors [4, 5]. Built on the

understanding of how an object is “drawn” by the genera-

tor, they further designed a semantic image editing system

that can add, remove or change the appearance of an object

in an input image [3]. Concurrently, Frühstück et al. [11]

investigated the potential of activation tensor manipulation

in image blending. Observing that boundary artifacts can be

eliminated by by cropping and combining activation tensors

at early layers of a generator, they proposed an algorithm to

create large-scale texture maps of hundreds of megapixels

by combining outputs of GANs trained on a lower resolu-

tion.

3. Overview

Our paper is structured as follows. First, we describe an

extended version of the Image2StyleGAN [1] embedding

algorithm (See Sec. 4). We propose two novel modifica-

tions: 1) to enable local edits, we integrate various spatial

masks into the optimization framework. Spatial masks en-

able embeddings of incomplete images with missing values

and embeddings of images with approximate color values

such as user scribbles. In addition to spatial masks, we ex-

plore layer masks that restrict the embedding into a set of

selected layers. The early layers of StyleGAN [19] encode

content and the later layers control the style of the image.

By restricting embeddings into a subset of layers we can

better control what attributes of a given image are extracted.

2) to further improve the embedding quality, we optimize

for an additional group of variables n that control additive

noise maps. These noise maps encode high frequency de-

tails and enable embedding with very high reconstruction

quality.

Second, we explore multiple operations to directly ma-

nipulate activation tensors (See Sec. 5). We mainly explore

8297



(a) (b) (c) (d) (e)

Figure 2: Joint optimization. (a): target image; (b): image embedded by jointly optimizing w and n using perceptual and

pixel-wise MSE loss; (c): image embedded by jointly optimizing w and n using the pixel-wise MSE loss only; (d): the

result of the previous column with n resampled; (e): image embedded by jointly optimizing w and n using perceptual and

pixel-wise MSE loss for w and pixel-wise MSE loss for n.

(a) (b) (c) (d)

Figure 3: Alternating optimization. (a): target image; (b): image embedded by optimizing w only; (c): taking w from the

previous column and subsequently optimizing n only; (d): taking the result from the previous column and optimizing w only.

spatial copying, channel-wise copying, and averaging,

Interesting applications can be built by combining mul-

tiple embedding steps and direct manipulation steps. As a

stepping stone towards building interesting application, we

describe in Sec. 6 common building blocks that consist of

specific settings of the extended optimization algorithm.

Finally, in Sec. 7 we outline multiple applications en-

abled by Image2StyleGAN++: improved image reconstruc-

tion, image crossover, image inpainting, local edits using

scribbles, local style transfer, and attribute level feature

transfer.

4. An Extended Embedding Algorithm

We implement our embedding algorithm as a gradient-

based optimization that iteratively updates an image starting

from some initial latent code. The embedding is performed

into two spaces using two groups of variables; the semanti-

cally meaningful W+ space and a Noise space Ns encoding

high frequency details. The corresponding groups of vari-

ables we optimize for are w ∈W+ and n ∈ Ns. The inputs

to the embedding algorithm are target RGB images x and y

(they can also be the same image), and up to three spatial

masks (Ms, Mm, and Mp)

Algorithm 1 is the generic embedding algorithm used in

the paper.

4.1. Objective Function

Our objective function consists of three different types

of loss terms, i.e. the pixel-wise MSE loss, the perceptual

loss [18, 10], and the style loss [12].

L = λsLstyle(Ms, G(w, n), y)

+
λmse1

N
‖Mm ⊙ (G(w, n)− x)‖22

+
λmse2

N
‖(1−Mm)⊙ (G(w, n)− y)‖22

+ λpLpercept(Mp, G(w, n), x)

(1)

Where Ms, Mm , Mp denote the spatial masks, ⊙ denotes

the Hadamard product, G is the StyleGAN generator, n are

the Noise space variables, w are the W+ space variables,

Lstyle denotes style loss from ‘conv3 3′ layer of an Im-

ageNet pretrained VGG-16 network [30], Lpercept is the

8298



Figure 4: First column: original image; Second column:

image embedded in W+ Space (PSNR 19 to 22 dB); Third

column: image embedded in W+ and Noise space (PSNR

39 to 45 dB).

perceptual loss defined in Image2StyleGAN [1]. Here, we

use layers ‘conv1 1′, ‘conv1 2′, ‘conv2 2′ and ‘conv3 3′

of VGG-16 for the perceptual loss. Note that the percep-

tual loss is computed for four layers of the VGG network.

Therefore, Mp needs to be downsampled to match the reso-

lutions of the corresponding VGG-16 layers in the compu-

tation of the loss function.

4.2. Optimization Strategies

Optimization of the variables w ∈ W+ and n ∈ Ns is

not a trivial task. Since only w ∈ W+ encodes seman-

tically meaningful information, we need to ensure that as

much information as possible is encoded in w and only high

frequency details in the Noise space.

The first possible approach is the joint optimization of

both groups of variables w and n. Fig.2 (b) shows the result

using the perceptual and the pixel-wise MSE loss. We can

observe that many details are lost and were replaced with

high frequency image artifacts. This is due to the fact that

the perceptual loss is incompatible with optimizing noise

maps. Therefore, a second approach is to use pixel-wise

MSE loss only (see Fig. 2 (c)). Although the reconstruction

is almost perfect, the representation (w, n) is not suitable

for image editing tasks. In Fig. 2 (d), we show that too

much of the image information is stored in the noise layer,

by resampling the noise variables n. We would expect to

obtain another very good, but slightly noisy embedding. In-

stead, we obtain a very low quality embedding. Also, we

show the result of jointly optimizing the variables and us-

ing perceptual and pixel-wise MSE loss for w variables and

pixel-wise MSE loss for the noise variable. Fig. 2 (e) shows

the reconstructed image is not of high perceptual quality.

The PSNR score decreases to 33.3 dB. We also tested these

optimizations on other images. Based on our results, we do

not recommend using joint optimization.

The second strategy is an alternating optimization of the

variables w and n. In Fig. 3, we show the result of optimiz-

ing w while keeping n fixed and subsequently optimizing n

while keeping w fixed. In this way, most of the information

is encoded in w which leads to a semantically meaningful

embedding. Performing another iteration of optimizing w

(Fig. 3 (d)) reveals a smoothing effect on the image and the

PSNR reduces from 39.5 dB to 20 dB. Subsequent Noise

space optimization does not improve PSNR of the images.

Hence, repetitive alternating optimization does not improve

the quality of the image further. In summary, we recom-

mend to use alternating optimization, but each set of vari-

ables is only optimized once. First we optimize w, then n.

Algorithm 1: Semantic and Spatial component em-

bedding in StyleGAN

Input: images x, y ∈ R
n×m×3; masks

Ms,Mm,Mp; a pre-trained generator

G(·, ·); gradient-based optimizer F ′.

Output: the embedded code (w, n)
1 Initialize() the code (w, n) = (w′, n′);
2 while not converged do

3 Loss← L(x, y,Ms,Mm,Mp);
4 (w, n)← (w, n)− ηF ′(∇w,nL,w, n);

5 end

5. Activation Tensor Manipulations

Due to the progressive architecture of StyleGAN, one

can perform meaningful tensor operations at different lay-

ers of the network [11, 4]. We consider the following edit-

ing operations: spatial copying, averaging, and channel-

wise copying. We define activation tensor AI
l as the out-

put of the l-th layer in the network initialized with variables

(w, n) of the embedded image I . They are stored as ten-

sors AI
l ∈ RWl×Hl×Cl . Given two such tensors AI

l and

8299



Figure 5: First and second column: input image; Third col-

umn: image generated by naively copying the left half from

the first image and the right half from the second image;

Fourth column: image generated by our extended embed-

ding algorithm. The difference between the third and fourth

images (second row) is highlighted in the supplementary

materials.

BI
l , copying replaces high-dimensional pixels ∈ R1×1×Cl

in AI
l by copying from BI

l . Averaging forms a linear com-

bination λAI
l + (1 − λ)BI

l . Channel-wise copying creates

a new tensor by copying selected channels from AI
l and the

remaining channels from BI
l . In our tests we found that spa-

tial copying works a bit better than averaging and channel-

wise copying.

6. Frequently Used Building Blocks

We identify four fundamental building blocks that are

used in multiple applications described in Sec. 7. While

terms of the loss function can be controlled by spatial

masks (Ms,Mm,Mp), we also use binary masks wm and

nm to indicate what subset of variables should be optimized

during an optimization process. For example, we might set

wm to only update the w variables corresponding to the first

k layers. In general, wm and nm contain 1s for variables

that should be updated and 0s for variables that should

remain constant. In addition to the listed parameters, all

building blocks need initial variable values wini and nini.

For all experiments, we use a 32GB Nvidia V100 GPU.

Masked W+ optimization (Wl): This function opti-

mizes w ∈ W+, leaving n constant. We use the follow-

ing parameters in the loss function (L) Eq. 1: λs = 0,

λmse1 = 10−5, λmse2 = 0, λp = 10−5. We denote the

function as:

Wl(Mp,Mm, wm, wini, nini, x) =

argmin
wm

λpLpercept(Mp, G(w, n), x)+

λmse1

N
‖Mm ⊙ (G(w, n)− x)‖22

(2)

where wm is a mask for W+ space. We either use

Adam [20] with learning rate 0.01 or gradient descent

with learning rate 0.8, depending on the application. Some

common settings for Adam are: β1 = 0.9, β2 = 0.999, and

ǫ = 1e−8. In Sec. 7, we use Adam unless specified.

Masked Noise Optimization (Mkn): This function op-

timizes n ∈ Ns, leaving w constant. The Noise space Ns

has dimensions
{

R
4×4, . . . ,R1024×1024

}

. In total there are

18 noise maps, two for each resolution. We set follow-

ing parameters in the loss function (L) Eq. 1: λs = 0,

λmse1 = 10−5, λmse2 = 10−5, λp = 0. We denote the

function as:

Mkn(M,wini, nini, x, y) =

argmin
n

λmse2

N
‖Mm ⊙ (G(w, n)− x)‖22+

λmse1

N
‖(1−Mm)⊙ (G(w, n)− y)‖22

(3)

For this optimization, we use Adam with learning rate

5, β1 = 0.9, β2 = 0.999, and ǫ = 1e−8. Note that the

learning rate is very high.

Masked Style Transfer(Mst): This function optimizes

w to achieve a given target style defined by style image y.

We set following parameters in the loss function (L) Eq. 1:

λs = 5×10−7, λmse1 = 0, λmse2 = 0, λp = 0. We denote

the function as:

Mst(Ms, wini, nini, y) =

argmin
w

λsLstyle(Ms, G(w, n), y) (4)

where w is the whole W+ space. For this optimization, we

use Adam with learning rate 0.01, β1 = 0.9, β2 = 0.999,

and ǫ = 1e−8.

Masked activation tensor operation (Iatt): This func-

tion describes an activation tensor operation. Here, we rep-

resent the generator G(w, n, t) as a function of W+ space

variable w, Noise space variable n, and input tensor t. The

operation is represented by:

Iatt(M1,M2, w, nini, l) =

G(w, n,M1 ⊙ (AI1
l ) + (1−M2)⊙ (BI2

l ))
(5)

where AI1
l and BI2

l are the activations corresponding to

images I1 and I2 at layer l, and M1 and M2 are the

masks downsampled using nearest neighbour interpolation

to match the Hl ×Wl resolution of the activation tensors.

7. Applications

In the following we describe various applications en-

abled by our framework.

8300



Algorithm 2: Improved Image Reconstruction

Input: image Im ∈ R
n×m×3

Output: the embedded code (wout, nout)
1 (wini, nini)← initialize();

2 wout = Wl(1, 1, 1, wini, nini, Im);
3 nout = Mkn(1, wout, nini, Im, 0);

Figure 6: First column: original image; Second column:

defective image ; Third column: inpainted image via partial

convolutions [24]; Fourth column: inpainted image using

our method.

7.1. Improved Image Reconstruction

As shown in Fig. 4, any image can be embedded by op-

timizing for variables w ∈ W+ and n ∈ Ns. Here we

describe the details of this embedding (See Alg. 2). First,

we initialize: wini is a mean face latent code [19] or random

code sampled from U [−1, 1] depending on whether the em-

bedding image is a face or a non-face, and nini is sampled

from a standard normal distribution N(0, I) [19]. Second,

we apply masked W+ optimization (Wl) without using spa-

tial masks or masking variables. That means all masks are

set to 1. Im is the target image we try to reconstruct. Third,

we perform masked noise optimization (Mkn), again with-

out making use of masks. The images reconstructed are of

high fidelity. The PNSR score range of 39 to 45 dB provides

an insight of how expressive the Noise space in StyleGAN

is. Unlike the W+ space, the Noise space is used for spa-

tial reconstruction of high frequency features. We use 5000

iterations of Wl and 3000 iterations of Mkn to get PSNR

scores of 44 to 45 dB. Additional iterations did not improve

the results in our tests.

Figure 7: Inpainting using different initializations wini.

Algorithm 3: Image Crossover

Input: images I1, I2 ∈ R
n×m×3; mask Mblur

Output: the embedded code (wout, nout)
1 (w∗, nini)← initialize();

2 wout = Wl(Mblur,Mblur, 1, w
∗, nini, I1)

+Wl(1−Mblur, 1−Mblur, 1, w
∗, nini, I2);

3 nout = Mkn(Mblur, wout, nini, I1, I2);

7.2. Image Crossover

We define the image crossover operation as copying parts

from a source image y into a target image x and blending

the boundaries. As initialization, we embed the target image

x to obtain the W+ code w∗. We then perform masked W+

optimization (Wl) with blurred masks Mblur to embed the

regions in x and y that contribute to the final image. Blurred

masks are obtained by convolution of the binary mask with

a Gaussian filter of suitable size. Then, we perform noise

optimization. Details are provided in Alg. 3.

Other notations are the same as described in Sec 7.1.

Fig. 5 and Fig. 1 show example results. We deduce that the

reconstruction quality of the images is quite high. For the

experiments, we use 1000 iterations in the function masked

W+ optimization and 1000 iterations in Mkn.

7.3. Image Inpainting

Algorithm 4: Image Inpainting

Input: image Idef ∈ R
n×m×3; masks M,Mblur+

Output: the embedded code (wout, nout)
1 (wini, nini)← initialize();

2 wout = Wl(1−M, 1−M,wm, wini, nini, Idef );
3 nout =

Mkn(1−Mblur+, wout, nini, Idef , G(wout));

In order to perform a semantically meaningful inpaint-

ing, we embed into the early layers of the W+ space to

predict the missing content and in the later layers to main-

8301



Figure 8: Column 1 & 4: base image; Column 2 & 5: scribbled image ; Column 3 & 6: result of local edits.

tain color consistency. We define the image x as a defec-

tive image (Idef ). Also, we use the mask wm where the

value is 1 corresponding to the first 9 (1 to 9), 17th and

18th layer of W+. As an initialization, we set wini to the

mean face latent code [19]. We consider M as the mask

describing the defective region. Using these parameters, we

perform the masked W+ optimization Wl. Then we per-

form the masked noise optimization Mkn using Mblur+

which is the slightly larger blurred mask used for blend-

ing. Here λmse2 is taken to be 10−4. Other notations are

the same as described in Sec 7.1. Alg. 4 shows the details

of the algorithm. We perform 200 steps of gradient descent

optimizer for masked W+ optimization Wl and 1000 itera-

tions of masked noise optimization Mkn. Fig.6 shows ex-

ample inpainting results. The results are comparable with

the current state of the art, partial convolution [24]. The

partial convolution method frequently suffers from regular

artifacts (see Fig.6 (third column)). These artifacts are not

present in our method. In Fig.7 we show different inpaint-

ing solutions for the same image achieved by using differ-

ent initializations of wini , which is an offset to mean face

latent code sampled independently from a uniform distribu-

tion U [−0.4, 0.4]. The initialization mainly affects layers

10 to 16 that are not altered during optimization. Multi-

ple inpainting solutions cannot be computed with existing

state-of-the-art methods.

7.4. Local Edits using Scribbles

Another application is performing semantic local edits

guided by user scribbles. We show that simple scribbles can

Figure 9: First column: base image; Second column: mask

area; Third column: style image; Fourth column: local style

transfer result.

Algorithm 5: Local Edits using Scribble

Input: image Iscr ∈ R
n×m×3; masks Mblur

Output: the embedded code (wout, nout)
1 (w∗, nini)← initialize();

2 wout = Wl(1, 1, wm, w∗, nini, Iscr)
+λ‖w∗ − wout‖2;

3 nout = Mkn(Mblur, wout, nini, Iscr, G(wout));

be converted to photo-realistic edits by embedding into the

first 4 to 6 layers of W+ (See Fig.8). This enables us to do

local edits without training a network. We define an image

x as a scribble image (Iscr). Here, we also use the mask wm

where the value is 1 corresponding to the first 4,5 or 6 layers

of the W+ space. As initialization, we set the wini to w∗

8302



Figure 10: First column: base image; Second column: at-

tribute image; Third column: mask area; Fourth column:

image generated via attribute level feature transfer.

Algorithm 6: Local Style Transfer

Input: images I1, I2 ∈ R
n×m×3; masks Mblur

Output: the embedded code (wout, nout)
1 (w∗, nini)← initialize();

2 wout = Wl(Mblur,Mblur, 1, w
∗, nini, I1)

+Mst(1−Mblur, w
∗, nini, I2);

3 nout = Mkn(Mblur, wout, nini, I1, G(wout));

which is the W+ code of the image without scribble. We

perform masked W+ optimization using these parameters.

Then we perform masked noise optimization Mkn using

Mblur. Other notations are the same as described in Sec 7.1.

Alg. 5 shows the details of the algorithm. We perform 1000

iterations using Adam with a learning rate of 0.1 of masked

W+ optimization Wl and then 1000 steps of masked noise

optimization Mkn to output the final image.

7.5. Local Style Transfer

Local style transfer[13] modifies a region in the input

image x to transform it to the style defined by a style ref-

erence image. First, we embed the image in W+ space to

obtain the code w∗. Then we apply the masked W+ op-

timization Wl along with masked style transfer Mst using

blurred mask Mblur. Finally, we perform the masked noise

optimization Mkn to output the final image. Alg. 6 shows

the details of the algorithm. Results for the application are

shown in Fig.9. We perform 1000 steps to obtain of Wl

along with Mst and then perform 1000 iterations of Mkn.

7.6. Attribute level feature transfer

We extend our work to another application using ten-

sor operations on the images embedded in W+ space. In

this application we perform the tensor manipulation cor-

responding to the tensors at the output of the 4th layer of

StyleGAN. We feed the generator with the latent codes (w,

n) of two images I1 and I2 and store the output of the

fourth layer as intermediate activation tensors AI1
l and BI2

l .

A mask Ms specifies which values to copy from AI1
l and

which to copy from BI2
l . The operation can be denoted by

Iatt(Ms,Ms, w, nini, 4). In Fig.10, we show results of the

operation. A design parameter of this application is what

style code to use for the remaining layers. In the shown

example, the first image is chosen to provide the style. No-

tice, in column 2 of Fig.10, in-spite of the different align-

ment of the two faces and objects, the images are blended

well. We also show results of blending for the LSUN-car

and LSUN-bedroom datasets. Hence, unlike global edits

like image morphing, style transfer, and expression transfer

[1], here different parts of the image can be edited inde-

pendently and the edits are localized. Moreover, along with

other edits, we show a video in the supplementary material

that further shows that other semantic edits e.g. masked im-

age morphing can be performed on such images by linear

interpolation of W+ code of one image at a time.

8. Conclusion

We proposed Image2StyleGAN++, a powerful image

editing framework built on the recent Image2StyleGAN.

Our framework is motivated by three key insights: first,

high frequency image features are captured by the addi-

tive noise maps used in StyleGAN, which helps to im-

prove the quality of reconstructed images; second, local

edits are enabled by including masks in the embedding al-

gorithm, which greatly increases the capability of the pro-

posed framework; third, a variety of applications can be cre-

ated by combining embedding with activation tensor ma-

nipulation. From the high quality results presented in this

paper, it can be concluded that our Image2StyleGAN++ is

a promising framework for general image editing. For fu-

ture work, in addition to static images, we aim to extend our

framework to process and edit videos.

Acknowledgement This work was supported by the

KAUST Office of Sponsored Research (OSR) under Award

No. OSR-CRG2018-3730.

8303



References

[1] R. Abdal, Y. Qin, and P. Wonka. Image2stylegan: How to

embed images into the stylegan latent space? In Proceedings

of the IEEE International Conference on Computer Vision,

pages 4432–4441, 2019. 1, 2, 4, 8

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gener-

ative adversarial networks. In Proceedings of the 34th In-

ternational Conference on Machine Learning, volume 70,

pages 214–223, 2017. 2

[3] D. Bau, H. Strobelt, W. Peebles, J. Wulff, B. Zhou, J. Zhu,

and A. Torralba. Semantic photo manipulation with a gener-

ative image prior. ACM Transactions on Graphics (Proceed-

ings of ACM SIGGRAPH), 38(4), 2019. 2

[4] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum,

W. T. Freeman, and A. Torralba. Gan dissection: Visualizing

and understanding generative adversarial networks. In Pro-

ceedings of the International Conference on Learning Rep-

resentations (ICLR), 2019. 2, 4

[5] D. Bau, J.-Y. Zhu, J. Wulff, W. Peebles, H. Strobelt, B. Zhou,

and A. Torralba. Seeing what a gan cannot generate. In Pro-

ceedings of the International Conference Computer Vision

(ICCV), 2019. 1, 2

[6] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN

training for high fidelity natural image synthesis. In Inter-

national Conference on Learning Representations, 2019. 1,

2

[7] A. Creswell and A. A. Bharath. Inverting the generator of a

generative adversarial network. IEEE Transactions on Neu-

ral Networks and Learning Systems, 2018. 2

[8] U. Demir and G. Unal. Patch-based image inpaint-

ing with generative adversarial networks. arXiv preprint

arXiv:1803.07422, 2018. 1

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009. 2

[10] A. Dosovitskiy and T. Brox. Generating images with percep-

tual similarity metrics based on deep networks. In Advances

in neural information processing systems, pages 658–666,

2016. 3

[11] A. Frühstück, I. Alhashim, and P. Wonka. Tilegan. ACM

Transactions on Graphics, 38(4):1–11, Jul 2019. 2, 4

[12] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style trans-

fer using convolutional neural networks. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 2414–2423, 2016. 3

[13] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and

E. Shechtman. Controlling perceptual factors in neural style

transfer. 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Jul 2017. 8

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, 2014. 2

[15] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and

A. C. Courville. Improved training of wasserstein gans. In

Advances in neural information processing systems, pages

5767–5777, 2017. 2

[16] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. CVPR,

2017. 2

[17] Y. Jo and J. Park. Sc-fegan: Face editing generative adver-

sarial network with user’s sketch and color. In The IEEE

International Conference on Computer Vision (ICCV), Octo-

ber 2019. 1

[18] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

conference on computer vision, 2016. 3

[19] T. Karras, S. Laine, and T. Aila. A style-based genera-

tor architecture for generative adversarial networks. arXiv

preprint arXiv:1812.04948, 2018. 1, 2, 6, 7

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. 2014. 5

[21] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[22] C. Li and M. Wand. Precomputed real-time texture synthesis

with markovian generative adversarial networks. In Com-

puter Vision - ECCV 2016 - 14th European Conference, Am-

sterdam, The Netherlands, October 11-14, 2016, Proceed-

ings, Part III, 2016. 2

[23] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan. Perceptual

generative adversarial networks for small object detection.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017. 2

[24] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and

B. Catanzaro. Image inpainting for irregular holes using par-

tial convolutions. Lecture Notes in Computer Science, page

89–105, 2018. 6, 7

[25] M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehti-

nen, and J. Kautz. Few-shot unsueprvised image-to-image

translation. In arxiv, 2019. 2

[26] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley.

Least squares generative adversarial networks. 2017 IEEE

International Conference on Computer Vision (ICCV), Oct

2017. 2

[27] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral

normalization for generative adversarial networks. In Inter-

national Conference on Learning Representations, 2018. 2

[28] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic im-

age synthesis with spatially-adaptive normalization. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2019. 2

[29] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015. 2

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. 2014. 3

[31] R. Slossberg, G. Shamai, and R. Kimmel. High quality facial

surface and texture synthesis via generative adversarial net-

works. In European Conference on Computer Vision, pages

498–513. Springer, 2018. 2

[32] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz. Moco-

gan: Decomposing motion and content for video generation.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2018. 2

8304



[33] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating

videos with scene dynamics. In Advances in Neural Infor-

mation Processing Systems 29. 2016. 2

[34] T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, J. Kautz, and

B. Catanzaro. Few-shot video-to-video synthesis. arXiv

preprint arXiv:1910.12713, 2019. 1, 2

[35] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz,

and B. Catanzaro. Video-to-video synthesis. In Advances in

Neural Information Processing Systems (NeurIPS), 2018. 1,

2

[36] R. Webster, J. Rabin, L. Simon, and F. Jurie. Detecting over-

fitting of deep generative networks via latent recovery. 2019.

1

[37] W. Xian, P. Sangkloy, V. Agrawal, A. Raj, J. Lu, C. Fang,

F. Yu, and J. Hays. Texturegan: Controlling deep image syn-

thesis with texture patches. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2018. 2

[38] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. Huang. Free-

form image inpainting with gated convolution. 2018. 1

[39] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Gen-

erative image inpainting with contextual attention. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 5505–5514, 2018. 1

[40] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros.

Generative visual manipulation on the natural image mani-

fold. In Proceedings of European Conference on Computer

Vision (ECCV), 2016. 1

[41] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros.

Generative visual manipulation on the natural image man-

ifold. Lecture Notes in Computer Science, page 597–613,

2016. 2

[42] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

workss. In Computer Vision (ICCV), 2017 IEEE Interna-

tional Conference on, 2017. 2

8305


