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Abstract

We introduce a deep learning approach to realistically

edit an sRGB image’s white balance. Cameras capture sen-

sor images that are rendered by their integrated signal pro-

cessor (ISP) to a standard RGB (sRGB) color space encod-

ing. The ISP rendering begins with a white-balance pro-

cedure that is used to remove the color cast of the scene’s

illumination. The ISP then applies a series of nonlinear

color manipulations to enhance the visual quality of the fi-

nal sRGB image. Recent work by [3] showed that sRGB

images that were rendered with the incorrect white balance

cannot be easily corrected due to the ISP’s nonlinear ren-

dering. The work in [3] proposed a k-nearest neighbor

(KNN) solution based on tens of thousands of image pairs.

We propose to solve this problem with a deep neural net-

work (DNN) architecture trained in an end-to-end manner

to learn the correct white balance. Our DNN maps an input

image to two additional white-balance settings correspond-

ing to indoor and outdoor illuminations. Our solution not

only is more accurate than the KNN approach in terms of

correcting a wrong white-balance setting but also provides

the user the freedom to edit the white balance in the sRGB

image to other illumination settings.

1. Introduction and related work

White balance (WB) is a fundamental low-level com-

puter vision task applied to all camera images. WB is per-

formed to ensure that scene objects appear as the same color

even when imaged under different illumination conditions.

Conceptually, WB is intended to normalize the effect of the

captured scene’s illumination such that all objects appear as

if they were captured under ideal “white light”. WB is one

of the first color manipulation steps applied to the sensor’s

unprocessed raw-RGB image by the camera’s onboard in-

tegrated signal processor (ISP). After WB is performed, a

number of additional color rendering steps are applied by

the ISP to further process the raw-RGB image to its final
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Figure 1: Top row: (A)-(C) are sRGB images produced by

a camera’s ISP with different WB settings. (A) An incor-

rect WB representing a failed AWB. (B) A correct AWB

for the scene. (C) Results of the camera’s manual presets.

Bottom row: (D)-(F) are post-capture edits of sRGB image

(A)’s WB. (D) Result from the recent KNN-WB correction

method [3]. (E) Our result to correct the WB in (A). (F)

Our results to produce different outputs corresponding to

the camera’s presets.

standard RGB (sRGB) encoding. While the goal of WB

is intended to normalize the effect of the scene’s illumina-

tion, ISPs often incorporate aesthetic considerations in their

color rendering based on photographic preferences. Such

preferences do not always conform to the white light as-

sumption and can vary based on different factors, such as

cultural preference and scene content [8, 13, 22, 31].

Most digital cameras provide an option to adjust the WB

settings during image capturing. However, once the WB

setting has been selected and the image is fully processed

by the ISP to its final sRGB encoding it becomes challeng-

ing to perform WB editing without access to the original

11397



unprocessed raw-RGB image [3]. This problem becomes

even more difficult if the WB setting was wrong, which re-

sults in a strong color cast in the final sRGB image.

The ability to edit the WB of an sRGB image not only

is useful from a photographic perspective but also can be

beneficial for computer vision applications, such as ob-

ject recognition, scene understanding, and color augmenta-

tion [2,6,19]. A recent study in [2] showed that images cap-

tured with an incorrect WB setting produce a similar effect

of an untargeted adversarial attack for deep neural network

(DNN) models.

In-camera WB procedure To understand the challenge

of WB editing in sRGB images it is useful to review

how cameras perform WB. WB consists of two steps per-

formed in tandem by the ISP: (1) estimate the camera sen-

sor’s response to the scene illumination in the form of

a raw-RGB vector; (2) divide each R/G/B color channel

in the raw-RGB image by the corresponding channel re-

sponse in the raw-RGB vector. The first step of estimat-

ing the illumination vector constitutes the camera’s auto-

white-balance (AWB) procedure. Illumination estimation

is a well-studied topic in computer vision—representative

works include [1, 7–10, 14, 17, 18, 23, 28, 33]. In addi-

tion to AWB, most cameras allow the user to manually se-

lect among WB presets in which the raw-RGB vector for

each preset has been determined by the camera manufac-

turer. These presets correspond to common scene illumi-

nants (e.g., Daylight, Shade, Incandescent).

Once the scene’s illumation raw-RGB vector is defined,

a simple linear scaling is applied to each color channel in-

dependently to normalize the illumination. This scaling op-

eration is performed using a 3× 3 diagonal matrix. The

white-balanced raw-RGB image is then further processed

by camera-specific ISP steps, many nonlinear in nature, to

render the final images in an output-referred color space—

namely, the sRGB color space. These nonlinear operations

make it hard to use the traditional diagonal correction to

correct images rendered with strong color casts caused by

camera WB errors [3].

WB editing in sRGB In order to perform accurate post-

capture WB editing, the rendered sRGB values should

be properly reversed to obtain the corresponding unpro-

cessed raw-RGB values and then re-rendered. This can be

achieved only by accurate radiometric calibration methods

(e.g., [12, 24, 34]) that compute the necessary metadata for

such color de-rendering. Recent work by Afifi et al. [3]

proposed a method to directly correct sRGB images that

were captured with the wrong WB setting. This work pro-

posed an exemplar-based framework using a large dataset

of over 65,000 sRGB images rendered by a software camera

pipeline with the wrong WB setting. Each of these sRGB

images had a corresponding sRGB image that was rendered

with the correct WB setting. Given an input image, their

approach used a KNN strategy to find similar images in

their dataset and computed a mapping function to the corre-

sponding correct WB images. The work in [3] showed that

this computed color mapping constructed from exemplars

was effective in correcting an input image. Later Afifi and

Brown [2] extended their KNN idea to map a correct WB

image to appear incorrect for the purpose of image aug-

mentation for training deep neural networks. Our work is

inspired by [2,3] in their effort to directly edit the WB in an

sRGB image. However, in contrast to the KNN frameworks

in [2, 3], we cast the problem within a single deep learning

framework that can achieve both tasks—namely, WB cor-

rection and WB manipulation as shown in Fig. 1.

Contribution We present a novel deep learning frame-

work that allows realistic post-capture WB editing of sRGB

images. Our framework consists of a single encoder net-

work that is coupled with three decoders targeting the fol-

lowing WB settings: (1) a “correct” AWB setting; (2) an

indoor WB setting; (3) an outdoor WB setting. The first

decoder allows an sRGB image that has been incorrectly

white-balanced image to be edited to have the correct WB.

This is useful for the task of post-capture WB correction.

The additional indoor and outdoor decoders provide users

the ability to produce a wide range of different WB ap-

pearances by blending between the two outputs. This sup-

ports photographic editing tasks to adjust an image’s aes-

thetic WB properties. We provide extensive experiments to

demonstrate that our method generalizes well to images out-

side our training data and achieves state-of-the-art results

for both tasks.

2. Deep white-balance editing

2.1. Problem formulation

Given an sRGB image, IWB(in) , rendered through an un-

known camera ISP with an arbitrary WB setting WB(in), our

goal is to edit its colors to appear as if it were re-rendered

with a target WB setting WB(t).

As mentioned in Sec. 1, our task can be accomplished

accurately if the original unprocessed raw-RGB image is

available. If we could recover the unprocessed raw-RGB

values, we can change the WB setting WB(in) to WB(t), and

then re-render the image back to the sRGB color space with

a software-based ISP. This ideal process can be described

by the following equation:

IWB(t) = G (F (IWB(in))) , (1)

where F : IWB(in) → DWB(in) is an unknown reconstruction

function that reverses the camera-rendered sRGB image I
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Figure 2: Proposed multi-decoder framework for sRGB WB editing. (A) Our proposed framework consists of a single

encoder and multiple decoders. The training process is performed in an end-to-end manner, such that each decoder “re-

renders” the given training patch with a specific WB setting, including AWB. For training, we randomly select image patches

from the Rendered WB dataset [3]. (B) Given a testing image, we produce the targeted WB setting by using the corresponding

trained decoder.

back to its corresponding raw-RGB image D with the cur-

rent WB(in) setting applied and G : DWB(in) → IWB(t) is an

unknown camera rendering function that is responsible for

editing the WB setting and re-rendering the final image.

2.2. Method overview

Our goal is to model the functionality of G (F (·)) to

generate IWB(t) . We first analyze how the functions G and

F cooperate to produce IWB(t) . From Eq. 1, we see that the

function F transforms the input image IWB(in) into an inter-

mediate representation (i.e., the raw-RGB image with the

captured WB setting), while the function G accepts this in-

termediate representation and renders it with the target WB

setting to an sRGB color space encoding.

Due to the nonlinearities applied by the ISP’s rendering

chain, we can think of G as a hybrid function that consists

of a set of sub-functions, where each sub-function is respon-

sible for rendering the intermediate representation with a

specific WB setting.

Our ultimate goal is not to reconstruct/re-render the orig-

inal raw-RGB values, but rather to generate the final sRGB

image with the target WB setting WB(t). Therefore, we can

model the functionality of G (F (·)) as an encoder/decoder

scheme. Our encoder f transfers the input image into a la-

tent representation, while each of our decoders (g1, g2, ...)

generates the final images with a different WB setting. Sim-

ilar to Eq. 1, we can formulate our framework as follows:

ÎWB(t) = gt (f (IWB(in))) , (2)

where f : IWB(in) → Z , gt : Z → ÎWB(t) , and Z is an in-

termediate representation (i.e., latent representation) of the

original input image IWB(in) .

Our goal is to make the functions f and gt independent,

such that changing gt with a new function gy that targets a

different WB y does not require any modification in f , as is

the case in Eq. 1.

In our work, we target three different WB settings: (i)

WB(A): AWB—representing the correct lighting of the cap-

tured image’s scene; (ii) WB(T): Tungsten/Incandescent—

representing WB for indoor lighting; and (iii) WB(S):

Shade—representing WB for outdoor lighting. This gives

rise to three different decoders (gA, gT , and gS) that are re-

sponsible for generating output images that correspond to

AWB, Incandescent WB, and Shade WB.

The Incandescent and Shade WB are specifically se-

lected based on the color properties. This can be understood

when considering the illuminations in terms of their corre-

lated color temperatures. For example, Incandescent and

Shade WB settings are correlated to 2850 Kelvin (K) and

7500K color temperatures, respectively. This wide range

of illumination color temperatures considers the range of

pleasing illuminations [26, 27]. Moreover, the wide color

temperature range between Incandescent and Shade allows

the approximation of images with color temperatures within

this range by interpolation. The details of this interpolation
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Figure 3: We consider the runtime performance of our method to be able to run on limited computing resources (∼1.5 seconds

on a single CPU to process a 12-megapixel image). First, our DNN processes a downsampled version of the input image,

and then we apply a global color mapping to produce the output image in its original resolution. The shown input image is

rendered from the MIT-Adobe FiveK dataset [11].

process are explained in Sec. 2.5. Note that there is no

fixed correlated color temperature for the AWB mode, as it

changes based on the input image’s lighting conditions.

2.3. Multidecoder architecture

An overview of our DNN’s architecture is shown in Fig.

2. We use a U-Net architecture [29] with multi-scale skip

connections between the encoder and decoders. Our frame-

work consists of two main units: the first is a 4-level en-

coder unit that is responsible for extracting a multi-scale

latent representation of our input image; the second unit in-

cludes three 4-level decoders. Each unit has a different bot-

tleneck and transposed convolutional (conv) layers. At the

first level of our encoder and each decoder, the conv layers

have 24 channels. For each subsequent level, the number of

channels is doubled (i.e., the fourth level has 192 channels

for each conv layer).

2.4. Training phase

Training data We adopt the Rendered WB dataset pro-

duced by [3] to train and validate our model. This dataset

includes ∼65K sRGB images rendered by different camera

models and with different WB settings, including the Shade

and Incandescent settings. For each image, there is also a

corresponding ground truth image rendered with the correct

WB setting (considered to be the correct AWB result). This

dataset consists of two subsets: Set 1 (62,535 images taken

by seven different DSLR cameras) and Set 2 (2,881 images

taken by a DSLR camera and four mobile phone cameras).

The first set (i.e., Set 1) is divided into three equal parti-

tions by [3]. We randomly selected 12,000 training images

from the first two partitions of Set 1 to train our model. For

each training image, we have three ground truth images ren-

dered with: (i) the correct WB (denoted as AWB), (ii) Shade

WB, and (iii) Incandescent WB. The final partition of Set 1

(21,046 images) is used for testing. We refer to this parti-

tion as Set 1–Test. Images of Set 2 are not used in training

and the entire set is used for testing.

Data augmentation We also augment the training images

by rendering an additional 1,029 raw-RGB images, of the

same scenes included in the Rendered WB dataset [3], but

(A) Input image (B) Interpolation for the target 
color temperature t=3500K

(C) Result image 

2850K 7500K

2850 75003500

Figure 4: In addition to our AWB correction, we train our

framework to produce two different color temperatures (i.e.,

Incandescent and Shade WB settings). We interpolate be-

tween these settings to produce images with other color

temperatures. (A) Input image. (B) Interpolation process.

(C) Final result. The shown input image is taken from the

rendered version of the MIT-Adobe FiveK dataset [3, 11].

with random color temperatures. At each epoch, we ran-

domly select four 128×128 patches from each training im-

age and their corresponding ground truth images for each

decoder and apply geometric augmentation (rotation and

flipping) as an additional data augmentation to avoid over-

fitting.

Loss function We trained our model to minimize the L1-

norm loss function between the reconstructed and ground

truth patches:

∑

i

3hw
∑

p=1

|PWB(i)(p)−CWB(i)(p)| , (3)

where h and w denote the patch’s height and width, and

p indexes into each pixel of the training patch P and the

ground truth camera-rendered patch C, respectively. The

index i ∈ {A,T, S} refers to the three target WB settings.

We also have examined the squared L2-norm loss function

and found that both loss functions work well for our task.

See supplemental materials for an ablation study.
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(A) Input images (B) Quasi-U CC results (C) KNN-WB results (D) Our deep-WB results (E) Ground truth images

E= 13.83 E= 8.12 E= 4.21Rendered WB dataset

Rendered Cube+ dataset E= 10.83 E= 4.12 E= 2.97

Figure 5: Qualitative comparison of AWB correction. (A) Input images. (B) Results of quasi-U CC [9]. (C) Results of

KNN-WB [3]. (D) Our results. (E) Ground truth images. Shown input images are taken from the Rendered WB dataset [3]

and the rendered version of Cube+ dataset [3, 5].

Training parameters We initialized the weights of the

conv layers using He’s initialization [20]. The training pro-

cess is performed for 165,000 iterations using the adaptive

moment estimation (Adam) optimizer [25], with a decay

rate of gradient moving average β1 = 0.9 and a decay rate

of squared gradient moving average β2 = 0.999. We used a

learning rate of 10−4 and reduced it by 0.5 every 25 epochs.

The mini-batch size was 32 training patches per iteration.

2.5. Testing phase

Color mapping procedure Our DNN model is a fully

convolutional network and is able to process input images

in their original dimensions with the restriction that the di-

mensions should be multiples of 24, as we use 4-level en-

coder/decoders with 2×2 max-pooling and transposed conv

layers. However, to ensure a consistent run time for any

sized input images, we resize all input images to a maxi-

mum dimension of 656 pixels. Our DNN is applied on this

resized image to produce image ÎWB(i)↓ with the target WB

setting i ∈ {A,T, S}.

We then compute a color mapping function between our

resized input and output image. Work in [16, 21] evaluated

several types of polynomial mapping functions and showed

their effectiveness to achieve nonlinear color mapping. Ac-

cordingly, we computed a polynomial mapping matrix M

that globally maps values of ψ
(

IWB(in)↓

)

to the colors of

our generated image ÎWB(i)↓, where ψ(·) is a polynomial

kernel function that maps the image’s RGB vectors to a

higher 11-dimensional space—see supplemental materials

for an evaluation of different kernel functions. This map-

ping matrix M can be computed in a closed-form solution,

as demonstrated in [2, 3].

Once M is computed, we obtain our final result in the

same input image resolution using the following equation

[3]:

ÎWB(i) = Mψ (IWB(in)) . (4)

Fig. 3 illustrates our color mapping procedure. Our

method requires ∼1.5 seconds on an Intel Xeon E5-1607

@ 3.10GHz machine with 32 GB RAM to process a 12-

megapixel image for a selected WB setting.

We note that an alternative strategy is to compute the

color polynomial mapping matrix directly [30]. We con-

ducted preliminary experiments and found that estimating

the polynomial matrix directly was less robust than generat-

ing the image itself followed by fitting a global polynomial

function. The reason is that having small errors in the esti-

mated polynomial coefficients can lead to noticeable color

errors (e.g., out-of-gamut values), whereas small errors in

the estimated image were ameliorated by the global fitting.

Editing by user manipulation Our framework allows the

user to choose between generating result images with the

three available WB settings (i.e., AWB, Shade WB, and In-

candescent WB). Using the Shade and Incandescent WB,

the user can edit the image to a specific WB setting in terms

of color temperature, as explained in the following.

To produce the effect of a new target WB setting with a

color temperature t that is not produced by our decoders,

we can interpolate between our generated images with the

Incandescent and Shade WB settings. We found that a sim-

ple linear interpolation was sufficient for this purpose. This

operation is described by the following equation:

ÎWB(t) = b ÎWB(T) + (1− b) ÎWB(S) , (5)

where ÎWB(T) and ÎWB(S) are our produced images with In-

candescent and Shade WB settings, respectively, and b is

the interpolation ratio that is given by
1/t−1/t(S)

1/t(T )−1/t(S) . Fig. 4

shows an example.

3. Results

Our method targets two different tasks: post-capture WB

correction and manipulation of the sRGB rendered images

1401



Table 1: AWB results using the Rendered WB dataset [3] and the rendered version of the Cube+ dataset [3,5]. We report the

mean, first, second (median), and third quartile (Q1, Q2, and Q3) of mean square error (MSE), mean angular error (MAE),

and △E 2000 [32]. For all diagonal-based methods, gamma linearization [4,15] is applied. The top results are indicated with

yellow and boldface.

MSE MAE △E 2000
Method

Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

Rendered WB dataset: Set 1–Test (21,046 images) [3]

FC4 [23] 179.55 33.89 100.09 246.50 6.14° 2.62° 4.73° 8.40° 6.55 3.54 5.90 8.94

Quasi-U CC [9] 172.43 33.53 97.9 237.26 6.00° 2.79° 4.85° 8.15° 6.04 3.24 5.27 8.11

KNN-WB [3] 77.79 13.74 39.62 94.01 3.06° 1.74° 2.54° 3.76° 3.58 2.07 3.09 4.55

Ours 82.55 13.19 42.77 102.09 3.12° 1.88° 2.70° 3.84° 3.77 2.16 3.30 4.86

Rendered WB dataset: Set 2 (2,881 images) [3]

FC4 [23] 505.30 142.46 307.77 635.35 10.37° 5.31° 9.26° 14.15° 10.82 7.39 10.64 13.77

Quasi-U CC [9] 553.54 146.85 332.42 717.61 10.47° 5.94° 9.42° 14.04° 10.66 7.03 10.52 13.94

KNN-WB [3] 171.09 37.04 87.04 190.88 4.48° 2.26° 3.64° 5.95° 5.60 3.43 4.90 7.06

Ours 124.97 30.13 76.32 154.44 3.75° 2.02° 3.08° 4.72° 4.90 3.13 4.35 6.08

Rendered Cube+ dataset with different WB settings (10,242 images) [3, 5]

FC4 [23] 371.9 79.15 213.41 467.33 6.49° 3.34° 5.59° 8.59° 10.38 6.6 9.76 13.26

Quasi-U CC [9] 292.18 15.57 55.41 261.58 6.12° 1.95° 3.88° 8.83° 7.25 2.89 5.21 10.37

KNN-WB [3] 194.98 27.43 57.08 118.21 4.12° 1.96° 3.17° 5.04° 5.68 3.22 4.61 6.70

Ours 80.46 15.43 33.88 74.42 3.45° 1.87° 2.82° 4.26° 4.59 2.68 3.81 5.53

to a specific WB color temperature. We achieve state-of-

the-art results for several different datasets for both tasks.

We first describe the datasets used to evaluate our method

in Sec. 3.1. We then discuss our quantitative and qualitative

results in Sec. 3.2 and Sec. 3.3, respectively. We also per-

form an ablation study to validate our problem formulation

and the proposed framework.

(A) Input images (B) KNN-WB 
emulator results

(C) Our deep-WB 
results

(D) Target camera 
WB

E= 9.49 E= 5.02 Fluorescent WB

E= 8.53 E= 6.30 Shade WB

E= 5.37 E= 4.01 Daylight WB

E= 13.04 E= 6.43 Incandescent WB

Figure 6: Qualitative comparison of WB manipulation. (A)

Input images. (B) Results of KNN-WB emulator [2]. (C)

Our results. (D) Ground truth camera-rendered images with

the target WB settings. In this figure, the target WB set-

tings are Incandescent, Daylight, Shade, and Fluorescent.

Shown input images are taken from the rendered version of

the MIT-Adobe FiveK dataset [3, 11].

3.1. Datasets

As previously mentioned, we used randomly selected

images from the two partitions of Set 1 in the Rendered WB

dataset [3] for training. For testing, we used the third parti-

tion of Set 1, termed Set 1-Test, and three additional datasets

not part of training. Two of these additional datasets are as

follows: (1) Set 2 of the Rendered WB dataset (2,881 im-

ages) [3], and (2) the sRGB rendered version of the Cube+

dataset (10,242 images) [5]. Datasets (1) and (2) are used

to evaluate the task of AWB correction. For the WB manip-

ulation task, we used the rendered Cube+ dataset and (3) a

rendered version of the MIT-Adobe FiveK dataset (29,980

images) [11]. The rendered version of each dataset of these

datasets is available from the project page associated with

[3]. These latter datasets represent raw-RGB images that

have been rendered to the sRGB color space with different

WB settings. This allows us to evaluate how well we can

mimic different WB settings.

3.2. Quantitative results

For both tasks, we follow the same evaluation metrics

used by the most recent work in [3]. Specifically, we used

the following metrics to evaluate our results: mean square

error (MSE), mean angular error (MAE), and △E 2000

[32]. We also report △E 76 in the supplemental materi-

als. For each evaluation metric, we report the mean, lower

quartile (Q1), median (Q2), and the upper quartile (Q3) of

the error.

WB correction We compared the proposed method with

the KNN-WB approach in [3]. We also compared our
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(A) Input images (B) AWB results (C) Incandescent WB results (D) Fluorescent WB results (E) Shade WB results

Figure 7: Qualitative results of our method. (A) Input images. (B) AWB results. (C) Incandescent WB results. (D)

Fluorescent WB results. (E) Shade WB Results. Shown input images are rendered from the MIT-Adobe FiveK dataset [11].

(C) KNN-WB (D) Our AWB correction(A) Input image (B) Quasi-U CC (E) Our Incandescent WB (F) Our Shade WB

Figure 8: (A) Input image. (B) Result of quasi-U CC [9]. (C) Result of KNN-WB [3]. (D)-(F) Our deep-WB editing results.

Photo credit: Duncan Yoyos Flickr–CC BY-NC 2.0.

results against the traditional WB diagonal-correction us-

ing recent illuminant estimation methods [9, 23]. We note

that methods [9, 23] were not designed to correct nonlin-

ear sRGB images. These methods are included, because

it is often purported that such methods are effective when

the sRGB image has been “linearized” using a decoding

gamma.

Table 1 reports the error between corrected images ob-

tained by each method and the corresponding ground truth

images. Table 1 shows results on the Set 1-Test, Set 2, and

Cube+ dataset described earlier. This represents a total

of 34,169 unseen sRGB images by our DNN-model, each

rendered with different camera models and WB settings.

For the diagonal-correction results, we pre-processed each

testing image by first applying the 2.2 gamma lineariza-

tion [4, 15], and then we applied the gamma encoding after

correction. We have results that are on par with the state-of-

the-art method [3] on the Set 1–Test. We achieve state-of-

the-art results in all evaluation metrics for additional testing

sets (Set 2 and Cube+).

WB manipulation The goal of this task is to change the

input image’s colors to appear as they were rendered using

a target WB setting. We compare our result with the most

recent work in [2] that proposed a KNN-WB emulator that

mimics WB effects in the sRGB space. We used the same

WB settings produced by the KNN-WB emulator. Specifi-

cally, we selected the following target WB settings: Incan-

descent (2850K), Fluorescent (3800K), Daylight (5500K),

Cloudy (6500K), and Shade (7500K). As our decoders

were trained to generate only Incandescent and Shade WB

settings, we used Eq. 5 to produce the other WB settings

(i.e., Fluorescent, Daylight, and Cloudy WB settings).

Table 2 shows the obtained results using our method

and the KNN-WB emulator. Table 2 demonstrates that our

method outperforms the KNN-WB emulator [2] over a to-

tal of 40,222 testing images captured with different camera

models and WB settings using all evaluation metrics.

3.3. Qualitative results

In Fig. 5 and Fig. 6, we provide a visual comparison of

our results against the most recent work proposed for WB

correction [3,9] and WB manipulation [2], respectively. On

top of each example, we show the △E 2000 error between

the result image and the corresponding ground truth image

(i.e., rendered by the camera using the target setting). It is

clear that our results have the lower △E 2000 and are the

most similar to the ground truth images.
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Table 2: Results of WB manipulation using the rendered version of the Cube+ dataset [3, 5] and the rendered version of the

MIT-Adobe FiveK dataset [3, 11]. We report the mean, first, second (median), and third quartile (Q1, Q2, and Q3) of mean

square error (MSE), mean angular error (MAE), and △E 2000 [32]. The top results are indicated with yellow and boldface.

MSE MAE △E 2000
Method

Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

Rendered Cube+ dataset (10,242 images) [3, 5]

KNN-WB emulator [2] 317.25 50.47 153.33 428.32 7.6° 3.56° 6.15° 10.63° 7.86 4.00 6.56 10.46

Ours 199.38 32.30 63.34 142.76 5.40° 2.67° 4.04° 6.36° 5.98 3.44 4.78 7.29

Rendered MIT-Adobe FiveK dataset (29,980 images) [3, 11]

KNN-WB emulator [2] 249.95 41.79 109.69 283.42 7.46° 3.71° 6.09° 9.92° 6.83 3.80 5.76 8.89

Ours 135.71 31.21 68.63 151.49 5.41° 2.96° 4.45° 6.83° 5.24 3.32 4.57 6.41

(A) Input image (B) Photoshop auto-color 
correction

(E) iPhone 8 Plus Photo 
app auto-correct

(D) Google Photos 
auto-filter

(C) Samsung S10
auto-WB correction

(F) Our deep-WB 
correction

Figure 9: Strong color casts due to WB errors are hard to correct. (A) Input image rendered with an incorrect WB setting.

(B) Result of Photoshop auto-color correction. (C) Result of Samsung S10 auto-WB correction. (D) Result of Google Photos

auto-filter. (E) Result of iPhone 8 Plus built-in Photo app auto-correction. (F) Our AWB result using the proposed deep-WB

editing framework. Photo credit: OakleyOriginals Flickr–CC BY 2.0.

Fig. 7 shows additional examples of our results. As

shown, our framework accepts input images with arbitrary

WB settings and re-renders them with the target WB set-

tings, including the AWB correction.

We tested our method with several images taken from

the Internet to check its ability to generalize to images typ-

ically found online. Fig. 8 and Fig. 9 show examples. As is

shown, our method produces compelling results compared

with other methods and commercial software packages for

photo editing, even when input images have strong color

casts. We provide additional examples in supplemental ma-

terials.

3.4. Comparison with a vanilla UNet

As explained earlier, our framework employs a single en-

coder to encode input images, while each decoder is respon-

sible for producing a specific WB setting. Our architecture

aims to model Eq. 1 in the same way cameras would pro-

duce colors for different WB settings from the same raw-

RGB captured image.

Intuitively, we can re-implement our framework us-

ing a multi-U-Net architecture [29], such that each en-

coder/decoder model will be trained for a single target of

the WB settings.

In Table 3, we provide a comparison between our pro-

posed framework against vanilla U-Net models. We train

our proposed architecture and three U-Net models (each U-

Net model targets one of our WB settings) for 88,000 itera-

tions. The results validate our design and make evident that

Table 3: Average of mean square error and △E 2000 [32]

obtained by our framework and the traditional U-Net archi-

tecture [29]. Shown results on Set 2 of the Rendered WB

dataset [3] for AWB and the rendered version of the Cube+

dataset [3, 5] for WB manipulation. The top results are in-

dicated with yellow and boldface.

AWB [3] WB editing [3, 5]
Method

MSE △E 2000 MSE △E 2000

Multi-U-Net [29] 187.25 6.23 234.77 6.87

Ours 124.47 4.99 206.81 6.23

our shared encoder not only reduces the required number of

parameters but also gives better results.

4. Conclusion

We have presented a deep learning framework for edit-

ing the WB of sRGB camera-rendered images. Specifically,

we have proposed a DNN architecture that uses a single en-

coder and multiple decoders, which are trained in an end-to-

end manner. Our framework allows the direct correction of

images captured with wrong WB settings. Additionally, our

framework produces output images that allow users to man-

ually adjust the sRGB image to appear as if it was rendered

with a wide range of WB color temperatures. Quantitative

and qualitative results demonstrate the effectiveness of our

framework against recent data-driven methods.
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