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Abstract

Despite considerable progress on end-to-end optimized

deep networks for image compression, video coding re-

mains a challenging task. Recently proposed methods for

learned video compression use optical flow and bilinear

warping for motion compensation and show competitive

rate–distortion performance relative to hand-engineered

codecs like H.264 and HEVC. However, these learning-

based methods rely on complex architectures and training

schemes including the use of pre-trained optical flow net-

works, sequential training of sub-networks, adaptive rate

control, and buffering intermediate reconstructions to disk

during training. In this paper, we show that a generalized

warping operator that better handles common failure cases,

e.g. disocclusions and fast motion, can provide competi-

tive compression results with a greatly simplified model and

training procedure. Specifically, we propose scale-space

flow, an intuitive generalization of optical flow that adds

a scale parameter to allow the network to better model un-

certainty. Our experiments show that a low-latency video

compression model (no B-frames) using scale-space flow

for motion compensation can outperform analogous state-

of-the art learned video compression models while being

trained using a much simpler procedure and without any

pre-trained optical flow networks.

1. Introduction

Recently, there has been significant progress in the

area of end-to-end optimized image compression, which

went from barely matching JPEG [33] to methods such

as [8, 26, 5] that can outperform the best hand-engineered

codecs when evaluated in terms of multi-scale structural

similarity (MS-SSIM) [36], PSNR, and subjective quality

assessments from user studies. While this is very encourag-

ing, over 60% of downstream internet traffic currently con-

sists of streaming video data [1], which means that in order

to maximize impact on bandwidth reduction, researchers

should focus on video compression.

Since the area of neural video compression is in early

Figure 1. Our proposed scale-space warping module. From the

source image x, we construct a fixed-resolution scale-space vol-

ume X. In contrast to bilinear warping, where the warped output

is sampled directly from the 2-D source image using a 2-channel

displacement field (fx, fy), we trilinearly sample from the 3-D

scale-space volume using a 3-channel displacements+scale field

(gx,gy,gz). The scale value gives a continuous, differentiable

knob that can adaptively blur the source image when warping if

the warp is not a good prediction of the target image.

stages, it is not yet clear which network architectures are

most effective for different application scenarios. We can

roughly categorize the existing research methods into the

following three categories:

1) 3D autoencoders are a natural extension of the work

done for learned image compression, but [27] demonstrated

that representing video using spatiotemporal transforma-

tions alone does not lead to better performance compared

to standard methods. However, when combined with tem-

porally conditioned entropy models [19], such methods can

perform on par with standard methods in terms of MS-

SSIM.

2) Frame interpolation methods use neural networks to

temporally interpolate between frames in a video and then

encode the residuals [38, 17]. This approach is commonly

used in standard video coding (called “bidirectional predic-

tion” or “B-frame coding”) [37], but has the disadvantage

that it is generally not suitable for low-latency streaming

since such methods need information “from the future” to

decode each B-frame. However, in standard codecs, the use

of B-frames typically provides the best rate–distortion (RD)
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performance when low-latency decoding is not required.

3) Motion compensation via optical flow is based on esti-

mating and compressing optical flow which is applied with

bilinear warping to a previously decoded frame to obtain a

prediction of the frame currently being encoded [24, 30].

The residual error is then separately compressed to reduce

total distortion and minimize temporal error accumulation.

Recently published methods in this setting achieve com-

pression that outperforms H.264 in terms of PSNR and that

outperforms HEVC in terms of MS-SSIM [24, 30]. How-

ever, these methods rely on complex architectures and train-

ing schemes, such as pre-trained optical flow networks [24],

sequential training of sub-networks [30, 24], adaptive rate

control during encoding [30] and buffering intermediate re-

constructions to disk during training [24].

Our research focuses on the third class of approaches,

since it provides a good balance between rate–distortion

performance and applicability to low-latency video stream-

ing. However, we argue that using pre-trained optical flow

networks [24] and bilinear warping [24, 30] may not be

ideal for motion compensation:

1. General flow estimation needs to solve the aperture prob-

lem, which is not an issue for compression, so the model

needlessly solves a harder problem than required. More-

over, optical flow networks aim to minimize motion vector

error, while compression seeks to minimize a compromise

between bitrate (the entropy of the latent representation of

the flow and residual) and distortion (reconstruction error).

2. The need to rely on existing optical flow network archi-

tectures thus potentially adds unnecessary constraints and

complexity to the design of compression networks.

3. The best optical flow models require a supervised train-

ing stage for state-of-the-art performance, which relies on

annotated flow data, complicates the training procedure, and

limits the domains of applicability.

4. Unlike standard video codecs that use motion compensa-

tion vectors, optical flow is dense, meaning that every pixel

is warped. Since there is no concept of “not using” a flow

prediction, unnecessarily large residuals are expected in the

case of disocclusions.

To address these concerns, we propose generalizing opti-

cal flow and bilinear warping to scale-space flow and scale-

space warping (see Figure 1), where a scale field is added as

a third dimension to the typical 2-channel flow field. This

per-location scale parameter allows the warping operation

to better handle difficult cases and to more gracefully de-

grade when no flow-based prediction is possible. The scale

dimension allows the model to learn to adaptively blur the

source content before warping based on how well it predicts

the next frame. Intuitively, this should lead to a smaller in-

termediate residual error and, in turn, to a more compress-

ible residual since the model won’t need to spend as many
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Figure 2. Overview of our end-to-end optimized, low-latency com-

pression system: 1) the scale-space flow is jointly estimated and

encoded to a quantized latent, [wi]; 2) the previous reconstruction,

x̂i−1, is warped using the decoded scale-space flow field, gi, yield-

ing the prediction, x̄i; 3) the remaining residual, ri = xi − x̄i, is

encoded to a quantized latent, [vi], and is decoded to r̂i, which

is added to the warped prediction to get the final reconstruction,

x̂i = x̄i + r̂i. All of the encoder & decoder networks are simple

four layer CNNs trained concurrently after random initialization.

bits to “undo errors” introduced by the warping step.

Furthermore, we show that a scale-space warping op-

eration integrated into a simple low-latency compression

pipeline (depicted in Figure 2) can yield rate–distortion re-

sults outperforming recent state-of-the-art learning-based

methods. Specifically, for equal PSNR, our method pro-

vides an average Bjøntegaard Delta (BD) rate reduction [12]

of 13.4% compared to [24] and a savings of 42.9%

over [38], while we see a 30.3% savings over [19] for equal

MS-SSIM (see Section 5 for a detailed evaluation). Com-

pared to prior approaches for flow-based motion compensa-

tion [24, 30], our system is significantly simpler since we

do not need to separately estimate flow or use pre-trained

networks. We also do not need to use advanced training or

encoding strategies such as buffering reconstructions [24]

or spatially adaptive rate control [30].

Our ablation studies show that compared to bilinear

warping, the proposed scale-space warping significantly im-

proves the rate–distortion performance with gains of more

than 1dB at some bitrates (see Section 5 for details).

In summary, our contributions are the following:

1. We propose scale-space flow and warping, an intuitive

generalization to flow + bilinear warping that reduces the
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need for complex residuals in failure cases.

2. Using a simple architecture and training procedure, we

are able to train our model end-to-end without utilizing a

pre-trained optical flow network.

3. Our experiments show that scale-space flow outperforms

recent state-of-the-art models such as [24, 19], while our

ablation study shows that the same system trained for flow

and bilinear warping performs significantly worse.

2. Related Work

Image Compression Research on learning-based image

compression [7, 10, 32, 4, 29, 8, 25, 5] has shown signif-

icant progress in terms of rate–distortion performance com-

pared to standard codecs such as JPEG [34], JPEG2000 [21]

and BPG [11]. Recent state-of-the-art models [40, 15, 26]

use hyperprior-based architectures [8] with improvements

including autoregressive context models [26] and multi-rate

training [15]. We consider these models to be foundational

building blocks for learned compression and use the hyper-

prior architecture as part of our video compression model.

Standard Video Compression There is a long history

of progress for hand-engineered video compression algo-

rithms used to create video format standards. Compression

rates have progressively improved, e.g., from H.263 [16], to

H.264 [31] and more recently to HEVC [3]. These codecs

provide a strong baseline for assessing the quality of learned

video compression models, and HEVC in particular remains

a strong competitor that often outperforms state-of-the-art

learning-based methods.

Learned Video Compression As mentioned above, recent

work on learned video compression roughly falls into three

categories, of which motion compensation via optical flow

is most related to our work. The architecture we adopt can

be viewed as a greatly simplified version of the method in

[24], which uses a pre-trained flow network [28] combined

with a flow compression module. In contrast, we directly

learn the motion estimation module from scratch (see Scale

Space Flow Encoder in Figure 2) which jointly estimates

and encodes the motion from the current input frame and

the previous reconstruction.

The training process of [24] happens in sequential steps:

the I-frame model is trained first and then the P-frame

model, which only sees one frame at a time, is optimized.

To ensure the P-frame model can handle its own output as

input, reconstructions from the P-frame model are buffered

to disk during training and fed back to the model. This

complicates the training process and means that the P-frame

model is trained using “stale” reconstructions from an older

version of the model. In contrast, we concurrently train the

I-frame and P-frame models from scratch, unrolling the P-

frame model over multiple frames during training, which

greatly simplifies the training procedure.

Scale-space for flow estimation The use of scale-space

techniques has a long history in optical flow estimation,

both with classical techniques (e.g. [6, 18, 13]) as well as

the use of multi-scale pyramids in deep flow estimation net-

works [28, 14]. However, these works make use of the

scale-space only for flow estimation, while the final result

is still a standard 2-channel displacement field. In contrast,

our estimated 3-channel scale-space flow directly integrates

into our proposed scale-space warping operation (see Fig-

ure 1) – irrespective of whether a scale-space or multi-scale

pyramid is used to estimate it.

Uncertainty estimates for optical flow The scale parame-

ter of our proposed scale-space flow (see Figure 1) can be

interpreted as an “uncertainty parameter” in the sense that

it is natural to use a high scale value in regions where it is

not feasible to obtain a good prediction via warping. While

prior work on supervised optical flow studied how to inte-

grate uncertainty into the predictions of flow estimation net-

works (see [20] for overview), such methods operate in the

supervised setting: i.e. they predict the uncertainty in the

prediction of ground truth flow. In contrast, this work fo-

cuses on generalizing the flow + warping operations so that

the warped result forms a good prediction irrespective of

the relationship between the displacement field and ground

truth flow.

3. Method

3.1. Scale-space flow

Our proposed scale-space flow (see Figure 1 for an

overview) generalizes flow and bilinear warping to also in-

corporate Gaussian blurring. Given an image x with a spa-

tial shape of H ×W and a flow field f = (fx, fy), the bilin-

ear warping of x by f is denoted as

x0 := Bilinear-Warp(x, f) s.t.

x0[x, y] = x[x+ fx[x, y], y + fy[x, y]]
(1)

where x[x, y] denotes sampling the image x at (continu-

ous) coordinates (x, y) using bilinear interpolation. We re-

fer to the flow channels fx, fy ∈ R
H⇥W as the x- and y-

displacement fields of the flow f .

For scale-space warping, we construct a fixed-resolution

scale-space volume X = [x,x∗G(σ0),x∗G(2σ0), · · · ,x∗
G(2M�1

σ0)], where x ∗ G(σ) denotes the convolution of

x with a Gaussian kernel with scale σ. X represents a

stack of progressively blurred versions of x with dimensions

H ×W × (M +1), which we can sample at continuous co-

ordinates (x, y, z) via trilinear interpolation.

We can now define a scale-space flow field as a 3-channel

field g := (gx,gy,gz), and the corresponding scale-space
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Previous reconstruction x̂i�1 Displacement Field (gx,gy) Scale Field gz

Scale Space Warped Prediction x̄i Decoded Residual r̂i Final Reconstruction x̂i

Figure 3. Visualization of the the internals of our model. The network learns to predict spatial flow even for a crowded scene. Note how

the scale parameter increases around the boundaries of the people where warping is least likely to provide an accurate reconstruction.

Similarly, in the bottom left corner of the image, the motion of the hands is not modeled well by warping so the network predicts a larger

scale value that results in a blurrier intermediate reconstruction that ultimately helps minimize the global RD loss.

warp of the image x as

x0 := Scale-Space-Warp(x,g) s.t.

x0[x, y] = X[x+ gx[x, y], y + gy[x, y],gz[x, y]]
(2)

We refer to the newly introduced third flow channel gz ∈

R
H⇥W
+ as the scale field of the scale-space flow g.

We note that Scale-Space-Warp is strictly more general

than both bilinear warping and Gaussian smoothing. In par-

ticular, for g = (gx,gy,gz):

• When gz = 0 we obtain bilinear warping as a special

case:

Scale-Space-Warp(x, (gx,gy,0)) =

Bilinear-Warp(x, (gx,gy))
(3)

• When gx = gy = 0 and gz = log2(σ/σ0) for σ > σ0

we recover (approximate) Gaussian blur as a special

case:

Scale-Space-Warp(x, (0, 0, 1+log2(σ/σ0)) ≈ x∗G(σ),
(4)

where equality holds if log2(σ/σ0) ∈ {0, ·,M − 1}.

Differentiability Since we use trilinear interpolation

(across the 2+1 space + scale dimensions) for the

Scale-Space-Warp operation, it is differentiable with re-

spect to all the arguments (x,gx,gy,gz).

Complexity The additional complexity of Scale-Space-

Warp as described above comes from having to construct

the volume X as a stack of progressively blurred versions

of the frame and the larger memory associated with storing

it, which is linear in the number of scale levels M (we set

M = 5 in all of our experiments). We chose this repre-

sentation because it simplifies the implementation of trilin-

ear warping. However, we note that one could technically

replace X with a multi-scale pyramid where the image is

decimated at each level, since the signal can be safely dec-

imated after Gaussian filtering [23]. This would reduce the

memory cost to a factor of 1 + 1/4 + 1/8 + · · · = 1.33 but

would complicate the implementation, since it is no longer a

matter of interpolating within a single 3-D tensor, but rather

within a stack of 2-D tensors.

Reparameterization As mentioned above, the Gaus-

sian kernel size as a function of the volume level is

[0,σ0, 2σ0, ..., 2
M�1

σ0], where the first level corresponds

to the original image without filtering. In-between two lev-

els levels i ≤ z < i+ 1, (with corresponding Gaussian ker-

nel sizes σa and σb), the interpolated value corresponds to a

filter that is a mixture of the two Gaussians. The mixture has

an effective kernel size corresponding to the standard devi-

ation, σ =
p

(z − i)σ2
a + (1− z + i)σ2

b , which we use as

an approximation of a Gaussian with a size in-between the

two.

So given a desired effective kernel size 0 < σ <
2M�1

σ0, we can easily solve for the corresponding value

of z = i + (σ2
b − σ

2)/(σ2
b − σ

2
a). Thus, for a more natural

parameterization, instead of predicting z we directly predict

the effective kernel size σ, and then use the corresponding

z for trilinear interpolation in the scale-space volume.

Composition While we do not study multi-scale architec-
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Previous reconstruction x̂i�1 Displacement Field (gx,gy) Scale Field gz

Scale Space Warped Prediction x̄i Decoded Residual r̂i Final Reconstruction x̂i

Figure 4. For this pair of frames, the camera motion is relatively well-modeled by the flow predictor, but the explosion in the center can

not be modeled accurately by warping. To compensate, the network uses the scale field to blur the explosion and relies on the compressed

residual to generate a high-quality reconstruction. Without the scale field, inaccurate warping can lead to a larger residual with a worse

rate–distortion trade-off.

tures in this paper, it is common practice to do so for optical

flow estimation [28, 14] where the compositionality of bilin-

ear warping is exploited: when warping with a (potentially

upscaled) field f1 followed by f2, one can specify an equiva-

lent field f3 that achieves the same in a single operation. We

note that it would in principle also be possible to integrate

scale-space warping into such architectures, since Gaussian

filtering has such compositionality [23].

3.2. Compression Model

Our model is targeted for low-latency scenarios, which

refers to the setting where only previous (decoded) frames

are available when encoding (or decoding) a given image.

Figure 2 provides an overview of how scale-space warping

can be integrated into such a compression architecture.

Given a sequence of frames x0, · · · ,xN we encode the

first (I) frame to a latent z0 which is quantized to integer

values [z0], obtaining a reconstruction x̂0. Now, for a cur-

rently given (P-) frame xi, we use a single network to jointly

estimate and encode the quantized scale-space warp latents

[wi], from which we decode a scale-space flow gi. We then

scale-space warp the previous reconstruction x̂i�1 to obtain

an estimate of the current frame x̄i. Since the estimate x̄i

will be imperfect, a second branch will encode the residual

ri = xi − x̄i to a latent [vi] and apply the decoded residual

r̂i to obtain a final reconstruction x̂i = x̄i + r̂i.

For each of the three latent types, z0,vi,wi we use a

separate hyperprior [8, 26] to model the corresponding den-

sity. To improve computational efficiency, no autoregres-

sive models are used within the hyperprior.

To summarize, we employ the hierarchical autoencoder

architecture proposed for image compression [8, 26] for

the purposes of I-frame compression, residual compression,

and scale-space flow computation. This is different from

previous work, where specialized optical flow networks are

typically used.

3.3. Quantization and entropy estimation

While we generally adopt the approach of [10] to re-

place quantization with additive uniform noise to approx-

imate Shannon cross entropy during training with differen-

tial cross entropy, we found that for the purpose of prop-

agating “quantized” latents/residuals through further trans-

formations, it was beneficial to use a straight-through esti-

mator (i.e., quantize during training as well as evaluation,

and substitute the gradient of the quantizer with the identity

function for training). Our approach is thus a combination

of the proposals in [10] and [32].

3.4. Loss

We optimize the whole system for the total rate–

distortion loss unrolled over N frames [7]:

N�1
X

i=0

d(xi, x̂i)+λ

"

H(z0) +
N�1
X

i=1

H(vi) +H(wi)

#

, (5)

where H(·) denotes the entropy estimate of the respective

latent, including the side information extracted by its hyper-

prior (see [26] for details), and d denotes the distortion met-

ric such as mean squared error (MSE) or multiscale struc-

tural similarity (MS-SSIM) [36]. This means that during

training, the bitrate allocation for the image latent z0, the
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Figure 5. Rate–distortion comparison on the UVG dataset [2] using PSNR (left) and MS-SSIM (right). Our approach outperforms existing

low-latency research models ([24, 38, 19]) at all bit rates for both metrics. Our method outperforms HEVC above 0.15 bpp for PSNR and

above 0.05 bpp according to MS-SSIM.

motion compensation latents wi and the residual latents vi

are all automatically determined by the system.

Equation 5 does not contain any loss terms specific to op-

tical flow such as warping losses or total variation regular-

ization. Instead, our networks learn to perform motion com-

pensation with the scale-space flow directly as a byproduct

of minimizing the rate–distortion equation.

4. Experimental setup

Architecture Our system uses a simplified version of the

architecture from the hyperprior image compression sys-

tem [26] as a building block, using ReLU activations in-

stead of GDN [9] (see Supplementary for full details). In

particular, we used the encoder architecture of [8] for the

“I-Encoder”, “Scale Space Flow Encoder”, and “Residual

Encoder’, and the corresponding decoder architecture for

“I-Decoder”, “Scale Space Flow Decoder” and “Residual

Decoder” (Figure 2).

Training data The models were trained on video frames

extracted from approx. 700,000 high definition (1920 ×

1080) videos with a frame rate of 30Hz (which have been

transcoded by YouTube). In an ideal scenario it would be

better to use uncompressed video. From each video se-

quence, we extracted 60 consecutive frames, which were

partitioned into temporal chunks of N = 3 frames. To

reduce pre-existing compression artifacts, since we don’t

have access to uncompressed videos, the chunks were then

downsampled by a randomized factor averaging 2

3
, and ran-

domly cropped to 256 × 256 or 384 × 384 pixels (see de-

tails below). These video fragments were then random-

ized, and batches of 8 fragments each were fed to the

training algorithm. We note that our method saw at most

1250000 · 8 · 3/30/3600 ≈ 278 hours of video during train-

ing (< 1.25M steps, batch size of 8 with 3 frames, 30FPS

average across videos), which is an order of magnitude less

data than is e.g. available in Vimeo-90K [39].

Colorspace We train and evaluate our models in the sRGB

colorspace. This is not ideal, because the native format for

most video content is Y’CbCr with 4:2:0 chroma subsam-

pling, and the conversion to and from sRGB is not loss-

less. However, we adopt sRGB to facilitate comparison

with almost all published work in neural video compres-

sion [38, 24, 19, 27, 17].

Trained models We optimized our model both for MSE and

the MS-SSIM distortion metric, using 9 rate points covering

a bitrate range of 0.025 to 0.8 bpp. In particular, we used

λ = 0.01 · 2i for MSE and λ = 10 · 2i for MS-SSIM,

where i = −3, . . . , 5. We refer to these models as ‘Ours

(scale-space warping opt. for MSE)’ and ‘Ours (scale-space

warping opt. for MS-SSIM)’ respectively.

To measure the benefit of scale-space warping, we opti-

mized 9 models for MSE in an identical fashion, with the

only difference being the warp method (i.e. in Figure 2 we

change Scale-Space-Warp to Bilinear-Warp and output a 2-

channel flow f instead of the 3 channel scale-space flow g

in the corresponding decoder). We refer to this model as

‘Bilinear warping opt. for MSE.’

Training schedule For training we used the Adam[22] opti-

mizer with a base learning rate of 10�4, batch size of 8 and

a crop size of 256 pixels. To further reduce training costs,

we trained all models for an MSE loss for the first 1,000,000

steps (which could be shared across the MSE and MS-SSIM

models), and then further trained the MS-SSIM models for

200,000 steps with the MS-SSIM loss. Finally, for all mod-

els we decayed the learning rate to 10�5 for 50,000 steps,

increasing the crop size to 384 × 384 pixels1 at the same

1We found that increasing the crop size improved performance (pre-

8508



Figure 6. Rate–distortion comparison on the MCL-JCV dataset [35]. Our approach outperforms H.264 above 0.08 bpp on PSNR but has

worse rate–distortion performance than HEVC. On MS-SSIM, however, our method outperforms H.264 at all bit rates and exceeds HEVC

above 0.08 bpp. We believe the relatively poor PSNR results are due to the presence of several animated videos in the MCL-JCV dataset

for which our model was not optimized (see Figure 7 for details).

Figure 7. Rate savings for each video in the MCL-JCV dataset [35]. Values represent the file size relative to H.264 as estimated by BD

rate for equal PSNR. Our method has smaller or equal file sizes compared to both H.264 and HEVC for most videos (21/30 and 17/30

respectively), but performs much worse on animations (videos 25, 24, 18, and 20), which is not surprising since the training data primarily

contains natural videos.

time.

Number of unrolled frames While training for N = 9 or

N = 12 unrolled frames yielded good results for the initial

models we explored, the training speed was too slow for

practical experimentation with 1,000,000 training steps tak-

ing 30 days to train on a NVidia V100 GPU. We found that

similar results could be obtained by training with N = 3
frames and without passing gradients from the I-frame re-

construction to the P-frame branch (to avoid the I-frame loss

dominating the optimization). We trained all the models in

this setting, which reduces the training time to approx. 4

days and allows for much faster experimentation.

Standard baselines and compared methods We evaluate

the RD performance of our method and compare it with

recently published learning-based methods [24, 19, 38] as

sumably because of a reduction in border artefacts), at the cost of slowing

the training speed – which is why we only did it for the last 50,000 steps.

well as standard codecs (H.264 [31] and HEVC [3]). We

evaluate H.264 and HEVC using typical ffmpeg settings

for low-latency mode, i.e. medium profile with B-frames

disabled (see Supplementary for the full command line),

and we refer to the results as H.264 (medium) and HEVC

(medium) below. To ensure we perform an apples-to-apples

comparison with recent methods, we also evaluate HEVC

with the settings used in [24, 19, 38] to verify the baseline

matches what is reported in those papers, which we refer to

as HEVC (very-fast).

5. Results

Qualitative results In Figures 3 & 4, we visualize the inter-

nals of our models for input frames taken from two different

evaluation videos. We observe that the model learns to com-

pensate for complex motion in crowded scenes, predicting

flow-like displacement fields while purely being trained for

the rate–distortion objective in Eq. (5). When the motion is
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too complex to be captured by bilinear warping, the model

utilizes the scale field to produce a simpler residual.

Quantitative results on the UVG dataset In Figure 5, we

show the RD performance on the UVG dataset [2], both

in terms of PSNR and MS-SSIM. For PSNR, our MSE-

optimized model outperforms the recently introduced DVC

method [24], which uses a much more complex architec-

ture with a pre-trained multi-scale optical flow network for

motion compensation. Furthermore, we outperform HEVC

(-preset very-fast) at bitrates above ~0.07 bpp and

exceed HEVC (-preset medium, the default setting)

above ~0.15 bpp. When optimized for MS-SSIM, our

model significantly outperforms all of the learning-based

methods and H.264 over the entire range of bitrates, and

its performance exceeds HEVC above ~0.05 bpp.

Quantitative results on the MCL-JCV dataset In Fig-

ure 6, we evaluate our model on the MCL-JCV dataset [35].

In terms of MS-SSIM, our MS-SSIM optimized model

outperforms H.264 at all bit rates and exceeds HEVC

above ~0.075 bpp. However, when evaluated using PSNR,

our MSE-optimized model only outperforms H.264 above

~0.08 bpp, and trails HEVC at bitrates above 0.1bpp.

Per-Video level analysis on MCL-JCV In Figure 7, we

compute the Bjøntegaard Delta (BD) rate reduction [12] for

equal PSNR relative to H.264 [31] for each video in the

MCL-JCV dataset (see the supplemental materials for de-

tails on BD rate calculations). We then plot the relative size

of each encoded video compared to H.264. For example, a

BD rate savings of 15% means that the relative size is 85%

(100% – 15%). By construction, the H.264 result is always

100.0%.

We can see that in terms of BD rate, for a majority

of videos (21/30) we have smaller or equal file sizes than

H.264. In Figure 7, this is shown by blue bars that are below

the dotted line representing the H.264 baseline. However,

for a fraction of the videos (4/30), the compressed files gen-

erated by our method are more than 50% larger than H.264,

and two are more than twice as large. The most challenging

videos for our method (videos 18, 20, 24, and 25) are all an-

imations, which could be explained by the lack of animated

videos in our training dataset as well as the challenge of

estimating motion for animations which tend to have rela-

tively little texture. For further details, see the supplemental

materials, which include separate RD graphs over just the

“natural” videos and just the animated videos in MCL-JCV.

Compared to HEVC (represented by orange bars in Fig-

ure 7), our method has significantly smaller file sizes for

about half of the videos (17/30). Nonetheless, in terms of

PSNR, HEVC outperforms our model on MCL-JCV at low

bit rates as shown in Figure 6 (left).

Bilinear warp vs Scale-Space warp Comparing our

method with the (identically trained) “Bilinear warping”

Figure 8. Rate savings for each video in the UVG dataset [2]. Val-

ues represent the file size relative to H.264 as estimated by BD rate

for equal PSNR, e.g. an average rate savings of 25% yields a value

of 75% (100% – 25%).

baseline, we find in Figures 5 & 6 that the performance gain

of scale-space warping is significant both on the UVG and

the MCL-JCV dataset, with a gap of 1dB for bitrates above

0.1bpp.

6. Discussion

In this paper, we proposed scale-space flow and scale-

space warping as a generalization of flow and bilinear warp-

ing for use in the motion compensation step of learned video

compression. Scale-space warping allows our network to

better model regions which are poorly predicted with bi-

linear warping due to issues like disocclusion and fast or

erratic motion.

We studied the scale-space warping operation in a sim-

ple low-latency motion compensation pipeline, without any

pretrained optical flow or complex training or evaluation

procedures. Our evaluation shows that it outperforms re-

cent state-of-the-art learning-based methods [24, 19, 38] as

well as the standard codecs H.264 and HEVC when evalu-

ated using MS-SSIM.

While the field of learned video compression is still in

its infancy, and the research community is still investigat-

ing architectures, we believe scale-space warping provides a

useful component and a novel and competitive direction for

future model explorations. Future directions could include

studying more complex architectures (including multi-scale

models) and generalizations that use more than one previous

frame for warping. Research is also needed to improve gen-

eralization to animated videos and to intelligently place I-

frames to better handle scene cuts and other abrupt changes.
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