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Abstract

Current 3D detection networks either rely on 2D object

proposals or try to directly predict bounding box param-

eters from each point in a scene. While former methods

are dependent on performance of 2D detectors, latter ap-

proaches are challenging due to the sparsity and occlusion

in point clouds, making it difficult to regress accurate pa-

rameters. In this work, we introduce a novel approach for

3D object detection that is significant in two main aspects:

a) cascaded modular approach that focuses the receptive

field of each module on specific points in the point cloud,

for improved feature learning and b) a class agnostic in-

stance segmentation module that is initiated using unsu-

pervised clustering. The objective of a cascaded approach

is to sequentially minimize the number of points running

through the network. While three different modules perform

the tasks of background-foreground segmentation, class ag-

nostic instance segmentation and object detection, through

individually trained point based networks. We also evaluate

bayesian uncertainty in modules, demonstrating the over all

level of confidence in our prediction results. Performance

of the network is evaluated on the SUN RGB-D benchmark

dataset, that demonstrates an improvement as compared to

state-of-the-art methods.

1. Introduction

Despite the recent breakthroughs in 3D object detection,

the task of region proposal is heavily dependent on 2D ob-

ject detectors. Following the conventions of image based

detection, candidate 3D proposals are typically generated

through sliding windows [35, 16, 31, 4] or by 3D region

proposal networks such as [27, 28]. However, the computa-

tional complexity of 3D search grows cubically with respect

to the resolution and becomes computationally expensive

for large scenes or real-time applications. Alternatively,

methods that project points to 2D images [3, 35] compro-

mise on geometric and surface properties that may be im-

portant in heavily cluttered and occluded environments.

While few works have attempted to directly learn from

point features, one of the most successful networks for pro-

cessing 3D groups of points is PointNet [20, 22] that can

be used to perform object detection and semantic segmen-

tation for point clouds. Their initial work for a complete 3D

object detection pipeline [19] integrates a 2D region pro-

posal network that generates bounding box proposal from

an RGB image and lifts them to a 3D frustum. The point-

cloud within the proposed frustum is then segmented using

PointNet and is used to regress the amodal bounding box of

the object in 3D. While their approach shows improved ac-

curacy, the performance of this method is restricted by the

performance of the 2D object detector.

This approach is recently updated by a 3D network that

employs Hough voting to predict probable instances of ob-

jects, followed by bounding box detection [18]. While the

network directly operates on an input point cloud of 20-40k

points, after feature learning, it only samples 1024 points as

seeds for voting that generate object locations for unique

instances. Since the point density for objects may vary

in a point cloud, it is unlikely that smaller or heavily oc-

cluded objects are well represented in such a small number

of seeds.

One of the biggest bottlenecks in processing unorganized

pointclouds through state-of-the-art networks is the number

of points that can be taken as input. This number of points

directly affects the size and the computational complexity of

the network, impacting the quality of feature learning. Con-

sequently, this paper focuses on an incremental reduction in

the size of the pointcloud, achieved through implementa-

tion of smaller modules for tasks with varying objectives,

where each task outputs a reduced number of points for the

subsequent module to process.

Towards this goal, we introduce a novel cascaded net-

work that proposes individual modules for the following

tasks: a) background-foreground segmentation and b)

class agnostic instance segmentation and c) 3D object de-

tection, as shown in Fig. 1. The proposed network is trained

in a modular fashion using PointNet++ [22] as a backbone

for segmentation modules, while the segmented clusters are

inferred through the recently proposed Edge-Aware Point-

Net [1] for the task of 3D object detection.
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Figure 1. Overview of the proposed pipeline for object detection. Given a 3D scene, the point cloud is first segmented into background-

foreground points. Next, only foreground points are clustered using DBSCAN, an unsupervised density based region growing algorithm.

Each point in a cluster is assigned a centroid location that is fine-tuned using the second base network. Output from this module is K

clusters that are inferred through Edge-Aware PointNet (EPN) to predict class and regress 3D amodal bounding boxes for each cluster.

Specifically we make the following contributions:

• Propose a novel cascaded framework for 3D object

detection that can directly achieve class agnostic seg-

mentation of point clouds, followed by amodal bound-

ing box prediction. As opposed to training a network

through multi-task learning, we propose to train simpler

modules individually and leverage uncertainty predic-

tions to generate confident proposals for the final task.

• The first module performs background-foreground

segmentation, where the background class consists of

walls and floors while foreground consists of all other

objects. The objective is to remove all points from the

point cloud that may generate false positives in the sub-

sequent tasks. This step automatically reduces the size

of the point cloud, without compromising object ob-

servability.

• The next module is a novel clustering based instance

segmentation module where foreground points from

the previous stage are clustered using an unsupervised

algorithm, DBSCAN [5]. An encoder-decoder frame-

work jointly predicts instances through regression of

offset vector between the proposed cluster centroids and

ground truth. Consequently, each point votes for an off-

set distance that indicates the true location of the in-

stance centroid.

• Finally the last module, Edge-Aware PointNet (EPN)

predicts bounding parameters that include size, location

and orientation for individual object instances.

2. Related Work

2.1. Instance Segmentation

Despite concentrated efforts to improve 3D deep learn-

ing networks, literature for 3D instance segmentation lags

behind its 2D counterpart. The first prominent attempt in

this direction was introduction of Similarity Group Pro-

posal Network (SGPN) [32], that generates group proposals

of object instances by learning representation in the form

of a similarity matrix. Consequently, points that belong

to the same instance have similar features in the matrix

as opposed to those in different object instances. Another

recent approach was 3D Semantic Instance Segmentation

(3D-SIS) [9] that employs multi-view RGB images to learn

2D features while backprojecting them on to associated 3D

voxels. They leverage 2D feature learning to 3D for the

tasks of object detection and instance segmentation.

Joint Semantic-Instance Segmentation (JSIS) [17] 3D is

the only work that addresses panoptic (semantic and in-

stance) segmentation as a joint task for learning from point

clouds. Instead of directly processing the complete point

cloud, they scan for overlapping 3D windows which are

then passed to a point network to predict semantic class

labels of the vertices within the window and embedd the

vertices into high-dimensional vectors. This is followed by

conditional random field for optimization of final results.

They define instance segmentation using a push-pull em-

bedding where Lpull attracts embedding towards the cen-

troids, while Lpush keeps these centroids away from each

other. The regularisation loss Lreg acts as a small force that

draws all centroids towards the origin. One of the main is-

sues with this method is the requirement to run the network

for all 3D windows generated from the original point cloud.
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Thus this method can become computationally expensive

for dense large scale point clouds.

Inspired by SGPN and JSIS, we address the task of

3D instance segmentation by directly learning from points.

However, unlike both methods, we leverage geometric

properties of objects in 3D to initiate this task using DB-

SCAN [5], an unsupervised clustering algorithm. As a re-

sult, we start the training of our network with the instance

predictions of DBSCAN, while PointNet++ [22] fine-tunes

the instances to achieve an improved performance for in-

stance segmentation, while using a shallow network.

2.2. 3D Object Detection

The three most popular approaches for working with vol-

umetric data are 3D CNNs, 2D multi-view CNNs and point

networks. State-of-the-art 3D CNN methods [4, 16, 24,

27, 28, 31, 33] are predominantly volumetric quantization

based approaches that are popular because they incorporate

the complete point cloud and directly exploit 3D informa-

tion. Song et al. [28] and Zhou et al. [35] proposed to en-

code each non-empty voxel with statistical quantities that

are derived from points contained within each voxel such as

the truncated signed distance or binary encoding [15].

Similarly, multi-view CNNs [3, 11, 21, 29, 30] use 2D

rendered images of the 3D point cloud, significantly reduc-

ing the computational complexity of the network. PointPil-

lars [14] is another method that enables end-to-end learn-

ing with only 2D convolutional layers by using a novel en-

coder that learns features on pillars (vertical columns) of

the point cloud to predict 3D oriented boxes for objects.

MV3D [3] introduces a multi-view representation for a LI-

DAR point cloud by computing a multi-channel feature map

in the bird’s eye view and the cylindrical coordinates in the

frontal view.

While it is observed that multi-view CNN based recog-

nition [34, 26, 12] is a better approach as the network is

trained to recognize 3D objects under occlusion. How-

ever, both the bird’s view projection and voxelization based

methods suffer from information loss due to data quantiza-

tion, and 3D CNN is both memory and computation ineffi-

cient.

Point based networks were first proposed by [20, 22]

that have been used for object classification of full 3D

CAD models, semantic segmentation and 3D object detec-

tion in scenes [19]. Based on this network, Shi et al [25]

proposed PointRCNN, a novel bottom-up point based net-

work which directly generates robust 3D proposals from

raw point clouds, which is both efficient and quantization

free. The underlying assumption for this network is that the

desired objects are naturally well separated, which is true

for KITTI dataset but it may not achieve high performance

for indoor point clouds due to high level of clutter and oc-

clusion where objects often overlap.

In this paper we propose to use a cascaded modular ap-

proach which allows the flexibility to modify the network

architecture for each sub task. As a result, we use Point-

Net++ for background-foreground and instance segmenta-

tion, but Edge-Aware PointNet (EPN) [1] for object de-

tection. EPN integrates PointNet++ with a parallel stream

of 2D binary image based convolutional neural network

(CNN). The PointNet++ layer of the proposed framework

takes as input individual instances of 3D point clouds, while

the complimentary CNN layer of the network is provided

with 2D binary maps. This approach allows feature learn-

ing through the combination of point networks and tradi-

tional CNNs, resulting in improved performance.

3. Network Architecture

We introduce a cascaded modular network that performs

background/foreground segmentation followed by class ag-

nostic segmentation and 3D object detection, as shown in

Figure 1. The primary reason for using multiple cascaded

modules for segmentation is a principled reduction of points

from the point cloud. This aspect of downsizing the point

cloud is critical as the original raw point cloud may contain

millions of points while the computational complexity of a

point based network is directly affected by the number of

points being processed.

Consequently, we observe that state-of-the-art point

based methods [18, 19, 17] typically process 1024-5000

points. Assuming semantic segmentation is directly imple-

mented on the complete point cloud, without foreground-

background segmentation, the network can only process M

points, as a result fewer points will contribute towards fea-

ture learning of each object. Due to the proposed cascaded

modules, there is a significant reduction in the size of the

point cloud, once background points are dropped from the

scene. Thus, the subsequent modules will consist of points

that are meaningful for the specific task, resulting in a more

focused receptive field.

3.1. Background/Foreground Segmentation

The segmentation pipeline is initiated with back-

ground/foreground segmentation, where background con-

sists of walls, floor and ceiling while foreground consists of

all other objects. The input point cloud is of size N ˆ 6,

where each point N is associated with a 3D coordinate

tx, y, zu and RGB tR,G,Bu values.

The backbone of segmentation modules is a point based

encoder-decoder framework, as proposed by Qi et al [22].

The encoder consists of set abstraction layers (SA) that sam-

ple nearest neighboring points from the cloud and learn fea-

ture vectors using multi-layered perceptrons (MLPs). The

SA layers sub-sample Nl`i points from the previous layer

Nl, where Nl`i Ă Nl and generate a feature vector for ev-

ery point in the sub-sampled group. Similarly, the decoder

10610



Figure 2. Details of the instance segmentation module. The mod-

ule is initialized using initial clusters where each point is associ-

ated with a vector △Ci that represents the offset between CiDB

and Ci.

consists of feature propagation layers (FP) that interpolates

feature values f of the sub-sampled points Nl to Nl´i. In-

terpolation of features from one layer to the next is carried

out using the inverse distance weighted average that is de-

fined as [22]:

f pjqpxq “

řk

i“1
wipxqf

pjq
i

řk

i“1
wipxq

(1)

where wipxq “ 1

dpx,xiqp represents the inverse distance

weighted average for k nearest neighbors.

Unlike a sliding window method that is traditionally used

to process a complete point cloud [19], we randomly sam-

ple N points from the point cloud. While the network pro-

cesses N points, the original cloud might be much larger, of

a size T ˆN . To propagate foreground/background seman-

tic labels throughout the point cloud, we propose ’Nearest

Neighbor - Upsampling (NN-Ups)’, defined as follows.

Spŷpq “ argmaxtSpy1q...Spykqu (2)

where Spy1q, ...Spykq are the predicted labels of k near-

est neighbors from the points inferred through the network,

while Spŷpq are points from the original point cloud. Us-

ing this approach, we can interpolate semantic labels to the

original point cloud.

3.2. Class Agnostic Instance Segmentation

Once foreground points are obtained, a novel instance

segmentation module is introduced, that predicts class ag-

nostic instances. To generate individual object instances,

direct regression of object centroids is often difficult to

converge as there is large variation in object scale, size

and density in 3D point clouds. Consequently, we pro-

pose to group points into clusters using an unsupervised

Figure 3. Explanation of the concept of density based clustering

using DBSCAN. This algorithm is dependent on two parameters,

ǫ that specifies the range of neighborhood for each point and µ that

gives the min number of points that can form a cluster.

clustering algorithm DBSCAN [5], which results in each

point in the cluster being associated with a centroid CiDB

for the instance that it belongs to, as shown in Figure 2.

Thus the objective of the network is to predict an offset

△Ci “ t△cxi
,△cyi

,△cziu between CiDB
and the actual

centroid Ci obtained from the ground truth.

The DBSCAN algorithm is dependent on two parame-

ters, ǫ that specifies the range of neighborhood for each

point and µ that gives the min number of points that can

form a cluster, as shown in Figure 3. The algorithm initially

identifies core points in the data, followed by searching for

connected components of the core points in the neighbor

graph and forming clusters from among these points. Fi-

nally, the non-core points are assigned to the nearest cluster

if it is an ǫ neighbor. This approach does not require prior

information regarding the number of clusters and is robust

to outliers.

The network architecture uses the same backbone as the

foreground/background segmentation module. However the

network performs the task of instance regression. The loss

function of the network is Lins which is given as:

Lins “
1

N

N
ÿ

i

||△Ci ´ △Ci
˚|| (3)

where △Ci is the true offset between CiDB
and Ci, while

△Ci
˚ is the predicted offset vector for every point i in the

point cloud.

The concept of initial clustering has two fundamental

benefits over directly regressing instance centroids, as pro-

posed by Deep Hough Voting [18]. First, the initial cluster-

ing of dense point clouds generates a geometry based esti-

mate about objects. This improves sampling of points from

the dense point cloud, which will now consider to sample

points from all clusters, irrespective of their size and den-

sity. Unlike Farthest point sampling algorithm or random

sampling, this approach directly ensures that points are be-

ing sampled from all important regions that may contain an
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object.

The second advantage exists in the faster convergence of

the training network that is able to predict smaller centroid

offsets △Ci with a higher accuracy as opposed to direct re-

gression of centroid locations. This concept is demonstrated

in Figure 2 where all points are initially associated with

CiDB
, shown with red dots, indicating the cluster instance

they belong to. Since the ground truth centroid location is

Ci, shown with yellow dots, the network is trained to learn

the true offset between predicted centroid and true centroid.

Once the true instances are predicted, each instance is sam-

pled by the following module to predict amodal bounding

boxes and class labels.

Similar to the previous module, predicted centroids for

instances are propagated through all the foreground points

using Eqn.(2).

3.3. EPN: EdgeAware PointNet

Edge-Aware PointNet (EPN) is a novel deep learning

network that we recently proposed [1] for object recognition

from 3D point clouds. The architecture of EPN consists of

two parallel channels for feature learning, which is an ex-

tension to the originally proposed PointNet++ [22]. The

novelty of the proposed network is the integration of Point-

Net++ Feature Extractor and Edge-Aware CNN branch that

explicitly uses 3D boundary points as geometric priors to

enhance feature learning.

More formally, the network takes as input a matrix X P
R

Nˆ4 where N is the fixed number of points randomly

sampled from the output of our second module, while the

four channels represent Euclidean coordinates and a logical

value indicating if the given point is edge or non-edge. The

edge detection algorithm used is also based on our previous

work [2].

The network consists of three main aspects: a) Binary

Projection, b) PointNet Feature Extractor and c) ECNN

Feature Extractor. The binary projection module use a map-

ping function S to convert the 3D matrix X to a series of 2D

binary maps [1]. These maps fundamentally represent the

geometric shape of the given object, while being low res-

olution, which prevents the network from being computa-

tionally intensive. We use this network as our final module

that takes K clusters and predicts class labels and bounding

box parameters for each object.

3.4. Loss Function for EPN

EPN aims to predict object class label and an amodal

bounding box through six classification and regression

tasks, defined as y “ tylc, yac, yoc, ycen, y△ac, y△ocu. The

classification tasks are ylc which represents label classifica-

tion, yac which represents anchor box classification while

yoc represents orientation bin classification. Similarly, the

regression tasks are ycen, y△ac, y△oc that represent regres-

sion of bounding box centroid and offsets from anchor box

and orientation bin.

We parameterize the 3D bounding box as BBi “
txi, yi, zi, li, wi, hi, θiu, where txi, yi, ziu represents the

centroid location, tli, wi, hiu are length, width and height

of the box, representing its size, and θi is the yaw rotation

around Z-axis, for a given point cloud instance i. We for-

mulate the bounding box prediction based on [19] where we

first pre-define a fixed number of anchor boxes with specific

dimensions and then regress the offset of each object from

the closest anchor.

The classification module takes as input the joint feature

vector F “ tFPN , FECNNu from the PointNet and ECNN

branches respectively and are followed through a series of

fully connected (FC) and dropout layers. The softmax func-

tion is used to generate C class probabilities while the cross-

entropy loss function is used for training all classification

tasks.

All regression tasks tycen, y△ac, y△ocu are trained using

Huber loss [10], defined as follows.

Lr “

$

’

&

’

%

1

2
py ´ fpxqq2 for|y ´ fpxq| ď δ

δ|y ´ fpxq| ´
1

2
δ2 otherwise

(4)

where y is the true value, fpxq is the predicted value from

the network and δ is pre-defined threshold below which the

loss becomes quadratic. The combined loss for the EPN

network is:

L “ Lctlcu ` λ1Lctacu ` λ2Lctocu ` λ3Lrtcenu

`λ4Lrt△acu ` λ5Lrt△ocuu (5)

where λ1, ..., λ5 are variable parameters that describe the

weights associated with each task.

3.5. Bayesian Uncertainty Estimation

Bayesian neural networks replace the deterministic

weights with probability distributions over the weights, in

a neural network [6]. As a result, the objective is no longer

to optimize the weights directly, but to optimize the param-

eters of the prior distributions. Recently, [7] proposed to

compute uncertainty using a Dropout layer, where a prior

Bernoulli distribution is placed over weights of the neural

network, which when performed during inference, can be

used to compute uncertainty in prediction.

In the proposed network, all PointNet++ modules consist

of at least a single Dropout layer, which is used to compute

variance for for the respective module. This variance in the

cloud is used to filter out points associated with uncertain

decisions and improve overall prediction accuracy.
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Figure 4. Precision recall curve for background-foreground seg-

mentation under varying Bayesian Mean threshold. The graphs

show that precision and recall values increase when a lower

Bayesian Mean threshold is selected to filter out non-decisive point

predictions. Consequently, the uncertainty map on the bottom-

right image shows that points with higher uncertainty (light col-

ored points) belong to the background class, indicating the erro-

neous labelling for this class.

4. Experimental Results

4.1. Implementation Details

Our network operates on dense indoor pointclouds from

the SUN-RGBD dataset that contains above 100k points per

scene. The first segmentation module samples 10K points

from the point cloud, followed by instance segmentation

that samples 5k while the number points sampled by EPN

from each of the S object proposals are 1024. The points

are randomly sampled on-the-fly while if a point cloud has

fewer points, the same points are repeated to achieve the

designated number. The backbone network PointNet++

consists of four set abstraction (SA) layers and four fea-

ture propagation (FP) layers, for both segmentation mod-

ules. The SA layers use a variable radius of 0.1 ´ 0.8 for

sampling the nearest neighbors. The four FP layers sam-

ple the points back to the original number, with 256 di-

mensions in the first two layers followed by 128 dimen-

sional features. This is followed by two fully connected

layers (FC) with a dropout layer of p “ 0.5. The Point-

Net branch in EPN consists of three SA layers where the

first two layers perform multi-scale grouping to sub-sample

N “ t512, 128u points with k “ t64, 64u nearest neigh-

bours, using a radius based search of radius t0.2, 0.4u. Each

SA layer is followed by PointNet layer with MLP of sizes

t64, 64, 128u, t128, 128, 256u. The last SA layer does not

perform sub sampling but accumulates all feature maps, fol-

lowed by an MLP of size t256, 512, 1024u.

The ECNN branch of the network trains in parallel to the

PointNet branch with two CNN layers. The dimensions of

Class Acc

Foreground 75.8

Background 75.9

mAcc 75.8

BM 79.1

Table 1. Mean accuracy for background/foreground segmentation

on the SUN-RGBD dataset.

the convolutional filters for the two layers are f “ t64, 128u
while the kernel size for convolutions are k “ t5, 5u. Each

2D CNN layer is followed by a max pooling layer with a

kernel size of k “ t2, 2u and a stride of 2. After the sec-

ond max pooling layer, the feature maps are converted to a

vector following through two fully connected layers of size

t2048, 1024u where each FC layer is followed by a dropout

layer with dropout probability of 0.5.

4.2. Evaluation and Comparison

We evaluate all three modules on the SUN-RGBD

dataset. The first module segments background and fore-

ground from the point clouds. The ground truth is gener-

ated using centroids of objects and finding all points within

the bounding box, that are labelled as foreground. All the

remaining points are labelled as background. The evalu-

ation metric for this segmentation is mean class accuracy

(mAcc) and Bayesian Mean (BM). BM is defined as mAcc

over points that have low Bayesian variance, evaluated as:

V arpyq “
1

T

T
ÿ

t“1

f w̃ipxqf w̃ipxtq ´ EpyqTEpyq (6)

BM filters out points that have Var ą λ, where λ is the

threshold that decides the cutoff threshold for discarding

points.

Figures 4, 5 show details of ground truth and prediction

from the first segmentation module. It can be seen from

the figures that labelling is slightly erroneous. However,

using Bayesian uncertainty estimates, incorrect points can

be identified with higher variance and can thus be ignored

in the final prediction. As a result, instance segmentation

only processes points with Var ă λ where λ “ 0.2. The

results for this segmentation are tabulated in Table 1 that

shows that Bayesian Mean results in an improved accuracy

in the overall segmentation task.

To evaluate results for instance segmentation, we use the

standard AP r [8], which computes the mean average pre-

cision (mAP) under different Intersection over Union (IoU)

scores between the predicted and ground truth segmentation

(in place of IoU between bounding boxes). This module

generates an offset △Ci “ t△cxi
,△cyi

,△cziu between

CiDB
, the cluster centroids predicted by DBSCAN cluster-

ing, and the actual centroid Ci obtained from the ground

truth. Once the new centroids are predicted, they are clus-

tered using a distance based method that combines centroids
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Figure 5. From left to right: Original point cloud, ground truth segmentation, predicted segmentation and uncertainty map. The figures

show examples of the module and uncertainty prediction that removes points with high variance, thus achieving improved segmentation

results. For predicted uncertainty, a darker color represents minimal variance while lighter colors indicate high variance.

Metric Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet

mAP/0.25 68.71 53.55 59.34 24.58 31.04 64.17 38.91 52.46 44.13 93.48

mAP/0.35 69.32 54.28 60.12 24.59 31.39 64.49 38.92 52.99 44.32 93.67

mAP/0.45 69.38 54.83 60.42 24.67 31.76 64.71 38.17 53.73 44.77 93.86

mAP/0.55 68.90 56.20 61.23 24.91 32.56 65.15 38.60 54.58 45.89 93.96

mAP/0.95 83.29 64.39 68.84 22.57 38.01 68.11 36.23 64.15 54.77 91.94

Table 2. 3D instance segmentation on scans from SUN-RGBD. We evaluate mAP for varying ǫ, with IoU@0.25 threshold over 10 classes.

that are within a specified range, defined by ǫ. Table 2

shows instance segmentation results for varying ǫ. It can

be seen that with higher ǫ, mAP for larger objects increases

significantly as compared to lower ǫ.

While this module is able to achieve accurate results for

larger objects, with higher ǫ, it is observed that smaller ob-

jects like chairs and nightstand have a significantly lower

mAP. These results are also verified by Figure 6 where we

can see that smaller clusters of chairs are often confused to

be part of the table. It is also observed that the DBSCAN al-

gorithm discards disconnected components of same object

as noise which often results in an incomplete object at the

output. We hypothesize that these issues can be resolved by

considering a larger number of points (currently this module

processes 5000 points), so that a higher density of objects

will reduce objects being labelled as noise.

We evaluate bayesian uncertainty for the instance seg-

mentation over 10 trials. However, this variance does not

measure beyond 0.02 which is not significant enough to

bring an impact in the overall results. Consequently, the

main impact of uncertainty estimation comes from the first

segmentation module. The instances predicted by the in-

stance segmentation module serves as input for EPN, where

we use ǫ “ 0.95. In addition, we concatenate the origi-

nal points with predicted instances to determine K clusters,

where K “ 15. The results for this network are tabulated

in Table 3 where EPN is able to achieve mAP comparable

with the state-of-the-art methods. While there is significant

improvement in some categories, the particular poor perfor-

mance for the category chair is a reflection of the issues

identified in the instance segmentation module. Another

factor that impacts the chair category is the fixed number

of proposals K “ 15, while many scenes consist of up to

35´ 40 instances of chairs. This restriction comes from the

GTX 1070 GPU that we use, due to which many clusters

are not processed by the network. Thus our results show
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bathtub bed bookshelf chair desk dresser night stand sofa table toilet mAP

DSS [28] 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1

COG [23] 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6

2D-driven [13] 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1

FPN [19] 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0

VoteNet [18] 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7

Ours (λ=10) 79.4 88.2 32.1 17.0 37.4 53.7 50.0 65.3 53.3 95.8 57.2

Multi-Scale EPN (standalone) 72.0 90.5 62.2 66.9 43.7 47.0 62.6 62.3 47.2 94.6 64.9

Table 3. Average precision for 3D amodal object detection, with IoU threshold 0.25, compared with state-of-the-art algorithms on the

SUN-RGBD test dataset.

Figure 6. Qualitative results for class agnostic instance segmenta-

tion module. We observe that smaller objects, like chairs, are often

incorrectly merged with larger objects, like table, that results in the

significantly poor performance.

that accurate ROI generation and reducing the number of

points are still critical factors that limit the performance of

3D object detectors.

4.3. Multi-Scale EPN

Since the parameter λ directly affects EPNs perfor-

mance, we evaluate a Multi-scale EPN that combines the

output from different scales and concatenates the binary

maps at the input. However, for this experiment, we use

ideal clusters that are directly generated using ground truth.

Thus the objective is to evaluate multi-scale EPN as a stan-

dalone module and determine the effect it has on predic-

tion accuracy. Consequently, the input tensor for the ECNN

branch of the network is now defined as X Ñ R
MxMxSλx3,

where M is the resolution of a 2D binary map and Sλ de-

fines the number of different scales used. Thus, the map-

ping generated by different λ is concatenated, while the rest

of the architecture remains the same.

The results of this experiment are tabulated in Table 3,

where λ “ t5, 8, 10u. Our results show a performance im-

provement in the categories of bed, bookshelf, chair, desk

and night stand of t2.3%, 30.1%, 49.9%, 6.3%, 12.6%u,

while achieving comparable AP for all other categories. The

results of this experiment shows that with correctly clus-

tered objects, EPN can achieve a much higher detection ac-

curacy.

4.4. Execution Time

The training of every individual module took almost 48

hours on a single GTX 1070 GPU. Inference time for the

background/foreground segmentation and instance segmen-

tation module took an average of 0.58 and 0.45 seconds for

a single point cloud of size 10000ˆ 3 and 5000ˆ 3 respec-

tively. Inference for the EPN network takes 0.21 secs for 15

proposals (belonging to the same scene), with 1024 points

and a 32x32x3 binary image per object proposal. Overall

the network takes 1.24 secs for inference on a single point

cloud. While the inference time is much larger as compared

to Frustum PointNet [19] and VoteNet [18], which take 0.09

and 0.1 secs respectively, a direct comparison is difficult as

we use GTX 1070 while the authors in [18, 19] use GTX

1080.

5. Conclusion

In this paper we propose a cascaded framework of
multiple deep networks that perform clustering based in-
stance segmentation followed by 3D amodal object detec-
tion. Given that point based networks are limited by the
number of points they can process, we propose a modular
approach with a primary objective of filtering out irrelevant
points so that the subsequent module focuses the receptive
field on the desired objects. With this approach we propose
a segmentation module that distinguishes foreground from
background. This is followed by class agnostic instance
segmentation that is initiated by an unsupervised cluster-
ing algorithm, learning to predict the offset of each point
from the actual centroid to the proposed centroid. Finally
all proposals are evaluated using the EPN module for pre-
dicting amodal object bounding boxes. We show how un-
certainty estimates in the background/foreground segmen-
tation results in improved accuracy for the task. Our results
also show that the proposed approach achieves comparable
results to the state-of-the-art on the SUN-RGBD dataset.
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