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Abstract

Most of the existing works in video synthesis focus on

generating videos using adversarial learning. Despite their

success, these methods often require input reference frame

or fail to generate diverse videos from the given data dis-

tribution, with little to no uniformity in the quality of videos

that can be generated. Different from these methods, we fo-

cus on the problem of generating videos from latent noise

vectors, without any reference input frames. To this end,

we develop a novel approach that jointly optimizes the in-

put latent space, the weights of a recurrent neural network

and a generator through non-adversarial learning. Opti-

mizing for the input latent space along with the network

weights allows us to generate videos in a controlled envi-

ronment, i.e., we can faithfully generate all videos the model

has seen during the learning process as well as new unseen

videos. Extensive experiments on three challenging and di-

verse datasets well demonstrate that our proposed approach

generates superior quality videos compared to the existing

state-of-the-art methods.

1. Introduction

Video synthesis is an open and challenging problem in

computer vision. As literature suggests, a deeper under-

standing of spatio-temporal behavior of video frame se-

quences can directly provide insights in choosing priors,

future prediction, and feature learning [32, 34]. Much

progress has been made in developing variety of ways to

generate videos which can be classified into broadly two

categories: class of video generation methods which require

random latent vectors without any reference input pixel

[24, 31, 32], and class of video generation methods which

do depend on reference input pixels [10, 28, 34]. Current

literature contains methods mostly from the second class

which often requires some human intervention [10, 34].

In general, Generative Adversarial Networks (GANs) [8]

*Joint first authors
1Project page: https://abhishekaich27.github.io/navsynth.html
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Figure 1: Comparison of proposed non-adversarial

approach to one representative adversarial approach

(MoCoGAN [31]) on the Chair-CAD [2] dataset. Top:

MoCoGAN often generates blurry frames including similar

type of chairs for different videos as the time step increases.

Bottom: Our approach1, on the other hand, generates rela-

tively sharper frames, maintaining consistency with the type

of chairs unique to each video in the dataset.

have shown remarkable success in various kinds of video

modality problems [13, 16, 18, 24]. Initially, video gener-

ation frameworks predominantly used GANs to synthesize

videos from latent noise vectors. For example, VGAN [32]

and TGAN [24] proposed generative models that synthe-

size videos from random latent vectors with deep convolu-

tional GAN. Recently, MoCoGAN [31] proposed to decom-

pose a video into content and motion parts using a generator

guided by two discriminators. During testing, these frame-

works generate videos that are captured in the range of the

trained generator, by taking random latent vectors. While

all these methods have obtained reasonable performance on

commonly used benchmark datasets, they utilize adversarial

learning to train their models and hence, inherit the short-

comings of GANs. Specifically, GANs are often very sen-

sitive to multiple factors such as random network initial-

ization, and type of layers employed to build the network

[14, 25]. Some infamous drawbacks of GANs are mode-

collapse (i.e., able to generate only some parts of the data
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distribution: see Fig. 1 for an example) and/or vanishing

generator gradients due to discriminator being way better in

distinguishing fake samples and real samples [1].

Non-adversarial approaches [4, 11, 15] have recently

been explored to tackle these challenges. For example, Gen-

erative Latent Optimization (GLO) [4] and Generative La-

tent Nearest Neighbor (GLANN) [11] investigate the impor-

tance of inductive bias in convolutional networks by discon-

necting the discriminator for a non-adversarial learning pro-

tocol of GANs. These works show that without a discrimi-

nator, a generator can be learned to map the training images

in the given data distribution to a lower dimensional latent

space that is learned in conjunction with the weights of the

generative network. Such procedure not only avoids the

mode-collapse problem of the generators, but also provides

the user an optimized low dimensional latent representation

(embedding) of the data in contrast with the random latent

space as in GANs. Recently Video-VAE [10] proposed to

use Variational Auto-Encoder (VAE) for conditional video

synthesis, either by randomly generating or providing the

first frame to the model for synthesizing a video. However,

the quality of generated videos using Video-VAE often de-

pends on the provided input frame. Non-adversarial video

synthesis without any visual inputs still remains as a novel

and rarely addressed problem.

In this paper, we propose a novel non-adversarial frame-

work to generate videos in a controllable manner without

any reference frame. Specifically, we propose to synthe-

size videos from two optimized latent spaces, one provid-

ing control over the static portion of the video (static la-

tent space) and the other over the transient portion of the

video (transient latent space). We propose to jointly opti-

mize these two spaces while optimizing the network (a gen-

erative and a recurrent network) weights with the help of

regression-based reconstruction loss and a triplet loss.

Our approach works as follows. During training, we

jointly optimize over network weights and latent spaces

(both static and transient) and obtain a common transient

latent space, and individual static latent space dictionary for

all videos sharing the same class (see Fig. 2). During test-

ing, we randomly choose a static vector from the dictionary,

concatenate it with the transient latent vector and generate

a video. This enables us to obtain a controlled environment

of diverse video generation from learned latent vectors for

each video in the given dataset, while maintaining almost

uniform quality. In addition, the proposed approach also al-

lows a concise video data representation in form of learned

vectors, frame interpolation (using a low rank constraint in-

troduced in [12]), and generation of videos unseen during

the learning paradigm.

The key contributions of our work are as follows.

• We propose a novel framework for generating a wide

range of diverse videos from learned latent vectors with-

out any conditional input reference frame with almost

uniform visual quality. Our framework obtains a latent

space dictionary on both static and transient portions for

the training video dataset, which enables us to generate

even unseen videos with almost equal quality by provid-

ing combinations of static and transient latent vectors that

were not part of training data.

• Our extensive experiments on multiple datasets well

demonstrate that the proposed method, without the adver-

sarial training protocol, has better or at par, performance

with current state-of-the-art methods [24, 31, 32]. More-

over, we do not need to optimize the (multiple) discrimi-

nator networks as in previous methods [24, 31, 32] which

offers a computational advantage.

2. Related Works

Our work relates to two major research directions: video

synthesis and non-adversarial learning. This section focuses

on some representative methods closely related to our work.

2.1. Video Synthesis

Video synthesis has been studied from multiple perspec-

tives [10, 24, 28, 31, 32] (see Tab. 1 for a categorization of

existing methods). VGAN [32] demonstrates that a video

can be divided into foreground and background using deep

neural networks. TGAN [24] proposes to use a generator to

capture temporal dynamics by generating correlated latent

codes for each video frame and then using an image genera-

tor to map each of these latent codes to a single frame for the

whole video. MoCoGAN [31] presents a simple approach

to separate content and motion latent codes of a video us-

ing adversarial learning. The most relevant work for us is

Video-VAE [10] that extends the idea of image generation

to video generation using VAE by proposing a structured

latent space in conjunction with the VAE architecture for

video synthesis. While this method doesn’t require a dis-

criminator network, it depends on reference input frame to

generate a video. In contrast, our method proposes a ef-

ficient framework for synthesizing videos from learnable

latent vectors without any input frame. This gives a con-

trolled environment for video synthesis that even enables

us to generate visually good quality unseen videos through

combining static and transient parts.

2.2. NonAdversarial Learning

Generative adversarial networks, as powerful as they are

in pixel space synthesis, are also difficult to train. This

is owing to the saddle-point based optimization game be-

tween the generator and the discriminator. On top of the

challenges discussed in the previous section, GANs re-

quire careful user driven configuration tuning which may
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Figure 2: Overview of the proposed method. Videos can be broken down into two main parts: static and transient compo-

nents. To capture this, we map a video (with L frame sequence) into two learnable latent spaces. We jointly learn the static

latent space and the transient latent space along with the network weights. We then use these learned latent spaces to generate

videos at the inference time. See Sec. 3 for more details.

Methods
Settings

Adversarial

learning?

Input

frame?

Input latent

vectors?

VGAN [32] X ✗ X(random)

TGAN [24] X ✗ X(random)

MoCoGAN

[31]
X ✗ X(random)

Video-VAE

[10]
✗ X X(random)

Ours ✗ ✗ X(learned)

Table 1: Categorization of prior works in video synthe-

sis. Different from existing methods, our model doesn’t re-

quire a discriminator, or any reference input frame. How-

ever, since we have learned latent vectors, we have control

of the kind of videos the model should generate.

not guarantee same performance for every run. Some tech-

niques to make the generator agnostic to described prob-

lems have been discussed in [25]. The other alternative to

the same has given rise to non-adversarial learning of gener-

ative networks [4, 11]. Both [4, 11] showed that properties

of convolutional GANs can be mimicked using simple re-

construction losses while discarding the discriminator.

While there has been some work on image generation

from learned latent vectors [4, 11], our work significantly

differs from these methods as we do not map all the frames

pixel-wise in a given video to the same latent distribution.

This is because doing so would require a separate latent

space (hence, a separate model for each video) for all the

videos in a given dataset, and performing any operation in

that space would naturally become video specific. Instead,

we divide the latent space of videos sharing the same class

into two parts - static and transient. This gives us a dic-

tionary of static latent vectors for all videos and a common

transient latent subspace. Hence, any random video of the

dataset can now be represented by the combination of one

static vector (which remains same for all frames) and the

common transient subspace.

3. Formulation

Define a video clip V represented by L frames as V =
[

v1, v2, · · · , vL
]

. Corresponding to each frame vi, let there

be a point zi in latent space ZV ∈ R
D×L such that

ZV =
[

z1, z2, · · · , zL
]

(1)

which forms a path of length L. We propose to disentangle

a video into two parts: a static constituent, which captures

the constant portion of the video common for all frames,

and a transient constituent which represents the temporal

dynamics between all the frames in the video. Hence, let ZV

be decomposed as ZV = [Z⊤
s
,Z⊤

t
]⊤ where Zs ∈ R

Ds×L

represents the static subspace and Zt ∈ R
Dt×L represents

the transient subspace with D = Ds + Dt. Thus {zi}
L
i=1

in (1) can be expressed as zi =
[

z
(s)⊤
i , z

(t)⊤
i

]⊤

∀ i =

1, 2, · · · , L. Next assuming that the video is of short length,

we can fix z
(s)
i = z(s) for all frames after sampling only

once. Therefore, (1) can be expressed as

ZV =

[[

z(s)

z
(t)
1

]

,

[

z(s)

z
(t)
2

]

, · · · ,

[

z(s)

z
(t)
L

]]

(2)

The transient portion will represent the motion of a given

video. Intuitively, the latent vectors corresponding to this
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transient state should be correlated, or in other words, will

form a path between z
(t)
1 and z

(t)
L . Specifically, the frames

in a video are correlated in time and hence a frame vi at

time i = T is a function of all previous frames {vi}
T−1
i=1 . As

a result, their corresponding transient representation should

also exhibit such a trajectory. This kind of representation

of latent vectors can be obtained by employing a Recur-

rent Neural Network (RNN) where output of each cell of

the network is a function of its previous state or input. De-

note the RNN as R with weights θ. Then, the RNN output

R(zi) = {r
(t)
i } ∀ i = 1, 2, · · · , L is a sequence of corre-

lated variables representing the transient state of the video.

3.1. Learning Network Weights

Define a generative network G with weights repre-

sented by γ. G takes latent vectors sampled from ZV

as input and predicts up to L frames of the video clip.

For a set of N videos, initialize set of D-dimensional

vectors ZV to form the pair
{

(

ZV1
,V1

)

,
(

ZV2
,V2

)

,

· · · ,
(

ZVN
,VN

)

}

. More specifically from (2), defin-

ing z(s) =
[

z(s), z(s), · · · , z(s)
]

∈ R
Ds×L, and z(t) =

[

z
(t)
1 , z

(t)
2 , · · · , z

(t)
L

]

∈ R
Dt×L, we will have the pairs

{

([

z(s)

z(t)

]

1

,V1

)

,

([

z(s)

z(t)

]

2

,V2

)

, · · · ,

([

z(s)

z(t)

]

N

,VN

)

}

.

With these pairs, we propose to optimize the weights γ, θ,

and input latent vectors ZV (sampled once in the beginning

of training) in the following manner. For each video Vj , we

jointly optimize for θ, γ, and {ZVj
}Nj=1 for every epoch in

two stages:

Stage 1 : min
γ

ℓ
(

Vj ,G(ZVj
)|
(

ZVj
, θ
))

(3.1)

Stage 2 : min
ZV,θ

ℓ
(

Vj ,G(ZVj
)|γ

)

(3.2)

ℓ(·) can be any regression-based loss. For rest of the paper,

we will refer to both (3.1) and (3.2) together as min
ZV,θ,γ

ℓrec.

Regularized loss function to capture static subspace.

The transient subspace, along with the RNN, handles the

temporal dynamics of the video clip. To equally capture

the static portion of the video, we randomly choose a frame

from the video and ask the generator to compare its cor-

responding generated frame during training. For this, we

update the above loss as follows.

min
ZV,θ,γ

(ℓrec + λsℓstatic) (4)

where ℓstatic = ℓ(v̂k, vk) with k ∈ {1, 2, · · · , L}, vk is the

ground truth frame, v̂k = G(zk), and λs is the regularization

constant. ℓstatic can also be understood to essentially handle

the role of image discriminator in [31, 33] that ensures that

the generated frame is close to the ground truth frame.

3.2. Learning Latent Spaces

Non-adversarial learning involves joint optimization of

network weights as well as the corresponding input latent

space. Apart from the gradients with respect to loss in (4),

we propose to further optimize the latent space with gradi-

ent of a loss based on the triplet condition as follows.

3.2.1 The Triplet Condition

z
(t),n
i · · · z

(t)
i · · · · · · z

(t),a
i z

(t),p
i · · · · · ·

Negative range Negative rangePositive range

Figure 3: Triplet Condition in the transient latent space.

Latent code representation of different frames of short video

clips may lie very near to each other in the transient sub-

space. Using the proposed triplet condition, our model

learns to explain the dynamics of similar looking frames

and simultaneously map them to distinct latent vectors.

Short video clips often have indistinguishable dynamics

in consecutive frames which can force the latent code rep-

resentations to lie very near to each other in the transient

subspace. However, an ideal transient space should ensure

that the latent vector representation of a frame should only

be close to a similar frame than a dissimilar one [26, 27]. To

this end, we introduce a triplet loss to (4) that ensures that

a pair of co-occurring frames vai (anchor) and vpi (positive)

are closer but distinct to each other in embedding space than

any other frame vni (negative) (see Fig. 3). In this work, pos-

itive frames are randomly sampled within a margin range α
of the anchor and negatives are chosen outside of this mar-

gin range. Defining a triplet set with transient latent code

vectors {z
(t),a
i , z

(t),p
i , z

(t),n
i }, we aim to learn the transient

embedding space z(t) such that

‖z
(t),a
i − z

(t),p
i ‖22 + α < ‖z

(t),a
i − z

(t),n
i ‖22

∀ {z
(t),a
i , z

(t),p
i , z

(t),n
i } ∈ Γ, where Γ is the set of all possi-

ble triplets in z(t). With the above regularization, the loss in

(4) can be written as

min
ZV,θ,γ

(ℓrec + λsℓstatic)

s.t. ‖z
(t),a
i − z

(t),p
i ‖22 + α < ‖z

(t),a
i − z

(t),n
i ‖22 (5)

where α is a hyperparameter that controls the margin while

selecting positives and negatives.

3.3. Full Objective Function

For any choice of differentiable generator G, the objec-

tive (4) will be differentiable with respect to ZV, and (γ, θ)
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[5]. We initialize ZV by sampling them from two differ-

ent Gaussian distributions for both static and transient latent

vectors. We also ensure that the latent vectors ZV lie on the

unit ℓ2 sphere, and hence, we project ZV after each update

by dividing its value by max(1, ‖ZV‖) [4], where max(·)
returns maximum among the set of given elements. Finally,

the complete objective function can be written as follows.

min
ZV,θ,γ

(ℓrec + λsℓstatic + λtℓtriplet) (6)

where ℓstatic = ℓ(v̂k, vk), λt is a regulariza-

tion constant for the triplet loss, and ℓtriplet =

max

(

‖z
(t),a
i − z

(t),p
i ‖22 + α− ‖z

(t),a
i − z

(t),n
i ‖22, 0

)

.

The weights of the generator γ and static latent vector z(s)

are updated by gradients of the losses ℓrec and ℓstatic. The

weights. θ, of the RNN, and transient latent vectors z(t) are

updated by gradients of the losses ℓrec, ℓstatic and ℓtriplet.

3.3.1 Low Rank Representation for Interpolation

The objective of video frame interpolation is to synthesize

non-existent frames in-between the reference frames. While

the triplet condition ensures that similar frames have their

transient latent vectors nearby, it doesn’t ensure that they lie

on a manifold where simple linear interpolation will yield

latent vectors that generate frames with plausible motion

compared to preceding and succeeding frames [4, 12]. This

means that the transient latent subspace can be represented

in a much lower dimensional space compared to its larger

ambient space. So, to enforce such a property, we project

the latent vectors into a low dimensional space while learn-

ing them along with the network weights, first proposed in

[12]. Mathematically, the loss in (6) can be written as

min
ZV,θ,γ

(ℓrec + λsℓstatic + λtℓtriplet)

s.t. rank

(

z(t)
)

= ρ (7)

where rank(·) indicates rank of the matrix and ρ is a hyper-

parameter that decides what manifold z(t) is to be projected

on. We achieve this by reconstructing z(t) matrix from its

top ρ singular vectors in each iteration [7]. Note that, we

only employ this condition for optimizing the latent space

for the frame interpolation experiments in Sec. 4.3.3.

4. Experiments

In this section, we present extensive experiments to

demonstrate the effectiveness of our proposed approach in

generating videos through learned latent spaces.

4.1. Datasets

We evaluate the performance of our approach using three

publicly available datasets which have been used in many

prior works [10, 31, 32].

Chair-CAD [2]. This dataset consists of total 1393

chair-CAD models, out of which we randomly choose 820

chairs for our experiments with the first 16 frames, similar

to [10]. The rendered frame in each video for all the models

are center-cropped and then resized to 64 × 64 × 3 pixels.

We obtain the transient latent vectors for all the chair mod-

els with one static latent vectors for the training set.

Weizmann Human Action [9]. This dataset provides

10 different actions performed by 9 people, amounting to

90 videos. Similar to Chair-CAD, we center-cropped each

frame, and then resized to 64×64×3 pixels. For this dataset,

we train our model to obtain nine static latent vectors (for

nine different identities) and ten transient latent vectors (for

ten different actions) for videos with 16 frames each.

Golf scene dataset [32]. Golf scene dataset [32] con-

tains 20,268 golf videos with 128 × 128 × 3 pixels which

further has 583,508 short video clips in total. We ran-

domly chose 500 videos with 16 frames each and resized

the frames to 64 × 64 × 3 pixels. Same as the Chair-CAD

dataset, we obtained the transient latent vectors for all the

golf scenes and one static latent vector for the training set.

4.2. Experimental Settings

We implement our framework in PyTorch [21]. Please

see supplementary material for details on implementation

and values of different hyper-parameters (Ds, Dt, α, etc.).

Network Architecture. We choose DCGAN [22] as the

generator architecture for the Chair-CAD and Golf scene

dataset, and conditional generator architecture from [20] for

the Weizmann Human Action dataset for our experiments.

For the RNN, we employ a one-layer gated recurrent unit

network with 500 hidden units [6].

Choice of Loss Function for ℓrec and ℓstatic. One straight

forward loss function that can be used is the mean squared

loss, but it has been shown in literature that it leads to gen-

eration of blurry pixels [35]. Moreover, it has been shown

empirically that generative functions in adversarial learning

focus on edges [4]. Motivated by this, the loss function for

ℓrec and ℓstatic is chosen to be the Laplacian pyramid loss

LLaplacian [17] defined as

LLaplacian(v, v̂) =
∑

l

22
l

|Ll(v)− L
l(v̂)|1

where L
l(·) is the l-th level of the Laplacian pyramid repre-

sentation of the input.

Baselines. We compare our proposed method with two

adversarial methods. For Chair-CAD and Weizmann Hu-

man Action, we use MoCoGAN [31] as the baseline, and for

Golf scene dataset, we use VGAN [32] as the baseline. We

use the publicly available code for MoCoGAN and VGAN,

and set the hyper-parameters as recommended in the pub-

lished work. We also compare two different versions of the

proposed method by ablating the proposed loss functions.
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Note that, we couldn’t compare our results with Video-VAE

[10] using our performance measures (described below) as

the implementation has not been made available by the au-

thors, and to the best of our efforts we couldn’t reproduce

the results provided by them.

Performance measures. Past video generation works

have been evaluated quantitatively on Inception score (IS)

[10]. But, it has been shown that IS is not a good evaluation

metric for pixel domain generation, as the maximal IS score

can be obtained by synthesizing a video from every class or

mode in the given data distribution [3, 19, 30]. Moreover,

a high IS does not guarantee any confidence on the quality

of generation, but only on the diversity of generation. Since

a generative model trained using our proposed method can

generate all videos using the learned latent dictionary2, and

for a fair comparison with baselines, we use the following

two measures, similar to measures provided in [31]. We

also provide relevant bounds computed on real videos for

reference. Note that arrows indicate whether higher (↑) or

lower (↓) scores are better.

(1) Relative Motion Consistency Score (MCS ↓): Dif-

ference between consecutive frames captures the moving

components, and hence motion in a video. So, firstly each

frame in the generated video, as well as the ground-truth

data, is represented as a feature vector computed using a

VGG16 network [29] pre-trained on ImageNet [23] at the

relu3 3 layer. Secondly, the averaged consecutive frame-

feature difference vector for both set of videos is computed,

denoted by f̂ and f respectively. Finally, the relative MCS

is then given by log10

(

‖f − f̂‖22

)

.

(2) Frame Consistency Score (FCS ↑): This score mea-

sures the consistency of the static portion of the generated

video frames. We keep the first frame of the generated video

as reference and compute the averaged structural similarity

measure for all frames. The FCS is then given by the aver-

age of this measure over all videos.

4.3. Qualitative Results

Fig. 5 shows some examples with randomly selected

frames of generated videos for the proposed method and

the adversarial approaches MoCoGAN [31] and VGAN

[32]. For Chair-CAD [2] and Weizmann Human Action [9]

dataset, it can be seen that the proposed method is able to

generate visually good quality videos with a non-adversarial

training protocol, whereas MoCoGAN produces blurry and

inconsistent frames. Since we use optimized latent vectors

unlike MoCoGAN (which uses random latent vectors for

video generation), our method produces visually more ap-

2Direct video comparison seems straight forward for our approach as

the corresponding one-to-one ground truth is known. However, for [31,

32], we do not know which video is being generated (action may be known

e.g. [31]) which makes such direct comparison infeasible and unfair.

pealing videos. Fig. 5 presents two particularly important

points. As visualized for the Chair-CAD videos, the adver-

sarial approach of MoCoGAN produces not only blurred

chair images in the generated video, but they are also non-

uniform in quality. Further, it can be seen that as the time

step increases, MoCoGAN tends to generate the same chair

for different videos. This shows a major drawback of the

adversarial approaches, where they fail to learn the diver-

sity of the data distribution. Our approach overcomes this

by producing a optimized dictionary of latent vectors which

can be used for generating any video in the data distribution

easily. To further validate our method for qualitative results,

we present the following experiments.

4.3.1 Qualitative Ablation Study

Fig. 4 qualitatively shows the contribution of the specific

parts of the proposed method on Chair-CAD [2]. First,

we investigate the impact of input latent vector optimiza-

tion. For a fair comparison, we optimize the model for same

number of epochs. It can be observed that the model bene-

fits from the joint optimization of input latent space to pro-

duce better visual results. Next, we validate the contribution

of ℓstatic and ℓtriplet on a difficult video example whose chair

color matches with the background. Our method, combined

with ℓstatic and ℓtriplet, is able to distinguish between the

white background and the white body of the chair model.

Actions
Identities

P1 P2 P3 P4 P5 P6 P7 P8 P9

run • • • •

walk • • • •

jump • • • • • • •

skip • • • • • • •

Table 3: Generating videos by exchanging unseen ac-

tions by identities. Each cell in this table indicates a video

in the dataset. Only cells containing the symbol • indicate

that the video was part of the training set. We randomly gen-

erated videos corresponding to rest of the cells indicated by

symbols •, •, •, and •, visualized in Fig. 6.

4.3.2 Action Exchange

Our non-adversarial approach can effectively separate the

static and transient portion of a video, and generate videos

unseen during the training protocol. To validate these

points, we choose a simple matrix completion for the com-

bination of identities and actions in the Weizmann Human

action [9] dataset. For training our model, we created a

set of videos (without any cropping to present the complete

scale of the frame) represented by the cells marked with •
in Tab. 3. Hence, the unseen videos correspond to the cells

not marked with •. During testing, we randomly generated
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Without latent 

optimization

With latent 

optimization

+`static+`triplet
<latexit sha1_base64="nM2iGDahG0LXX4/k9SPrcXJYc0k=">AAACJ3icbVDJSgNBEO1xjXGLevTSGARBCBMNLhcJevEYwSyQhNDTqSRNeha6a8QwzN948Ve8CCqiR//EzmQQNXnQ8Oq9KqrrOYEUGm3705qbX1hcWs6sZFfX1jc2c1vbNe2HikOV+9JXDYdpkMKDKgqU0AgUMNeRUHeGV2O/fgdKC9+7xVEAbZf1PdETnKGROrmLFsI9IkaHcQuk7ERJHWk0Po/j2S4qEUjAOKadXN4u2AnoNCmmJE9SVDq5l1bX56ELHnLJtG4W7QDbEVNmnYQ42wo1BIwPWR+ahnrMBd2Okjtjum+ULu35yjwPaaL+noiYq/XIdUyny3Cg/3tjcZbXDLF31o6EF4QIHp8s6oWSok/HodGuUMBRjgxhXAnzV8oHTDGOJtpsEsL5GCc/J0+T2lGheFwo3ZTy5cs0jgzZJXvkgBTJKSmTa1IhVcLJA3kir+TNerSerXfrY9I6Z6UzO+QPrK9vSPGpZQ==</latexit>

-`static-`triplet
<latexit sha1_base64="vtrp+dclY5hcPx8SSuogobCtwy0=">AAACJ3icbVDJSgNBEO1xjXGLevTSGAQvhokGl4sEvXiMYBZIQujpVJImPQvdNWIY5m+8+CteBBXRo39iZzKImjxoePVeFdX1nEAKjbb9ac3NLywuLWdWsqtr6xubua3tmvZDxaHKfemrhsM0SOFBFQVKaAQKmOtIqDvDq7FfvwOlhe/d4iiAtsv6nugJztBIndxFC+EeEaPDuAVSdqKkjjQan8fxbBeVCCRgHNNOLm8X7AR0mhRTkicpKp3cS6vr89AFD7lkWjeLdoDtiCmzTkKcbYUaAsaHrA9NQz3mgm5HyZ0x3TdKl/Z8ZZ6HNFF/T0TM1XrkOqbTZTjQ/72xOMtrhtg7a0fCC0IEj08W9UJJ0afj0GhXKOAoR4YwroT5K+UDphhHE202CeF8jJOfk6dJ7ahQPC6Ubkr58mUaR4bskj1yQIrklJTJNamQKuHkgTyRV/JmPVrP1rv1MWmds9KZHfIH1tc3T5mpaQ==</latexit>

Figure 4: Qualitative ablation study on Chair-CAD [2]. Left: It can be seen that the model is not able to generate

good quality frames properly resulting in poor videos when the input latent space is not optimized, whereas with latent

optimization, the generated frames are sharper. Right: The impact of ℓstatic and ℓtriplet is indicated by the red bounding boxes.

Our method with ℓstatic and ℓtriplet captures the difference between the white background and white chair, whereas without

these two loss functions, the chair images are not distinguishable from their background. + and - indicate presence and

absence of the terms, respectively.
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Figure 5: Qualitative results comparison with state-of-the-art methods. We show two generated video sequences for

MoCoGAN [31] (for (a) Chair-CAD [2], (b) Weizmann Human action [9]), VGAN [32] (for (c) Golf scene [32]) (top), and

the proposed method (Ours, bottom). The proposed method produces visually sharper, and consistently better using the

non-adversarial training protocol. More examples have been provided in the supplementary material.

Figure 6: Examples of action exchange to generate un-

seen videos. This figure shows the generated videos un-

seen during the training of the model with colored bounding

boxes indicating the colored dots (•, •, •, •) referred to in

Tab. 3. This demonstrates the effectiveness of our method

in disentangling static and transient portion of videos.

these unseen videos (marked with •, •, • and • in Tab. 3),

and the visual results are shown in Fig. 6. This experiment

clearly validates our claim of static (identities) and transient

(action) portion disentanglement of a video and, generation

of unseen videos by using combinations of action and iden-

tities not part of training set. Note that generated videos

may not exactly resemble ground truth videos of the said

combinations as we learn z(t) over a class of many videos.

4.3.3 Frame Interpolation

To show our methodology can be employed for frame inter-

polation, we trained our model using the loss (7) for ρ = 2
and ρ = 10. During testing, we generated intermediate

frames by interpolating learned latent variables of two dis-

tinct frames. For this, we computed the difference ∆z(t)

between the learned latent vectors of second (z
(t)
2 ) and fifth

(z
(t)
5 ) frame, and generated k = 3 unseen frames using

{z
(t)
2 + n/k∆z(t)}kn=1, after concatenating with z(s). Fig. 7

shows the results of interpolation between second and fifth

frames for two randomly chosen videos. Thus, our method

is able to produce dynamically consistent frames with re-

spect to the reference frames without any pixel clues.

4.4. Quantitative Results

Quantitative result comparisons with respect to baselines

have been provided in Tab. 2. Compared to videos gener-

ated by the adversarial method MoCoGAN [31], we report

a relative decrease of 19.22% in terms of MCS, and 4.70%
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MCS ↓ FCS ↑

Bound 0.0 0.91

MoCoGAN [31] 4.11 0.85

Ours (-ℓtriplet-ℓstatic) 3.83 0.77

Ours (+ℓtriplet+ℓstatic) 3.32 0.89

(a) Chair-CAD [2]

MCS ↓ FCS ↑

Bound 0.0 0.95

MoCoGAN [31] 3.41 0.85

Ours (-ℓtriplet-ℓstatic) 3.87 0.79

Ours (+ℓtriplet+ℓstatic) 2.63 0.90

(b) Weizmann Human Action [9]

MCS ↓ FCS ↑

Bound 0.0 0.97

VGAN [32] 3.61 0.88

Ours (-ℓtriplet-ℓstatic) 3.78 0.84

Ours (+ℓtriplet+ℓstatic) 2.71 0.84

(c) Golf [32]

Table 2: Quantitative results comparison with state-of-the-art methods. We obtained better scores on the proposed

method on both Chair-CAD [2], Weizmann Human Action [9], and Golf [32] datasets, compared to the adversarial approaches

(MoCoGAN, and VGAN). Best scores have been highlighted in bold.
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Figure 7: Examples of frame interpolation. An important

advantage of our method is translation of interpolation in

the learned latent space to video space using (7). It can

be observed that as ρ increases, the interpolation (bounded

by color) is better. Note that the adjacent frames are also

generated frames, and not ground truth frames.

relative increase in terms of FCS for chair-CAD dataset [2].

For the Weizmann Human Action [9] dataset, the proposed

method is reported to have a relative decrease of 22.87% in

terms of in terms of MCS, and 4.61% relative increase in

terms of FCS. Similarly for Golf scene dataset [32], we per-

form competitively with VGAN [32] with a observed rela-

tive decrease of 24.90% in terms of in terms of MCS. A im-

portant conclusion from these results is that our proposed

method, being non-adversarial in nature, learns to synthe-

size a diverse set of videos, and is able to perform at par

with adversarial approaches. It should be noted that a bet-

ter loss function for ℓrec and ℓstatic would produce stronger

results. We leave this for future works.

4.4.1 Quantitative Ablation Study

In this section, we demonstrate the contribution of differ-

ent components in our proposed methodology on the Chair-

CAD [2] dataset. For all the experiments, we randomly

generate 500 videos using our model by using the learned

latent vector dictionary. We divide the ablation study into

two parts. Firstly, we present the results for impact of the

learned latent vectors on the network modules. For this, we

simply generate videos once with the learned latent vectors

(+Z), and once with randomly sampled latent vectors from

a different distribution (-Z). The inter-dependency of our

model weights and the learned latent vectors can be inter-

preted from Tab. 4a. We see that there is a relative decrease

of 16.16% in MCS from 3.96 to 3.32, and 18.66% of rel-

MCS ↓ FCS ↑

Bound 0 0.91

-Z 3.96 0.75

+Z 3.32 0.89

(a) With respect to latent

space optimization.

MCS ↓ FCS ↑

Bound 0 0.91

-ℓtriplet-ℓstatic 3.83 0.77

-ℓtriplet+ℓstatic 3.82 0.85

+ℓtriplet-ℓstatic 3.36 0.81

+ℓtriplet+ℓstatic 3.32 0.89

(b) With respect to loss functions

Table 4: Ablation study of proposed method on Chair-

CAD [2]. In (a), we evaluate contributions of latent space

optimization (Z). In (b), we evaluate contributions of ℓtriplet

and ℓstatic in four combinations. + and - indicate presence

and absence of the terms, respectively.

ative increase in FCS. This shows that optimization of the

latent space in the proposed method is important for good

quality video generation.

Secondly, we investigate the impact of the proposed

losses on the proposed method. Specifically, we look into

four possible combinations of ℓtriplet and ℓstatic. The results

are presented in Tab. 4b. It can observed that the combi-

nation of triplet loss ℓtriplet and static loss ℓstatic provides the

best result when employed together, indicated by the rela-

tive decrease of 14.26% in MCS from 3.83 to 3.32.

5. Conclusion

We present a non-adversarial approach for synthesiz-

ing videos by jointly optimizing both network weights and

input latent space. Specifically, our model consists of a

global static latent variable for content features, a frame

specific transient latent variable, a deep convolutional gen-

erator, and a recurrent neural network which are trained

using a regression-based reconstruction loss, including a

triplet based loss. Our approach allows us to generate a

diverse set of almost uniform quality videos, perform frame

interpolation, and generate videos unseen during training.

Experiments on three standard datasets show the efficacy of

our proposed approach over state-of-the-methods.
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