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Abstract

Most consumer cameras are equipped with electronic

rolling shutter, leading to image distortions when the cam-

era moves during image capture. We explore a surpris-

ingly simple camera configuration that makes it possible to

undo the rolling shutter distortion: two cameras mounted

to have different rolling shutter directions. Such a setup is

easy and cheap to build and it possesses the geometric con-

straints needed to correct rolling shutter distortion using

only a sparse set of point correspondences between the two

images. We derive equations that describe the underlying

geometry for general and special motions and present an

efficient method for finding their solutions. Our synthetic

and real experiments demonstrate that our approach is able

to remove large rolling shutter distortions of all types with-

out relying on any specific scene structure.

1. Introduction

Thanks to low price, superior resolution and higher frame

rate, CMOS cameras equipped with rolling shutter (RS)

dominate the market for consumer cameras, smartphones,

and many other applications. Unlike global shutter (GS)

cameras, RS cameras read out the sensor line by line [21].

Every image line is captured at a different time, causing dis-

tortions when the camera moves during the image capture.

The distorted images not only look unnatural, but are also

unsuitable for conventional vision algorithms developed for

synchronous perspective projection [13, 3, 28].

There are two main approaches to remove RS distortion.

The first is to estimate the distortion and remove it, i.e., syn-

thesize an image with global shutter geometry that can be
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Figure 1: When two images are recorded with different

rolling shutter directions, their motion-induced distortion is

different, and a few point correspondences are enough to

recover the motion as well as an undistorted image.

fed to standard vision algorithms [10, 26, 25, 32, 18]. The

second approach is to keep the original images and adapt the

algorithms to include the RS in the camera model [14, 13,

3, 28, 9]. The latter approach has recently lead to RS-aware

algorithms for many parts of the 3D vision pipeline, includ-

ing RS camera calibration [23], RS structure-from-motion

reconstruction [13], dense multi-view RS stereo [28], and

RS absolute camera pose [1, 20, 3, 5, 29, 16]. Two-view

geometry of RS cameras has been studied in [9] and trian-

gulation with a RS stereo rig is discussed in [2].

Recently, more emphasis has been put on explicitly re-

moving RS distortion from the images: in this way, one not

only obtains visually appealing images, but can also con-

tinue to use the whole ensemble of existing, efficient vision

algorithms. For the case of pure camera rotation, the distor-

tion has been modelled as a mixture of homographies [10].

If only a single image is available, some external constraint

is needed to recover the distortion, for instance [26] assume

a Manhattan world and search for lines, respectively van-

ishing points. And [18] relaxes the Manhattan assumption

and only requires the (curved) images of straight 3D lines to

undistort a single RS image, including a RANSAC scheme

to filter out false line matches. In [32] an occlusion-aware

undistortion method is developed for the specific setting of

≥3 RS images with continuous motion and known time de-

lay, assuming a piece-wise planar 3D scene. Others propose

learning-based methods where a CNN is trained to warp sin-

gle RS images to their perspective counterparts [25, 34].

Motivation. Despite more than a decade of research, RS

distortion remains a challenge. In fact, when presented with

2505



a single RS image, it is impossible to remove the distortion

unless one makes fairly restrictive assumptions about the

scene [26, 18], or about the camera motion [24], (the best-

understood case being pure rotation [10, 25]). The same

holds true for learned undistortion [25, 34], which only

works for the types of scenes it has been trained on. More-

over, it does not guarantee a geometrically correct output

that downstream processing steps can digest.

Equations for the generalized epipolar geometry of RS

cameras have been derived in [9], however, due to the com-

plexity of the resulting systems there is no practical solution

for the RS epipolar geometry. The method of [2] utilizes tri-

angulation and therefore requires non-negligible baseline.

Furthermore, their solution is iterative, non-minimal and

therefore not suitable for RANSAC-style robust estimation.

Even with multiple views, removing RS distortion ei-

ther requires strong assumptions, like a piece-wise planar

scene observed at a high frame-rate with known shutter tim-

ings [18]; or it amounts to full SfM reconstruction [13], thus

requiring sufficient camera translation. Moreover, SfM with

rolling shutter suffers from a number of degeneracies, in

particular it has long been known that constant translational

motion along the baseline (e.g., side-looking camera on a

vehicle) does not admit a solution [2]. More recently, it has

been shown [6] that (nearly) parallel RS read-out directions

are in general degenerate, and can only be solved with ad-

ditional constraints on the camera motion [15].

RS cameras are nowadays often combined into multi-

camera systems. Even in mid-range smartphones it is com-

mon to have two forward-facing cameras, usually mounted

very close to each other. It seems natural to ask whether

such an assembly allows one to remove RS distortion.

Contribution. We show that a simple modification of the

two-camera setup is sufficient to facilitate removal of RS

distortion: the cameras must have known baseline – ideally

of negligible length, as in the typical case of smartphones

(for scene depth >1 m); and their RS read-out directions

must be significantly different – ideally opposite to each

other. Finally, the cameras must be synchronized (the offset

between their triggers must be known). If those conditions

are met, the motion of the cameras can be recovered and

a perspective (global shutter) image can be approximated

from the two RS images, regardless of image content. The

only requirement is enough texture to extract interest points.

We also show that if the cameras undergo translational

motion, depth maps can be computed given optical flow be-

tween the images, and that the undistorted sparse features

can be used in an SfM pipeline to obtain a reconstruction

similar to one from GS images.

In the following, we investigate the geometry of this con-

figuration and propose algorithms to compute the motion

parameters needed to remove the RS distortions. We first

discuss the solution for the general case of unconstrained

6DOF motion, and develop an efficient solver that can be

used in RANSAC-type outlier rejection schemes. We then

go on to derive simpler solutions for special motion patterns

that often arise in practice, namely pure rotation, pure trans-

lation, and translation orthogonal to the viewing direction.

These cases are important because in real applications the

motion is often restricted or known, e.g., when the camera is

mounted on the side of a vehicle. The proposed methods re-

quire only point-to-point correspondences between the im-

ages to compute the camera motion parameters.

2. Problem formulation

Throughout, we assume two images taken by (perspective)

cameras with rolling shutter. In those images, correspond-

ing points have been found such that ui = [ui vi 1]⊤ in

the first camera corresponds to u
′

i = [u′

i v
′

i 1]
⊤ in the sec-

ond camera, and both are projections of the same 3D point

Xi = [Xi1, Xi2, Xi3, 1]⊤. If neither the cameras nor the

objects in the scene move, we can model the projections in

both cameras as if they had a global shutter, with projection

matrices Pg and P
′
g [12] such that

λgugi = PgXi = K [R | −RC] Xi
λ′
gu

′

gi = P
′
gXi = K

′ [R′ | −R′C′] Xi.
(1)

where K, K′ are the camera intrinsics, R, R′ are the camera

rotations, C, C′ are the camera centers, and λg , λ′
g are the

scalar perspective depths.

If the cameras move during image capture, we have to

generalize the projection function. Several motion models

were used to describe the RS geometry [21, 2, 20, 4, 29].

These works have shown that, in most applications, assum-

ing constant rotational and translational velocities1 during

RS read-out is sufficient to obtain the initial motion esti-

mate, which can be further improved using a more complex

model [27] in the refinement step. The projection matri-

ces P(vi) and P
′(v′i) are now functions of the image row,

because each row is taken at a different time and hence a

different camera pose. We can write the projections as

λui =P(vi)Xi = K [Rω(vi)R | −RC+ t vi] Xi (2)

λ′
u
′

i =P
′(v′i)Xi = K

′ [R′ω′(v′i)R
′ | −R′C′ + t

′v′i] Xi ,

where Rω(vi), R
′

ω′(vi) are the rotational and t,t′ the trans-

lational motions during image acquisition.

Let us now consider the case when the relative pose of

the cameras is known and the baseline is negligibly small

(relative to the scene depth). This situation cannot be han-

dled by existing methods [2, 9], but is the one approximately

realized in multi-camera smartphones: the typical distance

between the cameras is ≈1 cm, which means that already

at 1 m distance the base-to-height ratio is 100:1 and we can

1For constant rotational velocity we have Rω(α) = exp(α[ω]×).
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safely assume C = C
′ (analogous to using a homography

between global shutter images). We point out that the ap-

proximation is independent of the focal length, i.e., it holds

equally well between a wide-angle view and a zoomed view.

For simplicity, we consider the cameras to be calibrated,

K = K
′ = I, and attach the world coordinate system to the

first camera, R=I and C=C
′=0, to obtain

λui = [Rω(vi) | t vi] Xi
λ′
u
′

i = [R′ω′(v′i)Rr | t′v′i] Xi ,
(3)

where Rr is now the relative orientation of the second cam-

era w.r.t. the first one. Since the cameras are assembled in

a rigid rig, their motions are always identical and we have

t
′ = Rrt and R

′

ω′(v′i) = RrRω(v
′

i)R
⊤
r . This yields even sim-

pler equations in terms of the number of unknowns,

λui = [Rω(vi) | t vi] Xi
λ′
u
′

i = [RrRω(v
′

i) | Rrt v
′

i] Xi.
(4)

From eq. (4) one immediately sees that the further Rr is

from identity, the bigger is the difference between the im-

ages and between their RS distortions. Since these differ-

ences are our source of information, we want them to be

as large as possible and focus on the case of 180◦ rotation

around the z-axis, Rr = diag([−1, −1, 1, ]). In this setting

the second camera is upside down and its RS read-out di-

rection is opposite to that of the first one. Note that this is

equivalent to Rr = I with the shutter direction reversed. If

we flip the second image along the x- and y-axes, it will be

identical to the first one in the absence of motion, but if the

rig moves the RS distortions will be different. This setup is

easy to construct in practice: the only change to the standard

layout is to reverse the read-out direction of one camera.

Also note that it is fairly straightforward to extend the

algorithms derived below to shutters that are not 180◦ op-

posite, as well as to non-zero baseline with known relative

orientation, as in [2] (e.g. stereo cameras on autonomous

robots). In all these scenarios different RS directions make

it possible to remove the distortion.

3. Solutions

In this section we will describe how to solve the problem

for typical types of motions.

3.1. General 6DOF motion

To solve for the general motion case, we start from eq. (4).

Without loss of generality, we can choose the first camera

as the origin of the world coordinate system, such that

P = [I | 0]
P
′ (vi, v

′

i) = [R(vi, v
′

i) | v
′

iRrt− viR(vi, v
′

i)t]
(5)

where R(vi, v
′

i) = RrRω(v
′

i)Rω(vi)
⊤. We can consider

R(vi, v
′

i) and t(vi, v
′

i) = v′iRrt − viR(vi, v
′

i)t as the rela-

tive camera orientation and translation for each pair of lines.

This yields one essential matrix

E(vi, v
′

i) = [t(vi, v
′

i)]× R(vi, v
′

i) , (6)

for each pair of lines, with six unknowns. The translation

can only be determined up to a unknown scale, using 5 cor-

respondences. We next describe how to simplify the equa-

tions further and produce an efficient minimal solver.

3.2. Minimal solver for the 6DOF motion

Since both cameras form a rig, the two rotations Rω(v
′

i),
Rω(vi) have the same axis and we have

Rω(v
′

i)Rω(vi)
⊤ = Rω(v

′

i − vi) . (7)

For convenience, let Ri = RrRω(v
′

i − vi). Then the instan-

taneous essential matrix for rows vi and v′i can be written

E(vi, v
′

i) = [v′iRrt− viRit]×Ri = (8)

= v′i[Rrt]×Ri − vi[Rit]×Ri = v′i[Rrt]×Ri − viRi[t]×

using the identity (Ru × Rv) = R(u × v). As the motion

due to the RS effect is small, we linearise it, as often done

for RS processing, e.g., [1, 20, 3, 16]. For constant angular

velocity we get

Ri ≈ Rr(I3×3 + (v′i − vi)[ω]×), (9)

where the direction of ω encodes the axis of rotation, and

the angular velocity determines its magnitude. Inserting this

into (8) we get

E(vi, v
′

i) =v′iRr[t]×(I+ (v′i − vi)[ω]×)

− viRr(I+ (v′i − vi)[ω]×)[t]×
(10)

Each pair of corresponding points (ui, u
′

i) now yields a sin-

gle equation from the epipolar constraint,

u
′⊤

i E(vi, v
′

i)ui = 0. (11)

This is a quadratic equation in the unknowns ω and t. Since

the scale of the translation is unobservable (eq. (11) is ho-

mogeneous in t), we add a linear constraint t1 + t2 = 1,

leading to the parameterisation t = (1 − x, x, y)⊤. Note

that this constraint is degenerate for pure forward motion.

From 5 point correspondences we get 5 quadratic equa-

tions in 5 unknowns x, y and ω, which we solve with the

hidden variable technique [8]. We rewrite the equations as

M(ω)
[

x y 1
]⊤

= 0 , (12)

where M(ω) is a 5× 3 matrix with elements that depend lin-

early on ω. This matrix must be rank deficient, thus all 3×3
sub-determinants must vanish, which gives 10 cubic equa-

tions in ω, with up to, in general, 10 solutions. Interestingly,
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the equations have the same structure as the classic determi-

nant and trace constraints for the essential matrix. To solve

them one can thus employ any of the known solutions for

that case [22, 11]. We use the solver generator [19].

In a similar fashion, we can produce a solution for the

case of a fixed, known baseline between the cameras. Please

see the supplementary material for details.

3.3. Pure rotation

Next, let us consider the case where the cameras only rotate

around the center of projection. We now have t = 0 and

Rω(α) 6= I for x ∈ R \ 0. Equations (4) become

λui = [Rω(vi) | 0] Xi
λ′
u
′

i = [RrRω(v
′

i) | 0] Xi.
(13)

and we can express the relationship between ui and u
′

i as

λ′
u
′

i = Rω(v
′

i)RrR
⊤
ω (vi)λui. (14)

This resembles a homography between GS images, except

that the matrix H = Rω(v
′

i)RrR
⊤
ω (vi) changes for every cor-

respondence. To get rid of λ, λ′ we divide (14) by λ, then

left-multiply with the skew-symmetric [u′i]× to obtain

0 = [u′i]×Rω(v
′

i)RrR
⊤

ω (vi)ui (15)

For constant angular velocity we now have three unknown

parameters for the rotation Rω(α). Each correspondence

yields two equations, so the solution can be found from

1.5 correspondences. If we further linearise Rω(α) via first-

order Taylor expansion, as in [1, 20, 3], we get

0 = [u′i]× (I+ v′i[ω]×) Rr (I− vi[ω]×) ui , (16)

where ω is the angle-axis vector. This is a system of three

2nd-order equations in three unknowns, which can be solved

efficiently with the e3q3 solver [17].

3.4. Translation

Next, let us consider a general translation with constant ve-

locity and no rotation, Rω(α) = I . Substituting Rω(α) = I

in equations (4) and subtracting the second equation from

the first one we obtain (for details see supplementary)





tx
ty
tz



 vi −





tx
ty
tz



 v′i =





ui

vi
1



λi −





−u′

i

−v′i
1



λ′

i . (17)

Each correspondence adds three equations and two un-

knowns λi, λ
′

i. Two correspondences give us 6 linear homo-

geneous equations in 7 unknowns tx, ty, tz, λ1, λ
′
1, λ2, λ

′
2,

which allow us to find a solution up to scale, i.e., relative to

one depth (e.g., λ1) or to the magnitude of the translation.

Translation in the xy-plane We also consider the case

of translation orthogonal to the viewing direction, t =

[

tx ty 0
]

. The system (17) now lacks tz in the 3rd

equation and we find that λi = λ′

i, i.e. the perspective depth

of a point Xi is the same in both cameras. By solving this

system for tx and ty , we can express them in terms of λi,

tx =
ui + u′

i

vi − v′i
λi , ty =

vi + v′i
vi − v′i

λi , (18)

and obtain an equivalent global shutter projection as

ugi = [
uiv

′

i − u′

ivi
vi − v′i

,
−2viv

′

i

vi − v′i
, 1]⊤. (19)

Translation along x-axis Finally, let us assume a trans-

lation only along the camera x-axis, such as for a side-

looking camera on a moving vehicle, or when observing

passing cars. In this case the global shutter projection satis-

fies ugi = [
ui+u′

i

2
, vi, 1]

⊤ (see supplementary for a detailed

derivation), which implies that for constant velocity along

the x-axis we can obtain GS projections by simply inter-

polating between the x-coordinates of corresponding points

in the two RS images. Analogously we interpolate the y-

coordinate for translation along y-axis.

4. Refinement with advanced motion model

Our minimal solutions resort to simplified motion models

to support real-time applications and RANSAC. After ob-

taining an initial solution with one of the minimal solvers,

we can improve the motion estimates through a non-linear

refinement with a more complex model of camera motion.

For the rotation case, we can obtain the cost function

from eq. (14) and sum the residuals of all correspondences

N
∑

i=0

∥

∥

∥

∥

[

ui

vi

]

−

[

h
i
1u

′

i/h
i
3u

′

i

h
i
2u

′

i/h
i
3u

′

i

]∥

∥

∥

∥

, (20)

where Hi =
[

h
1⊤
i h

2⊤
i h

3⊤
i

]⊤
= Rω(v

′

i)RrR
⊤
ω (vi), and Rω(α)

is now parametrised via the Rodrigues formula.

For the translation case, we can minimise the the Samp-

son error, as in [9], which leads to the cost function

N
∑

i=0

(

u
′⊤

i Eiui

)2

(Eiui)
2

1
+ (Eiui)

2

2
+
(

E
⊤

i u
′

i

)2

1
+ (Eiu′i)

2

2

(21)

with Ei = v′i[Rrt]×Ri − viRi[t]× as defined in equation 8.

Again Ri is defined via the Rodrigues formula.

It has been shown [27] that a uniform motion model

across the entire image may not be sufficient, instead using

three different motions defined at their respective ”knots”

worked better for handheld footage. If desired, this ex-

tension is also applicable in our refinement step. To that

end, we simply define intermediate poses for the camera

system by taking the initial parameters ω, t from the mini-

mal solver, and then minimize either (20) or (21), with the

instantaneous rotation and translation of the cameras inter-

polated between those intermediate poses.
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5. Undistorting the image

Once the motion parameters have been estimated, we can

chose between two approaches to undistort the images,

based on whether we treat pure rotation or also translation.

Rotation and image warping. Under pure rotation, creat-

ing an image in global shutter geometry is simple. For each

pixel, we have a forward mapping λugi = Rω(vi)
⊤
ui from

the first image and λugi = Rω(v
′

i)
⊤
u
′

i from the second im-

age into the virtual GS image plane. This mapping depends

only on the row index of the respective RS image, which

defines the time and therefore the pose. No pixel-wise cor-

respondences are needed. We can also use the backward

mapping λui = Rω(vi)ugi, in that case vi appears on both

sides of the equation, possibly in non-linear form, depend-

ing on how Rω(vi) is parameterised. In either case, we can

iteratively solve for vi, starting at the initial value vgi. One

can transform both RS inputs to the same virtual GS image

for a more complete result, see supplementary.

Translation and dense undistortion. Translational RS dis-

tortion poses a greater challenge, because the transforma-

tion of each pixel depends on its correspondence in the

other RS image. Consequently, one must recover dense

correspondence to obtain a dense, visually pleasing re-

sult [26, 33, 32]. Empirically, we found optical flow meth-

ods to work best, particularly PWC-net [31] consistently

gave the best results. Given dense correspondences, we can

convert them to a depth map and use it to transfer image

content from the RS images to the virtual GS image, us-

ing some form of z-buffering to handle occlusions. Note

that rows near the middle of the image have been captured

at (nearly) the same time and pose in both RS views, thus

depth is not observable there. Fortunately, this barely im-

pacts the undistortion process, because also the local RS

distortions are small in that narrow strip, such that they can

be removed by simply interpolating between the inputs. For

details, see the supplementary material.

6. Experiments

We have tested the proposed algorithms both with synthetic

and with real data. Synthetic correspondences serve to

quantitatively analyze performance. Real image pairs were

acquired with a rig of two RS cameras, see Fig. 2, and undis-

torted into global shutter geometry to visually illustrate the

high quality of the corrected images across a range of mo-

tion patterns and scenes.

Synthetic data. To generate synthetic data in a realistic

manner, we started from the GS images of [13] and per-

formed SfM reconstruction. We then placed virtual RS

pairs at the reconstructed camera locations, to which we ap-

plied various simulated motions with constant translational

and angular velocities, and reprojected the previously re-

constructed 3D structure points. The angular velocity was

gradually increased up to 30 degrees/frame which means

that the camera has rotated by 30 degrees during the acquisi-

tion of one frame. The translational velocity was increased

up to 1/10 of the distance of the closest part of the scene

per frame. Gaussian noise with µ = 0 and σ = 0.5pix was

added to the coordinates of the resulting correspondences.

We generated around 1.4K images this way.

We test four different solvers, two for pure translations,

one for pure rotation, and one for the full 6DOF case, see

Fig. 2. Additionally, we run a simple baseline that just aver-

ages the image coordinates of the two corresponding points

(err-interp). We do not consider the single axis translation

solvers tx and ty, since they are covered by txy, which

also requires only a single correspondence.

Three different variants are tested for each solver:

(v1) individually fits a motion model at each correspon-

dence, sampling the minimal required set of additional cor-

respondences at random and undistorting the individual co-

ordinate. This local strategy can handle even complex

global distortions with a simpler motion model, by piece-

wise approximation. The downside is that there is no re-

dundancy, hence no robustness against mismatches. (v2) is

a robust approach that computes a single, global motion

model for the entire image and uses it to undistort all corre-

spondences. The solver is run with randomly sampled mini-

mal sets, embedded in a LO-RANSAC loop [7] that verifies

the solution against the full set of correspondences and lo-

cally optimizes the motion parameters with non-linear least

squares. (v3) explores a hybrid LO-RANSAC method that

uses one of the simpler models to generate an initial motion

estimate, but refines it with the full model with parameters

{tx, ty, tz, ωx, ωy, ωz}.

The results provide some interesting insights, see Fig. 3.

As expected, the full ωt performs best, followed by the

rotation-only model ω. The translational solvers, includ-

ing the simple txy, work well when used locally per corre-

spondence (v1), moreover the error has low variance. This

means that the rotational distortion component can be well

approximated by piece-wise translations txy, whose esti-

mation is more reliable than that of both txyz and ω.

With a single, global RANSAC fit (v2) the residual errors

of the undistorted points are generally higher (except for

ωt), due to the more rigid global constraint. The drop is

strongest for txy and txyz, i.e., a global translation model

cannot fully compensate rotational distortions. The hybrid

solution (v3) is not shown since it does not improve over the

global one (v2), suggesting that the general model gets stuck

in local optima when initialised with a restricted solver.

Zero-baseline assumption. Next, we evaluate the approx-

imation error due to our assumption of negligible baseline

between the two RS cameras. We start with a synthetic ex-

periment, with the same setup as in Fig. 3, but this time with

2509



Alg. # corr. Param. Runtime

txy 1 tx, ty ≈0
txyz 2 tx, ty, tz ≈0
ω 2 ωx, ωy, ωz 4µs
ωt 5 tx, ty, tz, 40µs

ωx, ωy, ωz

Figure 2: Rig with two RS and one GS camera (left);

Solvers used in the experiments (right).
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Figure 3: Results on synthetic RS pairs. Fitting a separate

motion model per correspondence (left), and fitting a single

model per image (right). Plots show the error of undistorted

correspondences w.r.t. the ground truth GS image.
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Figure 4: The impact of baselines >0 is negligible up to

base-to-depth ratio ≈1:100, and remains low up to ≈1:30.

baselines 6=0. We use the global model fit (v2), with angu-

lar velocity 15◦/frame. The baseline was increased from 0

to 5% of the smallest scene depth. As shown in Fig. 4, the

zero-baseline assumption has negligible effect for base-to-

depth ratios up to 1:100, i.e., at a typical smartphone base-

line of at most 2 cm for objects ≥2 m from the camera. Even

at an extreme value of 1:20 (40 cm from the camera) the ap-

proximation error remains below 10 pixels.

A further experiment with real data supports the claim

that the zero baseline assumption is insignificant in the case

of rotational motion, unless most correspondences are on

the closest scene parts. Fig. 7 shows rotational distortion

removal with objects as close as 10× the baseline. As long

as enough correspondences are found also on more distant

scene parts, RANSAC chooses those and finds a mapping

that is valid also for close objects. For translational motion,

the closest correspondences carry more information about

the translation than the distant ones. In our experiments

the scenes always contained enough correspondences close

enough to estimate the motion, but far enough to neglect

the baseline. For scenes with mostly low depth (relative to

the baseline) we recommend the 6pt fixed-baseline solver,

described in the supplementary material.

Real images. We built a rig with two RS cameras,

mounted ≈3 cm apart and pointing in the same direction,

see Fig. 2. Their rolling shutters run in opposite direc-

tions, with ≈30 ms readout time for a complete frame, a

typical value for consumer devices. The image resolution is

3072 × 2048 pix. Additionally, we added a GS camera to

the rig with resolution 1440× 1080 pix (despite the weaker

specs, that camera cost almost as much as the two RS cam-

eras together). All cameras are triggered synchronously.

We captured images of various scenes, with significant

RS distortions from a variety of different camera motions.

The angular velocity in the rotation experiments was be-

tween 8 and 15 degrees per frame or 240-450◦/s. In the

translation experiments, the car was moving with 30-50

km/h and, since the camera was hand-held, there was also

a non-negligible rotational component. The correspon-

dences between images were either matched SIFT features,

or taken from the optical flow in the case of translational

motion, see Sec. 5. Although the proposed camera config-

uration is new and there are no other algorithms suited to

handle such data, it is interesting to see the results of exist-

ing RS undistortion algorithms. See examples in Fig. 9 for

rotation and Fig. 10 for translation, where we compare our

undistorted GS images with those of most recent competing

methods [26, 25, 18, 32, 33].

We used RANSAC with a fixed number of 200 iterations,

which proved to be enough due to the small minimal set for

the ω solver, respectively the dense optical flow with low

outlier fraction for the ωt solver. Note that we compare each

method only in relevant scenarios, e.g., [25, 18] work under

the assumption of pure rotation and therefore are not able

to handle translation properly; [33] requires a baseline and

thus handles only translation; [26, 32, 34] should be able to

handle both cases, the results of [32, 25] were unsatisfactory

for rotation, so we do not present them.

Compared to existing methods, our results demonstrate

robustness to the motion type as well as the scene con-

tent. The proposed camera setup allows us to correct var-

ious types of distortion with small residual error compared

to the corresponding GS image. For rotation [18] in some

cases provides satisfactory results (Fig.9, rows 1 and 3), but

it fails when there are too few straight lines in the scene

(row 6). [26] almost always fails and [34], although trained

on 6DOF motion data, only produced usable result in rows

3,5 and 6 with rotation around the y-axis.

In Fig. 1 we show a sample with very strong, real RS

effect. Even in this situation our method produces a near-

perfect GS image, whereas competing methods fail. Fur-

thermore, in Fig. 8 we demonstrate that even using a sub-
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RS input 1 RS input 2 Features from ωt

Figure 5: GS-equivalent sparse features from RS images.

The corrected features can be further used, e.g, feeding

them to an SfM pipeline yields a better reconstruction (mid-

dle) than feeding in the raw RS features (top). At the bottom

is the reconstruction from a real GS camera.

Figure 6: Depth maps. The top row shows the two input im-

ages (left) and the resulting undistorted image (right). The

bottom row shows the depth maps created from both input

images (left) and the final fused depth map (right).

window of the second image, one is able to recover the mo-

tion correctly and undistort the full image. This suggests

that a standard smartphone configuration with a wide-angle

and a zoom camera can be handled.

For translational motion, undistorting the entire image

is in general a hard problem [32], as it requires pixel-wise

correspondences as well as occlusion handling, c.f. Sec. 5

and supplementary material. The results in Fig. 10 show

that with our method translation distortion, including occlu-

sions, can be compensated as long as good pixel-wise cor-

respondences can be obtained. On the contrary, [26] strug-

gled to compensate the building (row 2) and the tree (row

3) ; [33] works in some situations (row 1) and fails in others

(row 2 and 3); [32] often provides good results (row 1 and

3), but sometimes compensates the motion only partially,

and also exhibits post-processing artefacts (row 2). We also

tried the recent method [34], but the authors do not provide

Figure 7: Example of rotation undistortion (ω solver) for

close-range scenes. The distance to the nearest scene points

is ≈10× the baseline.

Figure 8: Example of rotation undistortion (ω solver). Cor-

respondences are displayed in red. One camera has nar-

rower FOV. Although parts of the wide-angle view have no

correspondences, they are undistorted correctly.

the code or the trained model, and our re-implementation

trained on 6DOF data provided worse results than all other

methods in all cases, so we do not show them. Note that

[33, 32] require two, respectively three consecutive frames

for which the exact (relative) trigger times as well as the

exact shutter read-out speed must be known.

We show further outputs that can be obtained with our

method, besides undistorted images. One interesting possi-

bility is to output undistorted (sparse) feature points, which

can be fed into an unmodified SfM pipeline. Figure 5 shows

an example of SIFT features extracted from RS images,

recorded from a car in motion and corrected with the model

ωt. Feature point on both the background and the tree were

successfully included as inliers and undistorted. Figure 5

(top row) shows the result of sparse SfM reconstruction with

COLMAP [30]. One can clearly see the difference between

using corrected or uncorrected feature points, especially on

the trees in the foreground.

As an intermediate product during translation correction,

we obtain depth maps, see Fig. 6. While the camera rig un-

dergoes translation, we obtain depth with lower latency than

from consecutive frames, since we are using the inter-row

baseline rather than the inter-frame baseline. The price to

pay is that our stereo baseline diminishes towards the cen-

tral image rows, such that depth estimates become less ac-

curate (and are impossible for the exact middle row).

Choice of solver. The ω solver is well suited for slow-

moving (e.g., hand-held) devices where translation is in-

significant, and for distant scenes with shallow depth range

(e.g., drones). The txy solver suits scenarios with pure, fast

translation (e.g., side-looking cameras on straight roads or

rails), and can in the presence of small rotations still be

used, trading some accuracy for higher robustness. For fast,

general motion we found the 6DOF solver to perform sig-

nificantly better, as expected.
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RS input 1 RS input 2 OURS GS ground truth Undist. w. [26] Undist. w. [34] Undist. w. [18]

Figure 9: Camera undergoing a rotational motion. Significant RS distortion can be successfully removed using the proposed

camera setup. Competing methods for RS image correction [26, 25, 18] provide visibly worse results.

RS input 1 RS input 2 OURS GS ground truth Undist. w. [26] Undist. w. [33] Undist. w. [32]

Figure 10: Camera undergoing translational motion. Images are undistorted pixel-wise, using optical flow obtained with [31].

Another possible scenario which we unfortunately did not

manage to test is the case where the camera rig stands still

and there are objects moving in the scene, as in surveillance

cameras. There, especially the txy solver could provide a

fast and efficient RS correction and depth estimation.

7. Conclusion

We present a novel configuration of two RS cameras that

is easy to realise in practice, and makes it possible to ac-

curately remove significant RS distortions from the images:

by mounting two cameras close to each other and letting

the shutters roll in opposite directions, one obtains different

distortion patterns. Based on those, we derive algorithms to

compute the motion of the two-camera rig and undistort the

images. Using the corrected geometry, we can perform SfM

and compute depth maps equivalent to a GS camera. Our

derivations show that similar constructions are in principle

also possible when there is a significant baseline between

the cameras. Hence, conventional stereo rigs, for instance

on robots or vehicles, could in the future also benefit from

opposite shutter directions.

2512



References

[1] Omar Ait-aider, Nicolas Andreff, Jean Marc Lavest, and

Philippe Martinet. Simultaneous object pose and velocity

computation using a single view from a rolling shutter cam-

era. In ECCV, pages 56–68, 2006. 1, 3, 4

[2] O. Ait-Aider and F. Berry. Structure and kinematics triangu-

lation with a rolling shutter stereo rig. In ICCV, 2009. 1, 2,

3

[3] Cenek Albl, Zuzana Kukelova, Viktor Larsson, and Tomas

Pajdla. Rolling Shutter Camera Absolute Pose. PAMI, 2019.

1, 3, 4

[4] Cenek Albl, Zuzana Kukelova, and Tomas Pajdla. R6p -

rolling shutter absolute pose problem. In CVPR, 2015. 2

[5] Cenek Albl, Zuzana Kukelova, and Tomas Pajdla. Rolling

shutter absolute pose problem with known vertical direction.

In CVPR, 2016. 1

[6] Cenek Albl, Akihiro Sugimoto, and Tomas Pajdla. Degen-

eracies in rolling shutter sfm. In ECCV, 2016. 2
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