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Figure 1: An illustration of our structured noise injection for image generation. Our method enables changing global and

local features in a disentangled way with minimal overhead and without requiring labels.

Abstract

We explore different design choices for injecting noise

into generative adversarial networks (GANs) with the goal

of disentangling the latent space. Instead of traditional ap-

proaches, we propose feeding multiple noise codes through

separate fully-connected layers respectively. The aim is re-

stricting the influence of each noise code to specific parts of

the generated image. We show that disentanglement in the

first layer of the generator network leads to disentanglement

in the generated image. Through a grid-based structure, we

achieve several aspects of disentanglement without compli-

cating the network architecture and without requiring la-

bels. We achieve spatial disentanglement, scale-space dis-

entanglement, and disentanglement of the foreground ob-

ject from the background style allowing fine-grained con-

trol over the generated images. Examples include changing

facial expressions in face images, changing beak length in

bird images, and changing car dimensions in car images.

This empirically leads to better disentanglement scores than

state-of-the-art methods on the FFHQ dataset.

1. Introduction

Recent advances in generative modeling using GANs

lead to incredible results for synthetic image generation.

Most notably, StyleGAN [12] is able to generate very high

quality images that can be hard for untrained humans to

identify as fake.

Improving disentanglement is an open area of research

as one of the main criticisms of state-of-the-art GANs is

the difficulty of controlling generated images. The goal is

to change certain attributes of the generated image with-

out changing the other attributes. For example, it would be

desirable to be able to add smile to a face image without

changing the identity or the background.

Current methods for disentanglement are either too lim-

ited or too specific. Disentanglement in StyleGAN [12]

is mainly scale-based. Low-level features can be changed

while maintaining high-level features, but it is incredibly

difficult to change specific attributes individually. On the

other hand, HoloGAN [17] disentangles pose from identity,

but it uses a specific geometry-based architecture that does

not apply to other attributes.
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Current GAN architectures map a decorrelated input

noise code to an intermediate representation that defines the

generated image. There are two main approaches to gen-

erating an image from the intermediate representation. The

first approach maps the code using fully-connected layers

to obtain a tensor with spatial dimensions that is upsampled

and convolved to generate an image. The second approach

starts with a common input tensor, and uses the input code

to modulate the feature maps in a spatially-invariable man-

ner. Both approaches are inherently entangled structures,

i.e. every element of the latent code can influence every

part in the generated image.

We argue that a general yet fine-grained form of disen-

tanglement can be achieved through better structuring of

noise code injection. Specifically, we design our network

such that each part of the input noise controls a specific

part of the generated image. First, we propose separating

spatially-invariable concepts from spatially-variable ones.

To achieve this, we utilize two input codes: A spatially-

invariable code and a spatially-variable code. The spatially-

invariable code is used to compute AdaIN [8] parameters.

It operates the same way on each pixel within a feature

map regardless of location. The spatially-variable code pro-

duces the input tensor to the upsampling and convolution

layers of the generator. It shows high spatial correspon-

dence with the final image. Second, we propose using a

structured spatially-variable code to enable controlling spe-

cific regions of the generated images. The spatially-variable

code contains codes that are specific to each location, codes

that are shared between some locations, and codes that are

shared between all locations. The benefits of our contribu-

tions can be summarized as follows:

1. Greater degree of control over the generated images

without requiring labels

2. Spatial disentanglement of the latent space through

grid-based structures

3. Scale-based disentanglement of the latent space

through shared values

4. Foreground disentanglement through separating style

from spatially-variable values

2. Related work

Methods of noise injection: The original approach of

utilizing the input noise is still a popular option [5, 20, 2,

11]. The input noise, which is a vector with many entries,

is mapped using a single linear layer to a tensor with spatial

dimensions which is then upsampled and convolved to ob-

tain the final image.

Recent approaches [12, 1, 9] diverge from the original

design in two ways: they propose using a deeper fully-

connected network to map the input noise vector z into a

latent code w, and they utilize w to modulate the feature

maps by scaling and addition.

Face image manipulation: The majority of face ma-

nipulation methods work in image-to-image settings and

require semantic labels. Hence, those methods [3, 21,

14, 15, 25, 6] almost universally train on the CelebA

datasets because it contains labeled attributes. For example,

MaskGAN [14] requires labeled masks with precise hand-

annotation, and ELEGANT [25] uses the attribute labels as

an integral part of the network’s architecture. Other similar

methods [18, 7] use specific datasets with labels suitable for

the specific task. We show that this is an unnecessary and

undesirable restriction for manipulation of unconditionally-

generated images. Especially with the availability of more

recent unlabeled datasets that exhibit more variety, such

as the FFHQ dataset [12]. The common limitations of

current face image manipulation methods are the neces-

sity of labels, the necessity of complex adhoc architectures,

the degradation in quality, and the inability of restricting

changes to local area.

General disentanglement: For general disentangle-

ment, there are two common approaches: background-

foreground disentanglement, and entanglement of seman-

tic concepts. One of the earlier methods for foreground-

background disentanglement [13] incorporates the learn-

ing of alpha masks into the network. They propose us-

ing several generators to generate RGBA images to blend.

FineGAN [22] shows impressive results on disentangling

generation into three stages: background, foreground, and

foreground detail. The main drawbacks for previous

foreground-background disentanglement methods are the

lower quality and variety of generated images, the complex-

ity of the proposed networks, the inability to generalize to

disentangle more regions, and the requirement of labels.

Another approach towards disentanglement is to allow

changing specific concepts independently, without enforc-

ing that they should only affect certain pixels of the gen-

erated image. The majority of methods following this ap-

proach focus mainly on pose [17, 16, 19, 24, 4]. The disen-

tanglement in this case is often application-specific. Meth-

ods that offer a more general disentanglement [10] often

suffer from a lower quality of images.

We extend on previous noise injection methods by

proposing a structured noise injection method that leads to a

more disentangled representation. We extend on face image

manipulation methods by not requiring labeled attributes,

simplifying the network architecture, allowing user-defined

granularity of control, and maintaining the state-of-the-art

quality. We extend on previous disentanglement meth-

ods by enabling changing spatially-local aspects, chang-

ing global aspects, and changing background style indepen-

5135



Figure 2: An illustration of the spatially-variable code mapping in our method. Our noise injection structure utilizes sepa-

rating mapping parameters per code grid cell. Each cell contains a mixture of unique location-specific codes, codes that are

shared with neighbors, and codes that are shared with all cells. We show that disentanglement in the input tensor leads to

disentanglement in the generated images.

dently.

While face image manipulation is often considered as a sep-

arate problem from general disentanglement, our method

is general enough to apply to many different datasets with

similar results. We use our method to train on car and bird

images. We show that even for unaligned datasets contain-

ing different objects, our method still offers a high degree

of control over the generated images.

3. Structured noise injection

3.1. Motivation and intuition

There are several motivating observations for our

method. The first observation is the evident difficulty of

controlling the output image of state-of-the-art GANs. Pre-

vious methods map the input noise through a linear layer

or several fully-connected layers to produce a tensor with

spatial dimensions. We refer to this tensor as the input ten-

sor, as it is typically the first input to the upsampling and

convolution blocks of GANs.

InputTensor = Wz + b (1)

W ∈ R
(4·4·512)×128

z ∈ R
128×1

b ∈ R
512×1

InputTensor ∈ R
4×4×512

As shown in equation 1, traditional methods learn a ma-

trix W to map the entire input noise to vector which is then

reshaped to have width, height, and channels. We believe

that this design choice is inherently entangled since each

entry of the input noise is allowed to modify all spatial lo-

cations in the input tensor. This observation led us to ex-

plore utilizing separate noise codes per spatial location, es-

sentially limiting communication between spatial sources

of variation. We find that by simply dividing the input ten-

sor into regions, providing a different noise code per region,

and a separate mapping from each code to the correspond-

ing region, we are able to obtain spatial disentanglement.

We restructure the mapping in our method such that z con-

sists of independently sampled parts that are each mapped

using an independent part of W . The W in this case is

sparse as shown in figure 3.

Figure 3: We map each part of the noise code using in-

dependent parameters. The result of the mapping is then

reshaped to a 4× 4× 512 tensor where each pixel is gener-

ated from an independent code that was transformed using

independent parameters.

There is a connection between what we observed and the

per-pixel noise in the original StyleGAN paper where the

authors allude to the effect of spatially-varying values. The

authors argue that the network needs spatially-varying val-

ues in order to generate stochastic variation. They demon-

strate that adding per-pixel random noise allows the net-

work to generate exactly the same face but with minor vari-

ation in hair bangs and skin. However, those changes only

affect minor details in StyleGAN. We expect that this is due

to inserting noise in each level where the network cannot
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do long-term learning using the noise values. A key con-

tribution of this paper is showing how the noise injection

structure can lead to spatial disentanglement.

The second observation is related to style transfer meth-

ods and it further guides our specific choice of noise injec-

tion structure. The style transfer problem is often divided

into two competing components: preserving original con-

tent and adding exemplary style. Content corresponds to

the identity of the image (a specific kind of car, or a build-

ing with a specific layout), and it usually affects the loss

through per-pixel distances from the generated image fea-

tures to the input content image features. Style, on the

other hand, corresponds to concepts such as color scheme

and edges strokes. Style affects the loss through some mea-

sure of correlation between generated and exemplary fea-

ture map statistics often through the computation of gram

matrices. It is easy to see that the content loss is much

more dependent on the arrangement of spatial values than

style. This is because content loss is based on location and

it is often measured using an L2 distance while style loss

is based on summary statistics of entire feature maps and

it is often measured using correlation. Another key con-

tribution of this paper is proposing a noise injection struc-

ture that leads to disentanglement between the foreground

object (the spatially-variable content) and the background

type (the feature-map-wide style), such that changing spa-

tial regions in the foreground does not affect the background

style.

3.2. Structure design space

Numerous factors must be considered when designing

the noise injection structure. One factor is the complexity

of the mapping. Some methods [20, 2] use a single linear

layer to move from noise to latent space, while other meth-

ods [12, 1] employ a fully-connected network with several

layers. Another factor is the way the noise code is used,

whether it is used to generate an input tensor to upsample

and convolve or used to modulate feature map statistics. Fi-

nally, since we propose supplying a noise code per region,

a decision has to be made regarding the specific subdivision

of the input tensor into regions. We find that sampling in-

dependent noise codes spatially and pushing them through

independent mapping layers is sufficient to achieve disen-

tanglement. We compare several noise injection structures

visually and numerically. In Figure 4, we show how the par-

ticular choice of noise injection structure affects user con-

trol over the generated images.

We opt for injecting two types of noise codes combining

the benefits of traditional and recent interpretations of noise

codes. One code is a style code that is used to modulate

feature map statistics. The other code is a spatially-variable

code that is used in the traditional way to generate a ten-

sor with spatial dimensions to feed to the upsampling and

convolution blocks. The spatially-variable code contains an

independent local code per pixel of the input tensor, as well

as shared codes. Our approach injects an independent noise

code per each pixel (cell) of the input tensor, 2 × 2 codes

that are shared per sub-region, and one code that is shared

for all cells. Each cell code is pushed through a single linear

layer to produce the corresponding pixel in the input tensor.

We compared starting from a 4×4 and an 8×8 input tensor,

and find that the latter offers more control.

The best structure we propose offers local and global

disentanglement as well as disentanglement of the fore-

ground object from the background style. We find that it

performs equally well regardless of the dataset and whether

it is aligned. Across different kinds of datasets, we obtain a

significant degree of control ranging from resizing a bird’s

beak to changing the viewpoint of a car image.

3.3. Foreground-background disentanglement

The first aspect of disentanglement obtained by our

method is between the background style and the foreground

of an image. This disentanglement is a consequence of our

structure of separating spatially-variable sources of varia-

tion from feature-map-wide sources of variation. By pro-

viding independent spatially-varying values, allowing them

to completely define earlier layers, and applying style mod-

ulation in later layers, we encourage the spatially-variable

code to define the foreground, and the style code to define

background and general image appearance. Our formula-

tion has the same effects observed by previous researchers

in style transfer; applying the style earlier in the network

diminishes the importance of content, and allows the style

to be more influential. On the other hand, applying style

earlier allows style to change not only the background, but

many aspects of the foreground as well. Interestingly, we

find that style will always contain most information about

the background regardless of whether it is applied in earlier

or later layers.

3.4. Local disentanglement

The second aspect of disentanglement is between local

areas in the foreground. One of the main reasons why our

method is able to disentangle concepts is due to our noise-

to-tensor mapping. We view the mapped input tensor as

a grid where each cell is the result of pushing a location-

specific part of the input noise through a location-specific

mapping function. As a result, our method enables chang-

ing a single cell to change the corresponding part of the

generated image. While these changes are localized with

high fidelity, it is expected that the changing of one cell can

result in minor modifications of surrounding regions due to

the spatial overlap in the generator layers.
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Figure 4: A comparison of different noise injection structures. Rows showcase different injection structures, and columns

showcase the results of changing specific parts of the input codes. In the first row we inject a noise code for each region of

a manually designed structure. The second and third rows inject a noise code per row and per column respectively. In the

fourth row we inject a noise code per input tensor pixel. The first set of columns show the result of changing the style code

while keeping local codes fixed. The second and third set of columns show the result of changing some local codes while

keeping other local codes and the style code fixed.

3.5. Local-global disentanglement

The third aspect of disentanglement is between local and

global effects. There are drawbacks to using only local val-

ues to determine the final image. Since some concepts in

the image are global by default (such as pose and gender),

we find that the network is forced to associate global con-

cepts with many local values. For example, we noticed that

changing a grid cell containing part of the mouth or the

jaw can sometimes change pose and gender too which is

undesirable. It would be more user-friendly to segregate

the global aspects of the image from local ones, such that

changing cells containing the mouth may change smile or

facial hair but not pose or age.

We propose reserving certain entries of the spatially-

variable noise code to be global and shared across local

cells. So before the noise-to-tensor mapping, we concate-

nate the global code with each local code. This is not too

different from FineGAN’s approach of concatenating the

parent code with the detail layer’s code. It is intriguing to

find that, without any supervision, the network learns to as-

sociate the global entry with pose when training on FFHQ

face images. We performed several experiments with vary-

ing lengths of the global code, and the main caveat is that

more expressiveness in the global code leads to lower influ-

ence of the local codes and more entanglement of the global

code. We opt for allowing only a single value to be shared

across all pixels.

After using a single shared entry, and disentangling pose

from local features, some issues still remain. Changing the

mouth cannot change the pose anymore, however it is still

free to change the size of the jaw making the person seem

younger or older. We loosely draw inspiration from scale-

space theory to add another scale of shared global noise

code entries. In order to restrict mid-level aspects in ad-

dition to pose, we employ a 2 × 2 code shared with local

codes based on location. As shown in figure 2, local cells

at the top left quarter of the input tensor will share the first

entry, local cells at the top right quarter will share the sec-

ond entry, and so on. At that scale, only coarse information

about the geometry of a face can be encoded. We experi-

mented with adding another scale level of 4 × 4 but found

that it reduces the variance of changes performed at the 8×8

scale.

4. Architecture and implementation details

4.1. Overview

Although our method is in many aspects orthogonal to

state-of-the-art networks, there are two design choices of

our method that affect the architecture. First, we utilize

two input noise codes: a spatially-variable code containing

a mixture of local codes and shared codes, and a style code

that is used to compute AdaIN [8] parameters. Second, we

utilize a noise injection structure for the spatially-variable
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code that leads to disentanglement in the input tensor and

the generated images.

4.2. Input noise codes

The spatially-variable code in our network is a concate-

nation of the global code entry, the 2 × 2 entries that are

shared by region, and the 8×8 local codes for each cell. Af-

ter structuring and mapping this code to a tensor using our

method, the resulting tensor is upsampled and convolved

to generate the final image. Another noise code is used to

apply style modulation to feature maps. This code is used

to learn AdaIN parameters, similar to StyleGAN [12]. As

mentioned earlier, the utilization of two different input noise

codes that operate on different aspects of generation is es-

sential to disentangle the foreground object from the back-

ground style and general appearance.

For our top-performing structure, the global code dimen-

sion is set to 1, the 2 × 2 region-based codes are each of

dimension 1, and the local cell codes are each of dimension

16. So at each cell, in addition to the 16 local code entries,

the cell also received the global code entry and the region-

based shared entry. Style modulation is applied starting at

layer 5 (the second block at resolution 16 × 16), such that

the spatially-variable code completely determines the ear-

lier layers.

5. Results

5.1. Comparative experiments

We perform two sets of experiments: qualitative and

quantitative. We use the FFHQ dataset [12], the LSUN cars

dataset [26], and the CUB dataset [23].

For our qualitative experiments, we train on datasets

of different objects. We do not utilize any labels or al-

pha masks. We use our qualitative results to demonstrate

that we have achieved our goal of fine-grained category-

independent control over the generation process. For

face images, we show how our method can change smile,

hairstyle, pose, age, and accessories. Although a grid-based

system seems more appropriate for aligned datasets such

as the FFHQ dataset, the same effects are obtained for un-

aligned datasets. For car images, we show how we can

change camera viewpoint, dimensions of the car, and lo-

cal details. For bird images, we show how we obtain con-

trol over the general colors, the background, and even beak

length.

For our quantitative experiments, we use the FID for

measuring quality, and path length and linear separability

for measuring disentanglement. These two disentanglement

metrics were proposed by the StyleGAN paper [12]. Path

length uses the smoothness of successive images generated

from interpolated codes as an indicator for disentanglement.

Methods that introduce new concepts not present in the two

Method FID Z linear

separa-

bility

W

linear

separa-

bility

StyleGAN 8 W 4.40 165.26 3.79

StyleGAN 2 W 4.43 / 6.25

ProgressiveGAN 5.25 / 10.78

Ours (w/o per-pixel noise) 5.92 45.36 4.29

Table 1: A comparison of quality and linear separabil-

ity scores on FFHQ at full resolution. Lower FID indi-

cates higher quality, while lower linear separability indi-

cates more disentanglement.

endpoints of the interpolation will have high path lengths

and low disentanglement. Linear separability works after

some processing of generated images. After face images

are generated by a method, they are pushed through a pre-

trained attribute classification network. Then, the most con-

fident predictions are used as a training set for a linear SVM

classifier. The idea is that if the latent codes are disentan-

gled then we can linearly separate the attributes of resulting

images using only the codes.

In Table 1, we compare our results with StyleGAN after

training on the 1024× 1024 FFHQ images.

Figure 5: A plot of the W full path length as training pro-

gresses. Throughout training, our method leads to more dis-

entanglement as indicated by the shorter path lengths. We

adapt the other results from the StyleGAN paper [12]

5.2. Ablation studies

We perform several experiments to highlight the effects

of different components on the performance of our method.

We test the effect of adding per-pixel noise, the effect of

applying the style code starting at different resolutions, and

the effect of the dimension of the local codes. Since we

performed a large number of tests with different settings,

we opted to compare them on lower resolution 256 × 256
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Method FID Z

path

length

W

path

length

StyleGAN w/o per-pixel noise 10.40 546.06 176.85

Ours w/o per-pixel noise

Style at all layers 11.55 258.69 106.56

Style starting at 16× 16 11.60 208.04 111.13

Style starting at 64× 64 13.42 215.54 158.26

Style starting at 128× 128 19.80 628.73 577.33

StyleGAN 10.73 280.58 89.91

Ours

Style at all layers 15.98 128.19 52.26

Style starting at 16× 16 12.08 93.05 49.14

Style starting at 64× 64 16.05 302.39 274.59

Style starting at 128× 128 16.36 276.79 239.90

Ours

Local code dimension 8 12.61 103.82 55.67

Local code dimension 16 12.08 93.05 49.14

Local code dimension 32 11.44 108.44 51.62

Local code dimension 128 11.41 125.43 52.77

Table 2: A comparison of different architectures of our

method. A smaller path length indicates more disentangle-

ment.

FFHQ images after training until a total of 10 million im-

ages is seen.

In practice, as long as different noise code entries are

mapped using different functions for each pixel in the in-

put tensor, then disentanglement will be achieved. We also

find that whether style modulation is applied in all layers or

only in the last few layers, our method still achieves some

foreground-background disentanglement.

However, the foreground-background disentanglement is

dependent on where we begin style modulation. Applying

the style modulation too late in the network would force the

spatially-variable code to learn to change the background,

while the style code will be restricted to mainly changing

colors. We believe that this is a useful effect since it could

be used to adapt the identity-style decomposition for a vari-

ety of image generation problems.

In table 2, we quantify some of the effects of each com-

ponent of our method.

5.3. Analysis

To the best of our knowledge, there are no previously es-

tablished qualitative results for spatial control over the gen-

erated images. For the CUB dataset, previous disentangle-

ment results were established by FineGAN [22]. However,

it is limited in two ways: it requires background labels, and

it disentangles generation discretely into three categories:

background, foreground, and foreground detail. While our

method is not able to change the background without chang-

ing color of the foreground (since we do not use alpha mask

labels), we present the user with a much higher degree of

control. On the birds dataset, our method learns without su-

pervision to assign the style code to the color of the bird

and the type of background, the global codes to the pose

and shape of the bird, and the local codes to local features

such as the length of the beak.

We demonstrate an important advantage of our method

in Figure 6. First, we generate a unique face image per row

by sampling a unique style code and full spatially-variable

code (1 + 2 × 2 + 8 × 8 × 16) for each row of the figure.

Then, for the right figure, we resample two local codes for

the cells covering the mouth (2 * (2 × 2 × 16)). The same

two codes are used to replace each spatially-variable code

at the mouth cells (right). For the left figure, we sample

two the scale1 (2 * (2× 2)). Again, the same two codes are

used to replace the scale1 codes of each spatially-variable

code (left). We interpolate between the two sets of codes,

and show the generated images. It is interesting to note that

the same smile code applies the same degree of smile with-

out any dependence on the unique spatially-variable code

of each row in the figures. Similarly, we observe that the

same intermediate global codes lead to a predictable aging

effect. This suggests that our network learns concepts in an

abstract way.

In almost all settings and resolutions, our method leads

to a substantial improvement in disentanglement scores

when compared with StyleGAN. The Z space is highly rel-

evant since our method allows resampling in Z, while the

W space is used only for interpolation and cannot be sam-

pled easily. Although our method results in a slight increase

in FID, we believe that this is an unavoidable cost for dis-

entanglement. Our method in essence enforces additional

constraints over traditional GANs. By limiting communica-

tion between local cells, the consistency between adjacent

cells has to be enforced later in the convolutional blocks of

the network. On the other hand, traditional method allow

the first mapping function to see the whole noise code and

produce a tensor where all the cells see the same input.

6. Discussion and limitations

In this paper, we explore improving disentanglement

through better noise injecting structures. In doing so, we

contribute to theory and application.

In terms of theory, our analysis shows that the mapping

from the noise code to a tensor that is upsampled and con-

volved is crucial for disentanglement. By feeding a tensor

that is already entangled in terms of the input noise, previ-

ous methods struggle when attempting to change individual

attributes. We show that it is sufficient to enforce indepen-

dence between different sources of variation as well as dif-

ferent mapping parameters to obtain disentanglement.

We show a setting where foreground-background disentan-
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Figure 6: Our network learns attributes in a disentangled way. Left: we sample two scale1 global codes. Right: we sample

two codes for the four cells surrounding the mouth. For each figure, we use the same two codes to replace and interpolate

only the corresponding entries in the full row code. We find that regardless of how each row code is unique, replacing the

mouth cells with the same values leads to the same degree of smile.

Figure 7: An example of the disentanglement of our method

on the birds dataset. We can change background style and

color without changing content (left) and change the beak

without changing the background style (right).

Figure 8: An example of the disentanglement of our method

on the cars dataset. We can change background style and

color without changing viewpoint (left) and change the

camera viewpoint without changing the background style

(right).

glement can be improved by borrowing from style transfer

methods. Instead of employing labeled alpha masks, we

simply encourage one code to define the part of the image

that is related to content, and another code to define the part

of the image that is related to style.

In terms of application, we overcome the current challenges

for face image manipulation. Our method produces high

quality images without requiring labels or complicated ar-

chitectures. Moreover, we relax the constraints on the de-

gree of control, giving users the freedom to change almost

every aspect of generated images.

The main limitation of our work is the inability to change

the background without changing anything about the fore-

ground. While we are able to change the foreground while

keeping the same background, changing the background

(style code) will change color and sometimes features about

the original face. Another open area of research is eliminat-

ing the remaining entanglement between mid-level features,

so that gender can be specifically changed without changing

age. There is also some tuning required to achieve the de-

sired granularity of control. Though disentanglement is of-

ten achieved regardless of the particular configurations, the

exact effects vary depending on the noise injection settings.

Nonetheless, we believe that our work will lead to a
wider adoption of GANs for artistic and task-dependent im-
age generation due to the simplicity of the implementation
and the quality of the results. Disentangled control over
generated images has been a major problem since the in-
troduction of GANs. We have taken large strides towards
solving these problems. Our work opens the door for un-
derstanding the representation learned by GANs; why they
are able to generate different poses, hairstyles, and facial
expressions of the same person even though neither the
concept of identity nor labeled attributes are present in the
dataset.
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