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Abstract

Human motion prediction, the task of predicting future

3D human poses given a sequence of observed ones, has

been mostly treated as a deterministic problem. However,

human motion is a stochastic process: Given an observed

sequence of poses, multiple future motions are plausible.

Existing approaches to modeling this stochasticity typically

combine a random noise vector with information about the

previous poses. This combination, however, is done in a

deterministic manner, which gives the network the flexibil-

ity to learn to ignore the random noise. Alternatively, in

this paper, we propose to stochastically combine the root

of variations with previous pose information, so as to force

the model to take the noise into account. We exploit this

idea for motion prediction by incorporating it into a re-

current encoder-decoder network with a conditional vari-

ational autoencoder block that learns to exploit the pertur-

bations. Our experiments on two large-scale motion predic-

tion datasets demonstrate that our model yields high-quality

pose sequences that are much more diverse than those from

state-of-the-art stochastic motion prediction techniques.

1. Introduction

Human motion prediction aims to forecast the sequence

of future poses of a person given past observations of such

poses. To achieve this, existing methods typically rely on

recurrent neural networks (RNNs) that encode the person’s

motion [28, 14, 37, 22, 5, 31, 32]. While they predict rea-

sonable motions, RNNs are deterministic models and thus

cannot account for the highly stochastic nature of human

motion; given the beginning of a sequence, multiple, di-

verse futures are plausible. To correctly model this, it is

therefore critical to develop algorithms that can learn the

multiple modes of human motion, even when presented with

only deterministic training samples.

∗This research was supported by the Australian Government through

the Australian Research Council (ARC).
†Equal contribution.

Recently, several attempts have been made at modeling

the stochastic nature of human motion [40, 5, 37, 22, 26].

These methods rely on sampling a random vector that is

then combined with an encoding of the observed pose se-

quence. In essence, this combination is similar to the con-

ditioning of generative networks; the resulting models aim

to generate an output from a random vector while taking

into account additional information about the content.

While standard conditioning strategies, i.e., concatenat-

ing the condition to the latent variable, may be effective for

many tasks, as in [41, 21, 11, 10, 4, 23], they are ill-suited

for motion prediction. The reason is the following: In other

tasks, the conditioning variable only provides auxiliary in-

formation about the output to produce, such as the fact that

a generated face should be smiling. By contrast, in motion

prediction, it typically contains the core signal to produce

the output, i.e., the information about the previous poses.

We empirically observed that, since the prediction model

is trained using deterministic samples (i.e., one condition

per sample), it can then simply learn to ignore the random

vector and still produce a meaningful output based on the

conditioning variable only. In other words, the model can

ignore the root of variations, and thus essentially become

deterministic. This problem was discussed in [6] in the con-

text of unconditional text generation, and we identified it in

our own motion prediction experiments.

We introduce a simple yet effective approach to coun-

teracting this loss of diversity and thus to generating truly

diverse future pose sequences. At the heart of our approach

lies the idea of Mix-and-Match perturbations: Instead of

combining a noise vector with the conditioning variables

in a deterministic manner, we randomly select and perturb a

subset of these variables. By randomly changing this subset

at every iteration, our strategy prevents training from iden-

tifying the root of variations and forces the model to take

it into account in the generation process. Consequently, as

supported by our experiments, our approach produces not

only high-quality predictions but also truly diverse ones.

In short, our contributions are (i) a novel way of impos-

ing diversity into conditional VAEs, called Mix-and-Match
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perturbations; (ii) a new motion prediction model capable

of generating multiple likely future pose sequences from

an observed motion; (iii) a new set of evaluation metrics

for quantitatively measuring the quality and the diversity of

generated motions, thus facilitating the comparison of dif-

ferent stochastic approaches; and (iv) a curriculum learning

paradigm for training generative models that use Mix-and-

Match perturbation as the stochastic conditioning scheme.

Despite its simplicity, curriculum learning of variation is es-

sential to achieve optimal performance in case of imposing

large variations.

2. Related Work

Deterministic Motion Prediction. Most motion predic-

tion approaches are based on deterministic models [32, 31,

14, 18, 28, 15, 12, 13, 27], casting motion prediction as a

regression task where only one outcome is possible given

the observations. Due to the success of RNN-based meth-

ods at modeling sequence-to-sequence learning problems,

many attempts have been made to address motion predic-

tion within a recurrent framework [28, 14, 37, 22, 5, 31, 32].

Typically, these approaches try to learn a mapping from the

observed sequence of poses to the future sequence. Another

group of study addresses this problem within feed-forward

models [27, 24, 7], either with fully-connected [7], convo-

lutional [24], or more recently, graph neural networks [27].

While a deterministic approach may produce accurate pre-

dictions, it fails to reflect the stochastic nature of human

motion, where multiple plausible outcomes can be highly

likely for a single given series of observations. Modeling

this diversity is the topic of this paper, and we therefore

focus the discussion below on the other methods that have

attempted to do so.

Stochastic Motion Prediction. The general trend to incor-

porate variations in the predicted motions consists of com-

bining information about the observed pose sequence with

a random vector. In this context, two types of approaches

have been studied: The techniques that directly incorporate

the random vector into the RNN decoder, e.g., as in GANs,

and those that make use of an additional Conditional Vari-

ational Autoencoder (CVAE) [36] to learn a latent variable

that acts as the root of variation.

In the first class of methods, [26] sample a random vec-

tor zt ∼ N (0, I) at each time step and add it to the pose

input to the RNN decoder. By relying on different random

vectors at each time step, however, this strategy is prone to

generating discontinuous motions. To overcome this, [22]

make use of a single random vector to generate the entire se-

quence. This vector is both employed to alter the initializa-

tion of the decoder and concatenated with a pose embedding

at each iteration of the RNN. By relying on concatenation

as a mean to fuse the condition and the random vector, these

two methods contain parameters that are specific to the ran-

dom vector, and thus give the model the flexibility to ignore

this information. In [5], instead of using concatenation, the

random vector is added to the hidden state produced by the

RNN encoder. While addition prevents having parameters

that are specific to the random vector, this vector is first

transformed by multiplication with a parameter matrix, and

thus can again be zeroed out so as to remove the source of

diversity, as we observe empirically in Section 4.2.

The second category of stochastic methods introduce an

additional CVAE between the RNN encoder and decoder.

This allows them to learn a more meaningful transformation

of the noise, combined with the conditioning variables, be-

fore passing the resulting information to the RNN decoder.

In this context, [37] propose to directly use the pose as con-

ditioning variable. As will be shown in our experiments,

while this approach is able to maintain some degree of di-

versity, albeit less than ours, it yields motions of lower qual-

ity because of its use of independent random vectors at each

time step. In [8], an approach similar to that of [37] is pro-

posed, but with one CVAE per limb. As such, this method

suffers from the same discontinuity problem as [37, 26]. Fi-

nally, instead of perturbing the pose, the recent work of [40]

uses the RNN decoder hidden state as conditioning vari-

able in the CVAE, concatenating it with the random vector.

While this approach generates high-quality motions, it suf-

fers from the fact that the CVAE decoder gives the model

the flexibility to ignore the random vector.

Ultimately, both classes of methods suffer from the fact

that they allow the model to ignore the random vector, thus

relying entirely on the conditioning information to generate

future poses. Here, we introduce an effective way to main-

tain the root of diversity by randomizing the combination of

the random vector with the conditioning variable.

3. Proposed Method

In this section, we first introduce our Mix-and-Match ap-

proach to introducing diversity in CVAE-based motion pre-

diction. We then describe the motion prediction architecture

we used in our experiments and propose a novel evaluation

metric to quantitatively measure the diversity and quality of

generated motions.

3.1. Mix­and­Match Perturbation

The main limitation of prior work in the area of stochas-

tic motion modeling, such as [37, 5, 40], lies in the way

they fuse the random vector with the conditioning variable,

i.e., RNN hidden state or pose, which causes the model to

learn to ignore the randomness and solely exploit the deter-

ministic conditioning information to generate motion. To

overcome this, we propose to make it harder for the model

to decouple the random variable from the deterministic in-

formation. Specifically, we observe that the way the random

variable and the conditioning one are combined in existing
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Figure 1. Mix-and-Match perturbation. (Top) Illustration of the

Sampling operation (left) and of the Resampling one (right). Given

a sampling rate α and a vector length L, the Sampling opera-

tion samples ⌈αL⌉ indices, say I. The complementary, unsam-

pled indices are denoted by Ī. Then, given two L-dimensional

vectors and the corresponding ⌈αL⌉ and ⌊(1− α)L⌋ indices, the

Resampling operation mixes the two vectors to form a new L-

dimensional one. (Middle) Example of Mix-and-Match pertur-

bation. (Bottom) Example of perturbation by concatenation, as

in [40]. Note that, in Mix-and-Match perturbations, sampling is

stochastic; the indices are sampled uniformly randomly for each

mini-batch. By contrast, in [40], sampling is deterministic, and

the indices in I are fixed and correspond to I = {1, . . . , L

2
}.

methods is deterministic. We therefore propose to make this

process stochastic.

Similarly to [40], we propose to make use of the hidden

state as the conditioning variable and generate a perturbed

hidden state by combining a part of the original hidden state

with the random vector. However, as illustrated in Fig. 1, in-

stead of assigning predefined, deterministic indices to each

piece of information, such as the first half for the hidden

state and the second one for the random vector, we assign

the values of the hidden state to random indices and the ran-

dom vector to the complementary ones.

More specifically, as depicted in Fig. 1, a mix-and-match

perturbation takes two vectors of size L as input, say ht and

z, and combines them in a stochastic manner. To this end,

it relies on two operations. The first one, called Sampling,

chooses ⌈αL⌉ indices uniformly at random among the L

possible values, given a sampling rate 0 ≤ α ≤ 1. Let

us denote by I ⊆ {1, . . . , L}, the resulting set of indices

and by Ī the complementary set. The second operation,

called Resampling, then creates a new L-dimensional vec-

tor whose values at indices in I are taken as those at cor-

responding indices in the first input vector and the others

at the complementary indices, of dimension ⌊(1− α)L⌋, in

the second input vector.

3.2. M&M Perturbation for Motion Prediction

Let us now describe the way we use our mix-and-match

perturbation strategy for motion prediction. To this end, we

first discuss the network we rely on during inference, and

then explain our training strategy.

Inference. The high-level architecture we use at infer-

ence time is depicted by Fig. 2 (Top). It consists of an

RNN encoder that takes t poses x1:t as input and out-

puts an L-dimensional hidden vector ht. A random ⌈αL⌉-

dimensional portion of this hidden vector, hI
t , is then

combined with an ⌊(1− α)L⌋-dimensional random vector

z ∼ N (0, I) via our mix-and-match perturbation strat-

egy. The resulting L-dimensional output is passed through

a small neural network (i.e., ResBlock2 in Fig. 2) that re-

duces its size to ⌈αL⌉, and then fused with the remaining

⌊(1− α)L⌋-dimensional portion of the hidden state, hĪ
t .

This, in turn, is passed through the VAE decoder to pro-

duce the final hidden state hz , from which the future poses

xt+1:T are obtained via the RNN decoder.

Training. During training, we aim to learn both the RNN

parameters and the CVAE ones. Because the CVAE is an

autoencoder, it needs to take as input information about fu-

ture poses. To this end, we complement our inference archi-

tecture with an additional RNN future encoder, yielding the

training architecture depicted in Fig. 2 (Bottom). Note that,

in this architecture, we incorporate an additional mix-and-

match perturbation that fuses the hidden state of the RNN

past encoder ht with that of the RNN future encoder hT

and forms h
p
tT . This allows us to condition the VAE en-

coder in a manner similar to the decoder. Note that, for each

mini batch, we use the same set of sampled indices for all

mix-and-match perturbation steps throughout the network.

Furthermore, following the standard CVAE strategy, dur-

ing training, the random vector zp is sampled from the ap-

proximate posterior distribution N (µθ(x),Σθ(x)), whose

mean µθ(x) and covariance matrix Σθ(x) are produced by

the CVAE encoder with parameters θ. This, in practice, is

done by the reparameterization technique [20]. Note that,

during inference, zp = ǫ ∼ N (0, I) since we do not have

access to x, hence to µθ(x) and Σθ(x).

To learn the parameters of our model, we rely on the

availability of a dataset D = {X1, X2, ..., XN} contain-

ing N videos Xi depicting a human performing an ac-

tion. Each video consists of a sequence of T poses, Xi =
{x1

i , x
2
i , ..., x

T
i }, and each pose comprises J joints forming

a skeleton, xt
i = {xt

i,1, x
t
i,2, ..., x

t
i,J}. The pose of each

joint is represented as a 4D quaternion. Given this data, we

train our model by minimizing a loss function of the form

L =
1

N

N
∑

i=1

(

Lrot(Xi) + Lskl(Xi)
)

+ λLprior . (1)

The first term in this loss compares the output of the net-

work with the ground-truth motion using the squared loss.

That is,

Lrot(Xi) = −
T
∑

k=t+1

J
∑

j=1

‖x̂k
i,j − xk

i,j‖
2
, (2)

where x̂k
i,j is the predicted 4D quaternion for the jth joint

at time k in sample i, and xk
i,j the corresponding ground-
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Figure 2. Overview of our approach. (Top): Overview of the model during inference. During inference, given past information and a

random vector sampled from a Normal distribution, the model generates new motions. (Bottom): Overview of the model during training.

During training, we use a future pose autoencoder with a CVAE between the encoder and the decoder. The RNN encoder-decoder network

mapping the past to the future then aims to generate good conditioning variables for the CVAE.
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Figure 3. Example of curriculum perturbation of the hidden state.

truth one. The main weakness of this loss is that it treats all

joints equally. However, when working with angles, some

joints have a much larger influence on the pose than others.

For example, because of the kinematic chain, the pose of

the shoulder affects that of the rest of the arm, whereas the

pose of the wrists has only a minor effect. To take this into

account, we define our second loss term as the error in 3D

space. That is,

Lskl(Xi) = −
T
∑

k=t+1

J
∑

j=1

‖p̂ki,j − pki,j‖
2 , (3)

where p̂ki,j is the predicted 3D position of joint j at time

k in sample i and pki,j the corresponding ground-truth one.

These 3D positions can be computed using forward kine-

matics, as in [32, 31]. Note that, to compute this loss, we

first perform a global alignment of the predicted pose and

the ground-truth one by rotating the root joint to face [0, 0,

0]. Finally, following standard practice in training VAEs,

we define our third loss term as the KL divergence

Lprior = −KL
(

N (µθ(x),Σθ(x)))‖N (0, I)
)

= −
1

2

d
∑

j=1

(

1 + log(σθ(x)
2
j )− µθ(x)

2
j − σθ(x)

2
cj

)

. (4)

where Σθ(x) = diag(σθ(x)
2)I and d is the length of the

diagonal of the covariance matrix. In practice, since our

VAE appears within a recurrent model, we weigh Lprior

by a function λ corresponding to the KL annealing weight

of [6]. We start from λ = 0, forcing the model to encode as

much information in z as possible, and gradually increase it

to λ = 1, following a logistic curve.

3.3. Curriculum Learning of Variation

The parameter α in our mix-and-match perturbation

scheme determines a trade-off between stochasticity and

motion quality. The larger α, the larger the portion of the

original hidden state that will be perturbed. Thus, the model

incorporates more randomness and less information from

the original hidden state. As such, given a large α, it be-

comes harder for the model to deliver motion information

from the observation to the future representation since a

large portion of the hidden state is changing randomly. In

particular, we observed that training becomes unstable if we

use a large α from the beginning, with the motion-related

loss terms fluctuating while the prior loss Lprior quickly

converges to zero. To overcome this while still enabling the

use of sufficiently large values of α to achieve high diver-

sity, we introduce the curriculum learning strategy depicted

by Fig. 3. In essence, we initially select ⌈αL⌉ indices in

a deterministic manner and gradually increase the random-

ness of these indices as training progresses. More specif-

ically, given a set of ⌈αL⌉ indices, we replace c indices

from the sampled ones with the corresponding ones from

the remaining ⌊(1− α)L⌋ indices. Starting from c = 0, we

gradually increase c to the point where all ⌈αL⌉ indices are

sampled uniformly randomly. More details, including the

pseudo-code of this approach, are provided in the supple-

mentary material. This strategy helps the motion decoder

to initially learn and incorporate information about the ob-

servations (as in [40]), yet, in the long run, still prevents it

from ignoring the random vector.

3.4. Quality and Diversity Metrics

When dealing with multiple plausible motions, or in gen-

eral diverse solutions to a problem, evaluation is a chal-

lenge. The standard metrics used for deterministic motion

prediction models are ill-suited to this task, because they

typically compare the predictions to the ground truth, thus

inherently penalizing diversity. For multiple motions, two
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aspects are important: the diversity and the quality, or real-

ism, of each individual motion. Prior work typically eval-

uates these aspects via human judgement. While human

evaluation is highly valuable, and we will also report hu-

man results, it is very costly and time-consuming. Here,

we therefore introduce two metrics that facilitate the quan-

titative evaluation of both quality and diversity of gener-

ated human motions. We additionally extend the Inception-

Score [34] to our task.

To measure the quality of generated motions, we pro-

pose to rely on a binary classifier trained to discriminate real

(ground-truth) samples from fake (generated) ones. The ac-

curacy of this classifier on the test set is thus inversely pro-

portional to the quality of the generated motions. In other

words, high-quality motions are those that are not distin-

guishable from real ones. Note that we do not rely on ad-

versarial training, i.e., we do not define a loss based on this

classifier when training our model. To measure the diversity

of the generated motions, a naive approach would consist of

relying on the distance between the generated motion and a

reference one. However, generating identical motions that

are all far from the reference one would therefore yield a

high value, while not reflecting diversity. To prevent this,

we propose to make use of the average distance between

all pairs of generated motions. A similar idea has been in-

vestigated to measure the diversity of solutions in other do-

mains [43, 42].

The quality and diversity metrics can reliably evaluate

a stochastic motion prediction model. While providing

valuable information, drawing conclusion about the perfor-

mance of a model is always easier with a single measure.

To this end, we extend the Inception-Score (IS) [34] used

to measure the quality of images produced by a generative

model. Our extension to IS is twofold: (1) Inspired by [16],

we extend IS to the conditional case, where the condition

provides the core signal to generate the sample; (2) Our

extended IS measures the quality and diversity of sequen-

tial solutions. To this end, we first train a strong skeleton-

based action classifier [25] on ground-truth motions. With

then compute the IS of each of the multiple motions gener-

ated for a given condition (observed motion), and report the

mean IS and its standard deviation over all conditions. The

reason behind reporting the mean IS over all conditions is

to evaluating the diversity of generated motions given each

observation. Note that studying IS only makes it hard to

evaluate quality and diversity separately, and thus we still

believe that all three metrics are required. Importantly, we

show empirically that our proposed metrics are in line with

human judgement, at considerably lower cost.

4. Experiments

We now evaluate the effectiveness of our approach at

generating multiple plausible motions. To this end, we use

Human3.6M [17] and the CMU Mocap dataset1, two large

publicly available motion capture datasets. In this section,

we introduce the baselines and give information about the

implementation details and evaluation metrics. We then

provide all the experimental results.

Baselines. We compare our Mix-and-Match approach with

the different means of imposing variation in motion predic-

tion discussed in Section 2, i.e., concatenating the hidden

state to a learned latent variable, Yan et al., [40], concate-

nating the pose to a learned latent variable at each time-step,

Walker et al., [37], and adding a (transformed) random noise

to the hidden state, Barsoum et al., [5]. For the comparison

to be fair, we use 16 frames (i.e., 640ms) as observation to

generate the next 60 frames (i.e., 2.4sec) for all baselines.

All models are trained with the same motion representation,

annealing strategy, backbone network, and losses, except

for Barsoum et al., [5] which cannot make use of Lprior.

Implementation Details. The motion encoders and de-

coders in our model are single layer GRU [9] networks,

comprising 1024 hidden units each. For the decoders, we

use a teacher forcing technique [39] to decode motion. At

each time-step, the network chooses with probability Ptf

whether to use its own output at the previous time-step or

the ground-truth pose as input. We initialize Ptf = 1, and

decrease it linearly at each training epoch such that, after a

certain number of epochs, the model becomes completely

autoregressive, i.e., uses only its own output as input to the

next time-step. We train our model on a single GPU with the

Adam optimizer [19] for 100K iterations. We use a learn-

ing rate of 0.001 and a mini-batch size of 64. To avoid ex-

ploding gradients, we use the gradient-clipping technique

of [29] for all layers in the network. We implemented our

model using the Pytorch framework of [30].

Evaluation Metrics. In addition to the metrics discussed

in Section 3.4, we also report the standard ELBO metric

(approximated by the reconstruction loss and the KL on the

test set) and the sampling loss (S-MSE) of our approach

and the state-of-the-art stochastic motion prediction tech-

niques. However, evaluating only against one ground-truth

motion (i.e., one sample from multi-modal distribution), as

in MSE or S-MSE, can lead to a high score for one sample

while penalizing other plausible modes. This behavior is

undesirable since it cannot differentiate a multi-modal so-

lution from a good, but uni-modal one. Similarly, the met-

rics in [40] or the approximate ELBO only evaluate quality

given one single ground truth. While the ground truth has

high quality, there exist multiple high quality continuations

of an observation, which our proposed metric accounts for.

As discussed in Section 3.4, we evaluate the quality and di-

versity of the predicted motions. Note, these metrics should

be considered together, since each one taken separately does

not provide a complete picture of how well a model can

1Available at http://mocap.cs.cmu.edu/.
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Quantitative results on Human3.6M dataset

Method ELBO ↓ (KL ↑) Diversity ↑ Quality ↑ IS ↑ Tr KL ↑

Yan et al., [40] 0.51 (0.06) 0.26 0.45 1.9±0.4 0.08

Walker et al., [37] 2.08 (N/A) 1.70 0.13 1.8±0.6 N/A

Barsoum et al., [5] 0.61 (N/A) 0.48 0.47 2.1±1.3 N/A

Mix-and-Match 0.55 (2.03) 3.52 0.42 7.3±1.4 1.98

Quantitative results on CMU Mocap dataset

Method ELBO ↓ (KL ↑) Diversity ↑ Quality ↑ IS ↑ Tr KL ↑

Yan et al., [40] 0.25 (0.08) 0.41 0.46 2.4±0.1 0.01

Walker et al., [37] 1.93 (N/A) 3.00 0.18 1.4±0.4 N/A

Barsoum et al., [5] 0.24 (N/A) 0.43 0.45 2.0±1.0 N/A

Mix-and-Match 0.25 (2.92) 2.63 0.46 9.0±1.7 2.20

Table 1. Comparison of our approach with the stochastic motion prediction baselines on Human3.6M dataset (left) and CMU Mocap dataset

(right). Tr KL stands for KL term at training convergence.

Figure 4. Qualitative evaluation of diversity. The first row (black box) shows the ground-truth motion. The next six rows depict six

randomly generated motions (not cherry-picked) given the same observations (the first four poses of each motion). The green box shows

the last observed frame and the first generated one, illustrating the consistency of the generated motions. The orange boxes show the

diversity of the generated motions in different temporal windows. The blue box shows a randomly sampled motion whose poses are similar

to the ground-truth ones. Best seen in color and zoomed in.
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Figure 5. Diversity of K RNN decoder inputs, generated with

K = 50 different random vectors. We report the mean diversity

over N = 50 samples and the corresponding standard deviation.

predict multiple plausible future motions. For example, a

model can generate diverse but unnatural motions, or, con-

versely, realistic but identical motions. To evaluate quality,

as discussed in Section 3.4, we use a recurrent binary clas-

sifier whose task is to determine whether a sample comes

from the ground-truth data or was generated by the model.

We train such a classifier for each method, using 25K sam-

ples generated at different training steps together with 25K

real samples, forming a binary dataset of 50K motions for

each method. To evaluate diversity, as discussed in Sec-

tion 3.4, we compute the mean Euclidean distance from

each motion to all other K − 1 motions when generating

K = 50 motions. To compute IS, we trained an action clas-

sifier [25] with 50K real motions. We then compute the IS

for K = 50 samples per condition for 50 different condi-

tions. We followed Section 3.4 to report IS. Furthermore,

we also performed a human evaluation to measure the qual-

ity of the motions generated by each method. To this end,

we asked eight users to rate the quality of 50 motions gener-

ated by each method, for a total of 200 motions. The ratings

were defined on a scale of 1-5, 1 representing a low-quality

motion and 5 a high-quality, realistic one. We then scaled

the values to the range 0-50 to make them comparable with

those of the binary classifier.

4.1. Comparison to the State­of­the­Art

In this section, we quantitatively compare our approach

to the state-of-the-art stochastic motion prediction tech-

niques in terms of approximate ELBO, Diversity, Quality,

and IS on a held-out test set, as well as the training KL

term at convergence. Table 1 shows the results on the Hu-

man3.6M and CMU Mocap datasets.

These results show that Mix-and-Match is highly capa-

ble of learning the variation in human motion while main-

taining a good motion quality. This is shown by IS, Di-

versity, and Quality metrics, which should be considered

together. It is also evidenced by the low reconstruction loss

and higher KL term on the test set. The training KL term at

convergence also shows that, in Mix-and-Match, the pos-

terior does not collapse to the prior distribution, i.e., the

model does not ignore the latent variable. While the MSE

of our approach is slightly higher than that of Yan et al., [40]

on Human3.6M and Barsoum et al., [5] on the CMU Mo-

cap dataset, we effectively exploit the latent variables, as

demonstrated by the KL term on the test set, the IS and di-

versity metric and the qualitative results provided in Fig. 4

and in the supplementary material. As evidenced by the ex-

amples of diverse motions generated by our model in Fig. 4,

given a single observation, Mix-and-Match is able to gener-
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Figure 6. (Left) Diversity of our approach and the stochastic baselines. (Middle) Quality of our approach and the stochastic baselines.

(Right) Comparing classifier-based and human evaluation of quality for our approach and the baselines, where the statistics correspond to

evaluation after the models are fully trained. The numbers are provided in the supplementary material to facilitate future comparisons.

ate diverse, but natural motions2.

4.2. Analysis on Diversity and Quality

To provide a deeper understanding of our approach, we

evaluate different aspects of Mix-and-Match. All these ex-

periments were done on Human3.6M. In the following, we

first analyze the diversity in the hidden state space, i.e.,

the first part of the model where variation is imposed. We

then evaluate the quality and diversity of prediction when

tested at different stages of the training. We also perform

a human evaluation on the quality of the generated mo-

tions, comparing it with our inexpensive, automatic qual-

ity metric. Finally, we compare Mix-and-Match with other

stochastic techniques in terms of sampling error (S-MSE),

i.e., by computing the error of the best of K generated mo-

tions given the ground-truth one. More experiments and

visualizations are provided in the supplementary material.

Diversity in Hidden State Space. In Fig. 5, we plot the

diversity of the representations used as input to the RNN

decoders of [40] and [5], two state-of-the-art methods that

are closest in spirit to our approach. Here, diversity is mea-

sured as the average pairwise distance across the K = 50
representations produced for a single series of observations.

We report the mean diversity over 50 samples and the cor-

responding standard deviation. As can be seen from the fig-

ure, the diversity of [40] and [5] decreases as training pro-

gresses, thus supporting our observation that these models

learn to ignore the perturbations. As evidenced by the black

curve, which shows an increasing diversity as training pro-

gresses, our approach produces not only high-quality pre-

dictions but also truly diverse ones. The gradual but steady

increase in diversity of our approach is due to our curricu-

lum learning strategy described in Section 3.3. Without it,

training is less stable, with large diversity variations.

Diversity and Quality in Motion Space. Now, we thor-

oughly compare our approach with state-of-the-art stochas-

tic motion prediction models in terms of quality and diver-

sity. The results of the metrics of Section 3.4 are provided

in Fig. 6(Left and Middle) and those of the human evalua-

2See the video of our results in the supplementary material.

tion in Fig. 6(Right). Below, we analyze the results of the

different models.

As can be seen from Fig. 6, [40] tends to ignore the ran-

dom variable z, thus ignoring the root of variation. As a

consequence, it achieves a low diversity, much lower than

ours, but produces samples of high quality, albeit almost

identical, which is also shown in qualitatively in Fig. 3

of the supplementary material. We empirically observed

that the magnitude of the weights acting on z to be orders

of magnitude smaller than that of acting on the condition,

0.008 versus 232.85 respectively. Note that this decrease

in diversity occurs after 16K iterations, indicating that the

model takes time to identify the part of the hidden state that

contains the randomness. Nevertheless, at iteration 16K,

prediction quality is low, and thus one could not simply

stop training at this stage. Note that the lack of diversity

of [40] is also evidenced by Fig. 5. As can be verified in

Fig. 6(Right), where [40] appears in a region of high qual-

ity but low diversity, the results of human evaluation match

those of our classifier-based quality metric.

Fig. 6 also evidences the limited diversity of the motions

produced by [5] despite its use of random noise during in-

ference. Note that the authors of [5] mentioned in their pa-

per that the random noise was added to the hidden state.

Only by studying their publicly available code3 did we un-

derstand the precise way this combination was done. In fact,

the addition relies on a parametric, linear transformation of

the noise vector. That is, the perturbed hidden state is ob-

tained as hperturbed = horiginal + W z→hz. Because the

parameters W z→h are learned, the model has the flexibil-

ity to ignore z (the magnitude of W z→h is in the order of

O(1e−3)), which causes the behavior observed in Figs. 6

and 5. Note that the authors of [5] acknowledged that, de-

spite their best efforts, they noticed very little variations be-

tween predictions obtained with different z values. By de-

picting [5] in a region of high quality but low diversity, the

human evaluation results in Fig. 6(Right) again match those

of our classifier-based quality metric.

As can be seen in Fig. 6(Left and Middle), [37] pro-

3https://github.com/ebarsoum/hpgan
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Walking
Method 80ms 160ms 320ms 400ms 560ms 1000ms
Yan et al., [40] 0.73 0.79 0.90 0.93 0.95 1.05
Barsoum et al., [5] 0.61 0.62 0.71 0.79 0.83 1.07
Walker et al., [37] 0.56 0.66 0.98 1.05 1.28 1.60
Mix-and-Match 0.33 0.48 0.56 0.58 0.64 0.68

Eating
Method 80ms 160ms 320ms 400ms 560ms 1000ms
Yan et al., [40] 0.68 0.74 0.95 1.00 1.03 1.38
Barsoum et al., [5] 0.53 0.67 0.79 0.88 0.97 1.12
Walker et al., [37] 0.44 0.60 0.71 0.84 1.05 1.54
Mix-and-Match 0.23 0.34 0.41 0.50 0.61 0.91

Smoking
Method 80ms 160ms 320ms 400ms 560ms 1000ms
Yan et al., [40] 1.00 1.14 1.43 1.44 1.68 1.99
Barsoum et al., [5] 0.64 0.78 1.05 1.12 1.64 1.84
Walker et al., [37] 0.59 0.83 1.25 1.36 1.67 2.03
Mix-and-Match 0.23 0.42 0.79 0.77 0.82 1.25

Discussion
Method 80ms 160ms 320ms 400ms 560ms 1000ms
Yan et al., [40] 0.80 1.01 1.22 1.35 1.56 1.69
Barsoum et al., [5] 0.79 1.00 1.12 1.29 1.43 1.71
Walker et al., [37] 0.73 1.10 1.33 1.34 1.45 1.85
Mix-and-Match 0.25 0.60 0.83 0.89 1.12 1.30

Table 2. Quantitative comparison of the S-MSE against stochastic baselines for four actions of the Human3.6M dataset.

Walking
Method 80ms 160ms 320ms 400ms 560ms 1000ms
Zero Velocity 0.39 0.86 0.99 1.15 1.35 1.32
AGED [14] 0.22 0.36 0.55 0.67 0.78 0.91
Imitation [38] 0.21 0.34 0.53 0.59 0.67 0.69
LSTM-3LR [12] 1.18 1.50 1.67 1.76 1.81 2.20
SRNN [18] 1.08 1.34 1.60 1.80 1.90 2.13
DAE-LSTM [13] 1.00 1.11 1.39 1.48 1.55 1.39
GRU [28] 0.28 0.49 0.72 0.81 0.93 1.03
LTD [27] 0.18 0.31 0.49 0.56 0.65 0.67
Mix-and-Match 0.33 0.48 0.56 0.58 0.64 0.68

Eating
Method 80ms 160ms 320ms 400ms 560ms 1000ms
Zero Velocity 0.27 0.48 0.73 0.86 1.04 1.38
AGED [14] 0.17 0.28 0.51 0.64 0.86 0.93
Imitation [38] 0.17 0.30 0.52 0.65 0.79 1.13
LSTM-3LR [12] 1.36 1.79 2.29 2.42 2.49 2.82
SRNN [18] 1.35 1.71 2.12 2.21 2.28 2.58
DAE-LSTM [13] 1.31 1.49 1.86 1.89 1.76 2.01
GRU [28] 0.23 0.39 0.62 0.76 0.95 1.08
LTD [27] 0.16 0.29 0.50 0.62 0.76 1.12
Mix-and-Match 0.23 0.34 0.41 0.50 0.61 0.91

Smoking
Method 80ms 160ms 320ms 400ms 560ms 1000ms
Zero Velocity 0.26 0.48 0.97 0.95 1.02 1.69
AGED [14] 0.27 0.43 0.82 0.84 1.06 1.21
Imitation [38] 0.23 0.44 0.86 0.85 0.95 1.63
LSTM-3LR [12] 2.05 2.34 3.10 3.18 3.24 3.42
SRNN [18] 1.90 2.30 2.90 3.10 3.21 3.23
DAE-LSTM [13] 0.92 1.03 1.15 1.25 1.38 1.77
GRU [28] 0.33 0.61 1.05 1.15 1.25 1.50
LTD [27] 0.22 0.41 0.86 0.80 0.87 1.57
Mix-and-Match 0.23 0.42 0.79 0.77 0.82 1.25

Discussion
Method 80ms 160ms 320ms 400ms 560ms 1000ms
Zero Velocity 0.31 0.67 0.94 1.04 1.41 1.96
AGED [14] 0.27 0.56 0.76 0.83 1.25 1.30
Imitation [38] 0.27 0.56 0.82 0.91 1.34 1.81
LSTM-3LR [12] 2.25 2.33 2.45 2.46 2.48 2.93
SRNN [18] 1.67 2.03 2.20 2.31 2.39 2.43
DAE-LSTM [13] 1.11 1.20 1.38 1.42 1.53 1.73
GRU [28] 0.31 0.68 1.01 1.09 1.43 1.69
LTD [27] 0.20 0.51 0.77 0.85 1.33 1.70
Mix-and-Match 0.25 0.60 0.83 0.89 1.12 1.30

Table 3. Comparison against deterministic motion prediction techniques for four actions of the Human3.6M dataset.

duces motions with higher diversity than [5, 40], but of

much lower quality. The main reason behind this is that the

random vectors that are concatenated to the poses at each

time-step are sampled independently of each other, which

translates to discontinuities in the generated motions. Hu-

man evaluation in Fig.6(Right) further confirms that [37]’s

results lie in a low-quality, medium-diversity region.

The success of our approach is confirmed by Fig. 6(Left

and Middle). Our model generates diverse motions, even

after a long training time, and the quality of these mo-

tions is high. While this quality is slightly lower than that

of [5, 40] when looking at our classifier-based metric, it

is rated higher by IS and humans, as can be verified from

Fig. 6(Right) and Table 1. Altogether, these results confirm

the ability of our approach to generate highly diverse yet re-

alistic motions.

Evaluating the Sampling Error. We now quantitatively

compare our approach with other stochastic baselines in

terms of sampling error (aka S-MSE). To this end, we fol-

low the evaluation setting of deterministic motion predic-

tion (as in [12, 31, 32, 28, 14]) which allows further com-

parisons to deterministic baselines. We report the standard

metric, i.e., the Euclidean distance between the generated

and ground-truth Euler angles (aka MAE). To evaluate this

metric for our method and the stochastic motion predic-

tion models, which generate multiple, diverse predictions,

we make use of the best sample among the K generated

ones with K = 50 for the stochastic baselines and for our

approach. This evaluation procedure aims to show that,

among the K generated motions, at least one is close to the

ground truth. As shown in Table 2, by providing higher di-

versity, our approach outperforms the baselines. Similarly,

in Table 3, we compare the best of K = 50 sampled mo-

tions for our approach with the deterministic motion pre-

diction techniques. Note that the goal of this experiment

is not to provide a fair comparison to deterministic models,

but to show that, among the diverse set of motions gener-

ated by our model, there exists at least one motion that is

very close to the ground-truth one. The point of bringing

the MAE of other deterministic methods, is to show how

good deterministic models, with sophisticated architectures

and complicated loss functions, perform on this task.

5. Conclusion

In this paper, we have proposed an effective way of per-

turbing the hidden state of an RNN such that it becomes

capable of learning the multiple modes of human motions.

Our evaluation of quality and diversity, based on both new

quantitative metrics and human judgment, have evidenced

that our approach outperforms existing stochastic methods.

Generating diverse plausible motions given limited obser-

vations has many applications, especially when the motions

are generated in an action-agnostic manner, as done here.

For instance, our model can be used for human action fore-

casting [33, 2, 35, 1, 3], where one seeks to anticipate the

action as early as possible, or for motion inpainting, where,

given partial observations, one aims to generate multiple in-

between solutions. In the future, we will therefore investi-

gate the use of our approach in such applications.
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