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Abstract

Many applications, such as autonomous driving, heav-

ily rely on multi-modal data where spatial alignment be-

tween the modalities is required. Most multi-modal regis-

tration methods struggle computing the spatial correspon-

dence between the images using prevalent cross-modality

similarity measures. In this work, we bypass the difficulties

of developing cross-modality similarity measures, by train-

ing an image-to-image translation network on the two input

modalities. This learned translation allows training the reg-

istration network using simple and reliable mono-modality

metrics. We perform multi-modal registration using two

networks - a spatial transformation network and a trans-

lation network. We show that by encouraging our transla-

tion network to be geometry preserving, we manage to train

an accurate spatial transformation network. Compared to

state-of-the-art multi-modal methods our presented method

is unsupervised, requiring no pairs of aligned modalities

for training, and can be adapted to any pair of modalities.

We evaluate our method quantitatively and qualitatively on

commercial datasets, showing that it performs well on sev-

eral modalities and achieves accurate alignment.

1. Introduction

Scene acquisition using different sensors is common

practice in various disciplines, from classical ones such as

medical imaging and remote sensing, to emerging tasks

such as autonomous driving. Multi-modal sensors allow

gathering a wide range of physical properties, which in

turn yields richer scene representations. For example, in

radiation planning, multi-modal data (e.g. Computed To-

mography (CT) and Magnetic Resonance Imaging (MRI)

scans) is used for more accurate tumor contouring which re-

duces the risk of damaging healthy tissues in radiotherapy

treatment [25, 29]. More often than not, multi-modal sen-

sors naturally have different extrinsic parameters between

modalities, such as lens parameters and relative position.

In these cases, non-rigid image registration is essential for

proper execution of the aforementioned downstream tasks.
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Cross-Modality 
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Figure 1: Method overview. Conventional methods (faded

dashed at the bottom) use cross-modality metrics (e.g., Nor-

malized Cross Correlation) to optimize a spatial transforma-

tion function. Our method learns a cross-modality transla-

tion, mapping between the two modalities. This enables the

use of a reliable accurate mono-modality metric instead.

Classic multi-modal image registration techniques at-

tempt to warp a source image to match a target one via a

non-linear optimization process, seeking to maximize a pre-

defined similarity measure [40]. Besides a computational

disadvantage, which is critical for applications such as au-

tonomous driving, effectively designing similarity measures

for such optimization has proven to be quite challenging.

This is true for both intensity-based measures, commonly

used in the medical imaging [10], and feature-based ones,

typically adapted for more detailed modalities (e.g Near

Infra-Red (NIR) and RGB) [32].

These difficulties gave rise to the recent development of

deep regression models. These types of models typically

have lengthy training time, either supervised or unsuper-

vised, yet they offer expeditious inference that usually gen-

eralizes well. Since it is extremely hard to collect ground-

truth data for the registration parameters, supervised multi-

modal registration methods commonly use synthesized data

in order to train a registration network [30, 37]. This makes

their robustness highly dependent on the similarity between

the artificial and real-life data distribution and appearance.

Unsupervised registration techniques, on the other-hand, of-

ten incorporate a spatial transform network (STN) [14] and

train an end-to-end network [7, 19, 16, 36, 8].
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Typically, such approaches optimize an STN by compar-

ing the deformed image and the target one using simple

similarity metrics such as pixel-wise Mean Squared Error

(MSE) [31, 33, 6]. Of course, such approaches can only be

used in mono-modality settings and become irrelevant for

multi-modality settings. To overcome this limitation, un-

supervised multi-modal registration networks use statistics-

based similarity metrics, particularly, (Normalized) Mutual

Information ((N)MI) [22], Normalized Cross Correlation

(NCC) [5], or Structural Similarity Index Metric (SSIM)

[21, 22] (see Figure 1, faded dashed path). However, these

metrics are either computationally intractable (e.g., MI) [3]

and hence cannot be used in gradient-based methods, or are

domain-dependent (e.g., NCC), failing to generalize for all

modalities.

In this paper, we present an unsupervised method for

multi-modal registration. In our work, we exploit the cel-

ebrated success of Multi-Modal Image Translation [13, 38,

39, 12], and simultaneously learn multi-modal translation

and spatial registration. The key idea is to alleviate the

shortcomings of a hand-crafted similarity measure by train-

ing an image-to-image translation network T on two given

modalities. This in turn will let us use mono-modality met-

rics for evaluating our registration network R (see Figure 1,

vivid path on the top).

The main challenge for this approach is to train the reg-

istration network R and the translation network T simulta-

neously, while encouraging T to be geometry preserving.

This ensures that the two networks are task-specific — T

performs only a photo-metric mapping, while R learns the

geometric transformation required for the registration task.

In our work, we use the concepts of generative adversarial

networks (GAN [9, 24]) to train T and R. We show that

the adversarial training is not only necessary for the trans-

lation task (as shown in previous works [13]), but is also

necessary to produce smooth and accurate spatial transfor-

mation. We evaluate our method on real commercial data,

and demonstrate its strength with a series of studies.

The main contributions of our work are:

• An unsupervised method for multi-modal image regis-

tration.

• A geometry preserving translation network that allows

the application of mono-modality metrics in multi-

modal registration.

• A training scheme that encourages a generator to be

geometry preserving.

2. Related Works

To deal with the photo-metric difference between modal-

ities, unsupervised multi-modal approaches are forced to

find the correlation between the different domains and use it

to guide their learning process. In [21] a vanilla CycleGAN

architecture is used to regularize a deformation mapping.

This is achieved by training a discriminator network to dis-

tinguish between deformed and real images. To align a pair

of images the entire network needs to be trained in a single

pass. Training this network on a large dataset will encour-

age the deformation mapping to become an identity map-

ping. This is because the discriminator is given only the real

and deformed images. Furthermore the authors use multi-

ple cross-modality similarity metrics including SSIM, NCC

and NMI which are limited by the compatibility of the spe-

cific modalities used. In contrast, our method learns from a

large dataset and bypasses the need for cross-modality sim-

ilarity metrics.

Wang et al. [36] attempt to bypass the need for domain

translation by learning an Encoder-Decoder module to cre-

ate modality-independent features. The features are fed to

an STN to learn affine and non-rigid transformations. The

authors train their network using a simple similarity mea-

sure (MSE) which maintains local similarity, but does not

enforce global fidelity.

At the other extreme, [8] rely entirely on an adversar-

ial loss function. They train a regular U-Net based STN

by giving the resultant registered images to a discriminator

network and using its feedback as the STN’s loss function.

By relying solely on the discriminator network for guiding

the training, they lose the ability to enforce local coherence

between the registered and target images.

Closest to our work, [27] combines an adversarial loss

with similarity measurements in an effort to register the im-

ages properly while concentrating on maintaining local geo-

metric properties. They encode the inputs into two separate

embedding, one for shape and one for content information,

and train a registration network on these disentangled em-

bedding. This method relies on learned disentanglement,

which introduces inconsistencies on the local level. Our

method directly enforces the similarity in the image space,

which leads to a reliable local signal.

3. Overview

Our core idea is to learn the translation between the

two modalities, rather than using a cross-modality metric.

This novel approach is illustrated in Figure 1. The spa-

tially transformed image is translated by a learnable net-

work. The translated image can then be compared to the

original source image using a simple uni-modality metric,

bypassing the need to use a cross-modality metric. The ad-

vantage of using a learnable translation network is that it

generalizes and adapts to any pairs of given modalities.

Our registration network consists of two components: (i)

a spatial transformation network R = (RΦ, RS) and (ii)

an image-to-image translation network T . The two com-

ponents are trained simultaneously using two training flows
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Figure 2: Training Flow Overview. We train two components: (i) a spatial transformation network (STN) R = (RΦ, RS)
and (ii) an image-to-image translation network T . The two networks R and T are jointly trained via two different training

flows. The two training flows are simultaneously carried-out in each training step. In the first flow, (b) Register First, the

input image Ia is deformed using φ, a deformation field generated by RΦ, and is then fed to T to map the image onto domain

B. The second flow, (c) Translate First, is similar with the exception that φ is used to transform the translated source image.

In both cases, the same deformation field φ is used.

as depicted in Figure 2. The spatial transformation network

takes the two input images and yields a deformation field

φ. The field is the then applied either before T (Figure 2b)

or after it (Figure 2c). Specifically, the field is generated

using a network RΦ and is used by a re-sampling layer

RS to get the transformed image, namely RS(T (a), φ)
and T (RS(a, φ)). We will elaborate on these two training

schemes in Section 4.2. The key is, as we shall show, that

such two-flow training encourages T to be geometry pre-

serving, which implies that all the geometry transformation

is encoded in RΦ.

Once trained, only the spatial transformation network R

is used in test time. The network takes two images Ia and

Ib representing the same scene, captured from slightly dif-

ferent viewpoint, in two different modalities, A and B, re-

spectively, and aligns Ia with Ib.

4. Method

Our goal is to learn a non-rigid spatial transformation

which aligns two images from different domains. Let A ⊂
R

HA×WA×CA and B ⊂ R
HB×WB×CB be two paired im-

age domains, where HD,WD, CD are the height, width,

and number of channels for domain D, respectively. Pairing

means that for each image Ia ∈ A there exists a unique im-

age Ib ∈ B representing the same scene, as acquired by the

different respective sensors. Note that the pairing assump-

tion is a common and reasonable one, since more often than

not registration-base applications involve taking an image

of the same scene from both modality sensors (e.g satellite

images). Throughout this section, we let Ia ∈ A and Ib ∈ B
be a pair of two images such that Ia needs to be aligned with

Ib.

To achieve this alignment, we train three learnable com-

ponents: (i) a registration network R, (ii) a translation net-

work T and (iii) a discriminator D. The three networks are

trained using an adversarial model [9, 24], where R and T

are jointly trained to outwit D. Below, we describe the de-

sign and objectives of each network.

4.1. Registration Network

Our registration network (R = (RΦ, RS)) is a spa-

tial transformation network (STN) composed of a fully-

convolutional network RΦ and a re-sampler layer RS . The

transformation we apply is a non-linear dense deformation

- allowing non-uniform mapping between the images and

hence gives accurate results. Next we give an in-depth de-

scription about each component.

RΦ - Deformation Field Generator: The network

takes two input images, Ia and Ib, and produces a deforma-

tion field φ = R(Ia, Ib) describing how to non-rigidly align

Ia to Ib. The field is an HA ×WA matrix of 2-dimensional

vectors, indicating the deformation direction for each pixel

(i, j) in the input image Ia.

RS - Re-sampling Layer: This layer receives the de-

formation field φ, produced by RΦ, and applies it on a
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source image Is. Here, the source image is not necessarily

Ia and it could be from either domains - A or B. Specifi-

cally, the value of the transformed image RS(Is, φ) at pixel

v = (i, j) is given by Equation 1:

RS(Is, φ)[v] = Is [v + φ(v)] , (1)

where φ(v) = (∆y,∆x) is the deformation generated by

RΦ at pixel v = (i, j), in the x and y-directions, respec-

tively.

To avoid overly distorting the deformed image RS(Is, φ)
we restrict RΦ from producing non-smooth deformations.

We adapt a common regularization term that is used to pro-

duce smooth deformations. In particular, the regularization

loss will encourage neighboring pixels to have similar de-

formations. Formally, we seek to have small values of the

first order gradients of φ, hence the loss at pixel v = (i, j)
is then given by:

Lsmooth(φ,v) =
∑

u∈N(v)

B(u,v) ‖φ(u)− φ(v)‖ , (2)

where N(v) is a set of neighbors of the pixel v, and

B (u,v) is a bilateral filter [34] used to reduce over-

smoothing. Let Os = RS(Is, φ) to be the deformed image

produced by RS on input Is, then the bilateral filter is given

by:

B(u,v) = e−α·‖Os[u]−Os[v]‖. (3)

There are two important notes about the bilateral filter

B in Equation 3. First, the bilateral filtering is with respect

to the transformed image Os (at each forward pass), and

secondly, the term B (Is,u,v) is a treated as constant (at

each backward pass). The latter is important to avoid RΦ

alternating pixel values so that B(u, v) ≈ 0 (e.g., it could

change pixels so that ‖Os[u]−Os[v]‖ is relatively large),

while the former allows better exploration of the solution

space.

In our experiments we look at the 3 × 3 neighborhood

of v, and set α = 1. The overall smoothness loss of the

network R, denoted by Lsmooth (R), is the mean value over

all pixels v ∈ {1, . . . , HA} × {1, . . . ,WA}.

4.2. Geometric Preserving Translation Network

A key challenge of our work is to train the image-to-

image translation network T to be geometric preserving.

If T is geometric preserving, it implies that it only performs

photo-metric mapping, and as a consequence the registra-

tion task is performed solely by the registration network R.

However, during our experiments, we observed that T tends

to generate fake images that are spatially aligned with the

ground truth image, regardless of R’s accuracy.

To avoid this, we could restrict T from performing any

spatial alignment by reducing its capacity (number of lay-

ers). While we did observe that reducing T ’s capacity does

improve our registration network’s performance, it still lim-

its the registration network from doing all the registration

task (See supplementary materials).

To implicitly encourage T to be geometric preserving we

require that T and R are commutative, i.e., T ◦R = R ◦ T .

In the following we formally define both T ◦R and R ◦ T :

Translation First - (R ◦T) (Ia, Ib): This mapping first

apply an image-to-image translation on Ia and then a spa-

tial transformation on the translated image. Specifically, the

final image is obtained by first applying T on Ia, which

generates a fake sample OT = T (Ia). Then we apply our

spatial transformation network R on OT and get the final

output:

ORT = RS (OT , φ) = R (T (Ia) , RΦ (Ia, Ib)) .

Register First - (T ◦R) (Ia, Ib) in this composition, we

first apply spatial transformation on Ia and obtain a de-

formed image OR = R(Ia, φ). Then, we translate OR to

domain B using our translation network T :

OTR = T (RS (Ia, φ)) = T (RS (Ia, RΦ (Ia, Ib))) .

Note that in both compositions (i.e., T ◦ R and R ◦ T ),

the deformation field, used by the re-sampler RS , is given

by RΦ (Ia, Ib). The only difference is in the source image

from which we re-sample the deformed image.

To understand why this training scheme gives the desired

property, note that the translation network T is fed geomet-

rically different input images. Namely, these are the input

image Ia (in the translation first variant) and the spatially

transformed version of that image RS(Ia, RΦ(Ia, Ib)) (in

the registration first scheme). Thus, T is encouraged to be

geometry preserving, since we expect similar behavior for

different inputs. Additionally, note that T has limited ca-

pacity to perform explicit geometric transformation (as it

isn’t designated for this task). The registration network R,

on the other hand, is designed to be exactly the opposite –

it naturally supports geometric deformations, and struggles

with stylistic and appearance-based alterations.

Throughout this section, we refer to ORT and OTR as

the outputs of R ◦ T and T ◦R, respectively.

4.3. Training Losses

To train R and T to generate fake samples that are similar

to those in domain B, we use an L1-reconstruction loss:

Lrecon(T,R) = ‖ORT − Ib‖1 + ‖OTR − Ib‖1 (4)

where minimizing the above implies that T ◦R ≈ R ◦ T .

We use conditional GAN (cGAN)[24] as our adversarial

loss for training D, T and R. The objective of the adver-

sarial network D is to discriminate between real and fake
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samples, while T and R are jointly trained to fool the dis-

criminator. The cGAN loss for T ◦R and R◦T is formulated

below:

LcGAN (T,R,D) =E [log (D (Ib, Ia))]

+ E [log(1−D(ORT , Ia))]

+ E [log(1−D(OTR, Ia))] ,

(5)

The total objective is given by:

L(T,R) =argmax
D

LcGAN (T,D,R)

+ λR · Lrecon(T,R) + λS · Lsmooth(R),
(6)

where we are opt to find T ∗ and R∗ such that T ∗, R∗ =
argmin

R,T

L(T,R). Furthermore, in our experiments, we set

λR = 100 and λS = 200.

4.4. Implementation Details

Our code is implemented using PyTorch 1.1.0 [26]

and is based on the framework and implementation of

Pix2Pix [13], CycleGAN [38] and BiCycleGAN [39]. The

network T is an encoder-decoder network with residual

connections [1, 15] and the registration network is U-NET

based [28] with residual connections in the encoder and out-

put paths. In all residual connections, we use Instance Nor-

malization Layer [35]. All networks were initialized by the

Kaiming [11] initialization method.

The experiments were conducted on single GeForce

RTX 2080 Ti. We use Adam Optimizer [17] on a mini-

batch of size 12 with parameters lr = 1 × e−4, β1 = 0.5
and β2 = 0.999. We train our model for 200 epochs, and

activate linear learning rate decay after 100 epochs.

5. Experimental Results

In the following section we evaluate our approach and

explore the interactions between R, T and the different loss

terms we use.

All our experiments were conducted on a commercial

dataset, which contains a collection of images of banana

plants with different growing conditions and phenotype.

The dataset contains 6100 image frames, where each frame

consist of an RGB image, IR Image and Depth Image. The

colored images are a 24bit Color Bitmap captured from a

high-resolution sensor. The IR images are a 16bit gray-scale

image, captured from a long-wave infrared (LWIR) sensor.

Finally, the depth images were captured by Intel Real-Sense

depth camera. The three sensors were calibrated, and an ini-

tial registration was applied based on affine transformation

estimation via depth and controlled lab measurements. The

misalignment in the dataset is due to depth variation within

different objects in the scene, which the initial registration

Figure 3: Annotation sample. We pick points from both

the source image Ia (left) and the target image Ib (right).

The blue points are on salient objects and the red points

are general points from the scene. We added several arrows

to illustrate some matching points. The geometry of each

point is with respect to its corresponding image.

STN SSIM on edges NCC on edges NCC Ours

RAffine X / X 19.44 / 19.45 20.56 / 13.26 13.53 / 8.5

RTPS X / X 32.47 / 26.82 28.68 / 26.47 10.01 / 7.02

R 28.41 / 26.12 27.41 / 16.78 29.91 / 15.8 6.93 / 6.27

Table 1: Registration accuracy of several similarity mea-

sures. We report the average registration accuracy of differ-

ent registration networks (i.e. RAffine, RTPS and ours R).

In each table entry, we report two accuracies, one that is

measured based on full scene annotation (left) and the other

based on salient objects only annotation (right). X denotes

cases where the network degenerates.

fails to handle. We split the dataset into training and test

samples, where the test images were sampled with proba-

bility p = 0.1.

5.1. Evaluation

Registration Accuracy Metric. We manually annotated

100 random pairs of test images. We tagged 10-15 pairs of

point landmarks on the source and target images which are

notable and expected to match in the registration process

(See Figure 3). Given a pair of test images, Ia and Ib, with

a set of tagged pairs. The accuracy of the registration net-

work R is simply the average Euclidean distance between

the target points and their matching deformed source points.

Furthermore, we used two types of annotations. The first

type of annotation is located over salient objects in the scene

(the blue points in Figure 3). This is important because in

most cases, down-stream tasks are affected mainly by the

alignment of the main object in the scene in both modalities.

The second annotation is performed by picking landmark

points from all objects across the scene.

Quantitative Evaluation. As the crux of our work

is the alleviation of the need for cross-modality similar-

ity measures, we trained our network with commonly used

loss terms. In Table 1 we show the registration accu-

racy of our registration network when trained with differ-
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Figure 4: Registration accuracy of different methods.

Unregistered indicates the misalignment in our dataset. We

show the accuracy obtained with Elastix [18, 23] and a

feature-based registration based on SIFT [20] and Cycle-

GAN [38] or our translation network (i.e. T ).

ent metrics. Specifically, we used the Normalized Cross-

Correlation (NCC) metric as it is frequently used in unsu-

pervised multi-modal registration methods. Additionally,

we trained our network by maximizing similarity metrics

(e.g. Structural Similarity Index Metric (SSIM) and NCC)

on edges detected by Canny edge-detector [4] from both the

deformed and target image. As can be seen from Table 1,

training the registration network R using prescribed cross-

modality similarity measures do not perform well. Further,

using NCC produces noisy results, while using SSIM gives

smooth but less accurate registration accuracy (see supple-

mental materials).

Also, since our learned metric is generic and can be

incorporated with any spatial transformation, we trained

different spatial transformations with our metric as well.

Specifically, we trained an affine-based STN (RAffine) and

a thin-plate-spline based STN (RTPS). The registration ac-

curacy of these networks is reported in Table 1. As can be

seen from the table, training these networks with our metric

yields substantial improvement over other loss terms.

We also compared our method with three techniques.

The first method we considered is SimpleElastix [18, 23],

an iterative registration technique based on Mutual Informa-

tion. The other two methods are feature-based techniques in

which the SIFT [20] descriptor is adapted. However, since

SIFT [20] is not designed for multi-modal data, then it can-

not be directly used on the source and target images.

Instead, we train CycleGAN [38] network to translate

between the two modalities at hand, without any super-

vision to match the ground truth. CycleGAN, like other

unsupervised image-to-image translation networks, is not

trained to generate images matching ground truth samples,

thus, geometric transformation is not explicitly required

from the translation network. Once trained, we use one of

the generators in the CycleGAN, the one that maps domain

A to domain B, to translate the input image Ia onto modal-

ity B. Assuming this generator is both geometry preserving

and translates well between the modalities, it is expected

that it also match well between feature of the fake sample

and the target image. Thus, we extracted SIFT descriptors

from the generated images by the CycleGAN translation

network, and extracted SIFT features from the target im-

age Ib. We then matched these features and estimated the

needed spatial registration. The registration accuracy us-

ing this method is significantly better than directly using

SIFT [20] features on the input image Ia. Similarly, we

used our geometry preserving translation network T along

with SIFT descriptor.

In Figure 4 we show the accuracy of the aforementioned

methods. As can be seen, our method gives the best regis-

tration accuracy. Moreover, using our translation network T

with the SIFT descriptor achieves substantial improvement

over CycleGAN [38] + SIFT [20] and Elastix [23, 18]. Thus

indicates that our translator T is both geometry preserving

and performs accurate photo-metric mapping.

Qualitative Evaluation. Figure 5 shows that our reg-

istration network successfully aligns images from different

pairs of modalities and handles different alignment cases.

For example, the banana leaves in the first raw in Figure 5a

are well-aligned in the two modalities. Our registration net-

work maintains this alignment and only deforms the back-

ground for full alignment between the images. This can be

seen from the deformation field visualization [2], where lit-

tle deformation is applied to the banana plant, while most

of the deformation is applied to the background. Further-

more, in the second row in Figure 5a, most of the image

is translated in a certain direction due to the camera shift,

but depth-dependent variation can still be seen. To help

measuring the alignment success, we overlay (with semi-

transparency) the plant in image B on top of both image A

before and after the registration. This means that the silhou-

ette has the same spatial location in all images (the original

image B, image A before and after the registration). Lastly,

we achieve similar success in the registration between RGB

and IR images (see Figure 5b).

It is worth mentioning that in some cases, the deforma-

tion field points to regions outside the source image. In

those cases, we simply sample zero values. This happens

because the the target image content (i.e., Ib) in these re-

gions is not available in the source image (i.e., Ia) (see sup-

plemental materials for more results).

5.2. Ablation Study

Next, we present a series of ablation studies that ana-

lyze the effectiveness of different aspects in our work. First,

13415



Input A Input B Registered Deform. Field Before After

(a) Image registration between RGB and Depth modalities.

Input A Input B Registered Deform. Field Before After

(b) Image registration between RGB and IR modalities.

Figure 5: Qualitative Evaluation. We show sample results on the registration between two pairs of domains; (a) RGB to

Depth registration and (b) RGB to IR registration. In the first two columns we show the corresponding images Ia and Ib. The

third column is the registered image, i.e the image Ia after deformation. The deformation field (4th column) is visualized

using the standard optical-flow visualization [2]. Finally, we segment the salient object in Ib and overlay it (with opacity

25%) in the same spatial location onto the image before and after registration (last two columns).

we show that training both compositions (i.e our presented

two training flows) of T and R indeed encourages a geo-

metric preserving translator T . Additionally, we analyze

the impact of the different loss terms on the registration

network’s accuracy. We further show the effectiveness of

the bilateral filtering, and that it indeed improves the regis-

tration accuracy. All experiments, unless otherwise stated,

were conducted without the bilateral filtering. Geometric-

Preserving Translation Network. To evaluate the impact

of training of T and R simultaneously with the two train-

ing flows proposed in Figure 2, we compare the registration

accuracy of our method with that of training models with

either T ◦R or R ◦ T . As can be seen from Figure 6, train-

ing both combinations yields a substantial improvement in

the registration accuracy (shown in blue), compared to each

training flow (i.e., T ◦ R and R ◦ T ) separately. Moreover,

while the reconstruction loss of T ◦ R (shown in read) is

lowest among the three options, it does not necessarily indi-

cate a better registration. This is because in this setting the

translation network T implicitly performs both the align-

ment and translation tasks. Conversely, when training with

R ◦ T only (shown in green), the network R is unstable and

at some point it starts to alternate pixel values, essentially

taking on the role of a translation network. Since R is only

geometry-aware by design it fails to generate good samples.

This is indicated by how fast the discriminator detects that

the generated samples are fake (i.e., the adversarial loss de-

cays fast). Visual results are provided in the supplementary

materials.

Loss ablation. It has been shown in previous works [39,

13, 38] that training an image-to-image translation network

with both a reconstruction and an adversarial loss yields bet-

ter results. In particular, the reconstruction loss stabilizes

the training process and improves the vividness of the out-

put images, while the adversarial loss encourages the gen-

eration of samples matching the real-data distribution.

The main objective of our work is the production of a

registration network. Therefore, we seek to understand the

13416



0 25 50 75 100 125 150 175 200
Epoch

10

15

20

25

30

35

40

45

(a) Registration Accuracy
Mean Misalignment Before Registration

0 25 50 75 100 125 150 175 200
Epoch

6

8

10

12

14

16

18

20

(b) Reconstruction Loss

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

(c) Adversarial Loss

0 25 50 75 100 125 150 175 200
Epoch

1

2

3

4

5

6

7
(d) cGAN Loss

Figure 6: Composition Ablation Study. We show the values of the (a) Registration Accuracy, (b) Reconstruction loss, (c)

Adversarial Loss and (d) cGAN Loss. The x-axis in all figures is the epoch number. The loss values are shown for T ◦ R

(red), R ◦ T (green) and ours (blue). As can be seen, the registration accuracy is best using our method. In T ◦ R, the

reconstruction loss is the lowest, however, the registration is inaccurate because a significant portion of the registration task

is implicitly performed by the translator T . Further, the composition R ◦T is unstable because at some point, the registration

network R starts alternating pixels values, which is detected by the discriminator (see the dip in (c)).

L1 loss

GAN loss
R T Both

R - X 28.15

T 29.02 - 22.03

Both X X 11.01

Table 2: Loss ablation results. Columns denote modules

trained with a GAN loss term. Rows denote modules trained

with an L1 loss term. We do not report results where only

one module is not trained with any loss terms. X denotes

cases where the training diverges. For example, the result in

the second row and first column represents the registration

accuracy achieved when module R’s weights are updated

with respect to the cGAN loss and module T with respect

to the reconstruction loss term.

impact of both losses (reconstruction and adversarial) on the

registration network. To understand the impact of each loss,

we train our model with different settings: each time we

fix either R or T ’s weights with respect to one of the loss

functions. The registration accuracy is presented in Table

2. Please refer to the supplementary material for qualitative

results. As can be seen in these figures, training R only

with respect to the reconstruction loss leads to overly sharp,

but unrealistic images where the deformation field creates

noisy artifacts. On the other hand, training R only with

respect to the adversarial loss creates realistic images, but

with inexact alignment. This is especially evident in Table

2 where training R with respect to the reconstruction loss

achieves a significant improvement in the alignment, and

the best accuracy is obtained when the loss terms are both

used to update all the networks weights.

Bilateral Filtering Effectiveness Using bilateral filter-

ing to weigh the smoothness loss allows us, in effect, to

encourage piece-wise smoothness on the deformation map.

As can be seen in Table 3, this enhances the precision of

the registration. These results suggest that using segmenta-

Method Test Acc. Train Acc.

No Registration 35.45 34.96

W/O Bilateral 11.01 9.89

With Bilateral 6.93 6.12

Table 3: Smoothness Regularization. Effect of bilateral

filtering on registration accuracy. We show the registra-

tion accuracy on annotated test samples, and annotated train

samples.

tion maps for controlling the smoothness loss term could be

beneficial.

6. Summary and Conclusions

We presented an unsupervised multi-modal image regis-

tration technique based on image-to-image translation net-

work. Specifically, we developed a geometry preserving

image-to-image translation network which allows compar-

ing the deformed and target image using simple mono-

modality metrics. The geometric preserving translation net-

work was made possible by a novel training scheme, which

alternates and combines two different flows to train the spa-

tial transformation.

We believe that geometric preserving generators can be

useful for applications other than image registration. In the

future, we would like to continue to explore the idea of alter-

nate training several layers or operators, in different flows,

to encourage them being commutative as means to achieve

certain non-trivial properties.
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