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on a pair of rectified stereo images, or the enumeration of

all possible disparity matches in 3D space using a plane

sweep algorithm [3]. The result of computing the matching

cost over a plane sweep volume is a cost volume in which

each cell in the volume has a matching cost. Cost volumes

are amenable to filtering and regularization due to their dis-

crete nature, which makes them a powerful tool for stereo

matching.

The advancement of neural networks for perception tasks

also resulted in a new wave of stereo matching algorithms.

A deep neural network can be trained to compute the match-

ing cost of two different patches, as done by Zbontar and

LeCun [27]. Furthermore, a neural network can be trained

to do disparity regression, as shown by Mayer et al. [16].

But deep-learning methods can do more than matching and

direct disparity regression. Recent work on stereo matching

trained on large datasets, such as the SceneFlow [16] and

KITTI [5] datasets can compute features, their similarity cost,

and can regularize the cost volume within a single end-to-

end trained model. For example, GC-Net regularizes a cost

volume using 3D convolutions and does disparity regression

using a differentiable soft argmin operation [11]. DPSNet

leverages geometric constraints by warping features into a

cost volume using plane induced homographies, the same

operation that is used to build plane sweep volumes [10].

Aggregation of context information is important to handle

smooth regions and repeated patterns; PSMNet [1] can take

advantage of larger context through spatial pyramid pooling.

GANet [28] improves cost aggregation by providing semi-

global and local cost aggregation layers. The downside of

large architectures is their computation cost, which make the

cost of these methods unsuitable for real-time performance.

To overcome this, architectures like DeepPruner [4] reduce

the cost of volume matching by pruning the search space

with a differentiable PatchMatch layer.

To summarize, most of the existing work in stereo cor-

respondence is based on the computation of a discrete cost

volume or fixing a disparity search range. The exception is

DispNet [16], but its performance in the KITTI stereo bench-

mark has been surpassed by others. Our key contribution

is the framing of depth estimation as a collection of binary

classification tasks. Each of these tasks provides useful depth

information about the scene by estimating the upper or lower

bound on the disparity value at each pixel. As a result, our

proposed method can be more selective or adaptive according

to the task and the scene. We can also do accurate disparity

regression by repeating the binary classification at multiple

planes.

3. Method

Given a stereo pair, R and S, we can build a plane sweep

volume (PSV) by selecting a range of disparities {di}i=0:N .

Each plane of the PSV with reference to the left image can

Figure 3: Given a stereo pair and πdi
, the plane correspond-

ing to disparity di, our method can estimate whether an

object is closer or farther than πdi
. For the scene shown on

the left and for different depths, this results in the confidence

maps shown here (white means “in front”).

be computed as

PSV(x, y, di) = W(S(x, y), Hπdi
), (1)

where W( · , H) is a warping operator based on homography

H , and Hπdi
is the homography induced by the plane at

the depth corresponding to disparity di. (With slight abuse

of notation, in the following we refer to πdi
as the plane at

disparity di.)

Given a matching cost C, then, existing algorithms find

the disparity for a pixel as

d̄(x, y) = argmin
di

C(NR(x, y), NPSV(x, y, di)), (2)

where N is a neighborhood of the pixel. The choice of

the cost C varies with the algorithm. It can be a simple

normalized-cross correlation of the grayscale patches cen-

tered at (x, y), or it could be the output of a neural network

and, thus, computed on learned features instead [11]. Re-

gardless of the choice,

d̄(x, y) ∈ [d0, dN ]. (3)

Equation 3 implies that an object whose disparity is outside

of the range D = [d0, dN ] is still mapped to the interval D.

We argue that this a major limitation and show how it can be

lifted.

3.1. Depth via Binary Classifications

Instead of estimating d̄(x, y) directly, we observe that

the direction of the disparity vector itself carries valuable

information. After warping image S with Equation 1, in fact,

the disparity direction flips depending on whether the object

is in front of πdi
or behind it. The animation in Figure 2

shows the stereo pair before and after warping image S.

This suggests that we can train a binary classifier to take

two images, R(x, y) and PSV(x, y, d)|d=di
, and predict the

parts of the scene that are behind (or in front of) πdi
. To

do this, we train a relatively standard neural network using
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Figure 5: Our method can estimate depth with arbitrarily

coarse quantization. Rows one through three show results

for 4, 8, and 16 levels, respectively. Note that even at 4 levels

one can get a basic understanding of the scene, but with

much lower latency, see Table 2.

such as softargmax to achieve sub-pixel disparity. Therefore,

we cannot change the coarsity at inference time or estimate

depth with arbitrary quantization. Given a fronto-parallel

plane πdi
, which splits the range in 2 segments, Bi3D’s

confidence Cdi
(x, y) is related to a cumulative distribution

function, CDF:

p(di ≤ d(x, y)) = 1− p(di > d(x, y)) = 1− Cdi
(x, y),

(7)

where d(x, y) is the disparity of the pixel. Note that this is a

proper CDF, since Cdi=0 = 1 (everything is in front of the

zero-disparity plane, i.e., plane at infinity) and Cdi=∞ = 0
(nothing is in front of the plane at depth zero). Given a farther

plane πdj
, where dj < di, then, we can write

p(dj < d(x, y) ≤ di) = Cdj
(x, y)− Cdi

(x, y). (8)

Equation 8 allows to estimate depth with arbitrary quantiza-

tion.

To get L quantization levels, we can use L−1 planes, com-

pute the probability for each quantization bin using Equa-

tion 8 and estimate the pixel’s disparity as the center of the

bin (dj , di) that has the highest probability. This amounts to

treating quantized depth estimation as a hard-segmentation

problem. If we treat it as a soft-segmentation problem, as

is the case with full depth, using this CDF-based approach

naturally simplifies to the AUC method described in Sec-

tion 3.1.

The computational complexity is linear with the number

of planes. As shown in Table 2, our method produces results

that are on par with state-of-the-art methods at a fraction of

the time, see Section 5.

3.3. Selective Depth Estimation

So far, we have assumed that the range [d0, dN ] covers

all the disparities in the scene. Generally, this puts d0 at 0
(plane at infinity) and dN at the the maximum disparity ex-

pected in the scene. Since this information is not available a

priori, however, existing methods resort to using 192 dispar-

ity levels, with each disparity level being 1 pixel wide, and

with d0 = 0. Now consider an object outside of the range

in Figure 4(a), such as C . In this case, because they look

for a minimum cost, existing methods are forced to map

the object to a (wrong) depth within the range, see Figure 8.

Even if they had a strategy to detect out-of-range objects,

e.g., threshold the cost, the best they could do would be

to acknowledge that no information about the depth of the

object is known.

Our strategy, on the other hand, deals with out-of-range

objects seamlessly. Because the direction of the disparity

vector associated with an object such as C never changes,

the confidence value C stays at 1 throughout the range. There-

fore, in addition to knowing that C is outside of the range

we are testing, we also know that it is in front of the closest

plane. If we move the farthest plane to a non-zero disparity,

the same considerations apply to objects that may now be

beyond the range, such as A . Thanks to this ability, our

method is robust to incorrect selections of the range.

However, we can leverage this property further. Given

a budget of disparity planes that we can test, rather than

distributing them uniformly over the whole range, we can

allocate them to a specific range. We refer to this as selective

depth. Selective depth allows us to get high quality, con-

tinuous depth estimation in a region of interest within the

same computational envelope of quantized depth. Given a

disparity range [dmin, dmax], then, we can apply the exact

same method described in Section 3.1.

Figure 8 shows selective depth results. Note that our re-

sults look like regular depthmaps that are truncated outside

of the selected range. In comparison, GANet [28] struggles

mapping pixels outside the range to the correct values, which

affects the confidence in the correctness of the pixels that are

correctly estimated as well.

3.3.1 Adaptive Depth Estimation

The advantages of these techniques can also be combined to

minimize latency while maximizing the information about

the scene. Consider the case of perception for autonomous

navigation: selective depth can be used for the region directly

in front of the ego vehicle, yielding high depth quality in the

region that affects the most immediate decisions. However,

information about farther objects cannot be completely dis-

missed. Rather than using additional sensors, such as radar,

farther objects can be monitored with binary depth, which

would act as a geo-fence that moves with the ego vehicle.

This situation is depicted in Figure 7 at t0, where top view

indicates the selective range in green and the binary depth

plane in blue. When the red van crosses the blue plane (t1)

the range of the selective depth can be extended to cover

a larger region (t2) yielding information about the van ap-
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Figure 6: Bi3DNet, our core network, takes the stereo pair and a disparity di and produces a confidence map (Equation 4),

which can be thresholded to yield the binary segmentation (left). To estimate depth on L quantization levels (Section 3.2)

we run this network L− 1 times and maximize the probability in Equation 8. To estimate continuous depth, whether full or

selective, we run the SegNet block of Bi3DNet for each disparity level and work directly on the confidence volume (right).

proaching. This application is best show-cased with a video,

which we provide in the supplementary video.

4. Implementation

In this section we provide high-level details for our im-

plementation. More details are in the Supplementary.

The core of our method is a network that takes in a stereo

pair and a disparity level di, and produces a binary segmen-

tation with respect to πdi
. We call this network Bi3DNet,

see Figure 6 (left). The first module, FeatNet, which extracts

features from the stereo images, is a simplified version of the

feature extractor of PSMNet [1]. The output is a 32-channel

feature map at a third of the resolution of the original image.

FeatNet needs to run only once, regardless of the number

of depth planes we seek to test. The left-image features and

the warped right-image features are then fed to SegNet, a

standard 2D encoder-encoder network with skip connections.

Our SegNet architecture downsamples the input 5 times. At

each scale in the encoder, we have a conv layer with stride

of 2 followed by a conv layer with stride of 1. The decoder

follows the same approach, where at each scale we have

a deconv layer with a stride of 2 followed by a conv layer

with a stride of 1. A final conv layer estimates the output of

SegNet, which we bilinearly upsample to the original reso-

lution. We then refine it with a light, 3-layer convolutional

module (SegRefine), which also takes the input left image

for guidance (not shown in Figure 6).

Estimating continuous or quantized depth, then, simply

requires to run Bi3DNet multiple times. For quantized depth

we use Bi3DNet directly, stack the Cdi
’s, and maximize

the probability in Equation 8. Note that, in order for the

network to be agnostic to the number and the spacing of

the disparity planes, we run the refinement module SegRe-

fine independently for each disparity plane. For continuous

depth, whether full or selective, the distance between the

planes is fixed and known before-hand. Therefore, rather

than applying a refinement to each binary segmentation, we

apply a 3D encoder-decoder module to the stacked outputs

of the SegNet block, dubbed RegNet in Figure 6, (right).

Using a single module on the volume, rather than multiple

modules on each of the confidence maps, is more efficient

and leads to better results since it can use information from

the neighboring disparity planes. RegNet is closely inspired

by the regularization module of GC-Net [11], with minor

modifications described in the supplementary, also takes the

left-image features as input for regularization. The final step

is the refinement proposed in StereoNet [12], which takes

the left image and the output of the AUC layer to generate

the final disparity map, M .

Training. We first train Bi3DNet on the SceneFlow dataset.

We form a batch with 64 stereo pairs and, for each of them,

we randomly select a disparity plane for the segmentation.

We use a binary cross-entropy (BCE) loss and train for 1k

epochs. To train for continuous depth estimation, we initial-

ize FeatNet and SegNet with the weights trained for binary

depth. We form a batch with 8 stereo pairs and use two

different losses: a BCE loss on the estimated segmentation

confidence volume and SmoothL1 loss on the estimated dis-

parity with weights of 0.1 and 0.9, respectively. We train this

network for 100 epochs. For the KITTI dataset, we fine-tune

both networks starting from the weights for SceneFlow. For

both binary and continuous depth we use a batch size of 8
and the procedure described above, but we train them for 5k

and 500 epochs, respectively. We use random crops of size

384x576, the Adam optimizer, and the maximum disparity

of the planes we sample is 192 for all the trainings.

5. Evaluation and Results

Our goal is to offer a trade-off between latency and

depth estimation accuracy—from binary depth, all the way

to full continuous depth. While no existing method is de-

signed to deal with quantized depth, we compare against

two state-of-the-art (standard) stereo methods: GA-Net [28],
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RGB GwcNET [7] GA-Net [28] Ours

RGB GT GwcNET [7] GA-Net [28] Ours

Figure 9: Results for standard stereo for both KITTI and the Flying Things datasets. While our goal is an algorithm that allows

flexible selection of the range, even on traditional stereo (i.e., looking for correspondences across the whole range) our method

produces results visually comparable to the state-of-the-art. In fact, in regions such as the power lines in the KITTI results, our

results are visually better than those of GA-Net, the top-ranked method on the KITTI benchmark.

GC-Net [11] DipsNetC [16] CRL [19] PDS-Net [24] PSM-Net [1] DeepPruner [4] GANet-15 [28] CSPN [2] MCUA [18] GwcNet [7] Ours

2.51 1.68 1.32 1.12 1.09 0.86 0.84 0.78 0.56 0.76 0.73

Table 1: EPE values on the Scene Flow dataset for several state-of-the-art methods. Our method has the second best score.

GA-Net DeepPrunerFast Ours (Time)

L
ev

el
s

2 0.9654 0.9677 0.9702 (5.3ms)

4 0.9302 0.9350 0.9372 (9.8ms)

8 0.8774 0.8826 0.8909 (18.5ms)

16 0.8061 0.8066 0.8307 (36ms)

Table 2: Mean IOU for different levels of depth quantization

(higher is better). For GA-Net and DeepPruner we quantize

the full depth, see text. Note that our method is on par in

terms of quality, but offers the ability to trade depth accuracy

for latency. For reference DeepPrunerFast, which is faster

than GA-Net, runs in 62ms.
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