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Abstract

Despite recent successes in hand pose estimation, there

yet remain challenges on RGB-based 3D hand pose estima-

tion (HPE) under hand-object interaction (HOI) scenarios

where severe occlusions and cluttered backgrounds exhibit.

Recent RGB HOI benchmarks have been collected either

in real or synthetic domain, however, the size of datasets

is far from enough to deal with diverse objects combined

with hand poses, and 3D pose annotations of real samples

are lacking, especially for occluded cases. In this work, we

propose a novel end-to-end trainable pipeline that adapts the

hand-object domain to the single hand-only domain, while

learning for HPE. The domain adaption occurs in image

space via 2D pixel-level guidance by Generative Adversarial

Network (GAN) and 3D mesh guidance by mesh renderer

(MR). Via the domain adaption in image space, not only 3D

HPE accuracy is improved, but also HOI input images are

translated to segmented and de-occluded hand-only images.

The proposed method takes advantages of both the guid-

ances: GAN accurately aligns hands, while MR effectively

fills in occluded pixels. The experiments using Dexter-Object,

Ego-Dexter and HO3D datasets show that our method sig-

nificantly outperforms state-of-the-arts trained by hand-only

data and is comparable to those supervised by HOI data.

Note our method is trained primarily by hand-only images

with pose labels, and HOI images without pose labels.

1. Introduction

Estimating 3D hand poses either from RGB images [59,

86, 7, 22, 35, 61] or depth maps [83, 38, 66, 75, 38, 81, 34,

50, 81, 1] has shown great improvements [68, 59, 75, 83, 14,

79, 51, 9, 17, 80, 62, 77, 48, 84, 72, 69, 13, 60, 39, 65, 40, 27,

33, 42, 12, 81]. The attributes behind successful hand pose

estimation are: deep learning methods that are able to learn

highly non-linear 2D-to-3D mapping, and available large-

scale datasets [83, 59] which enable sufficient training of

convolutional neural networks (CNNs). However, challenges

(a) (b) (c) (d) (e)

Figure 1: Example hand pose estimation results in the hand-

object interaction scenario. Our method synthesizes and

gradually refines the hand-only images from the input HOI

images. (a) input images x; (b) initial hand-only estimates

x′ constructed by our mesh renderer based on x; (c) refine-

ments x′′ of x′ generated by GAN; (d-e) final hand-only

images z and skeleton estimates y generated based on x′′.

are still remaining for hand-object interaction (HOI) cases

where there are severe occlusions and cluttered backgrounds.

RGB benchmarks have been recently proposed to tackle

the scenario [62, 35, 21, 20, 11], where CNN-based hand

pose estimator (HPE)s are trained using HOI images.

Collecting quality 3D pose annotations of real RGB images,

however, is challenging due to e.g. occlusions under the

HOI scenarios. A complete and automatic pipeline for

annotating 3D joint locations for severely occluded hands

does not exist. It either requires much manual effort to

continuously check and refine the labels [87] or the use of

magnetic sensors [12]/data gloves [5] corrupts RGB images.

Alternatively, they resort to synthetic data. Most existing

large-scale datasets for hand pose estimation (e.g. RHD [86],

SynthHands [37], GANerated [35] and Obman [21]) are

synthetic. Real datasets have either limited annotations such

as discrete grasp types (e.g. GUN-71 [52]), only 5 finger
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tips (e.g. DO [62], EGO [37]) or a limited number of frames

(e.g. HO3D [20]). FPHA [12] dataset is real and fair-sized;

however their RGB frames are corrupted since the magnetic

sensors used are visible. FreiHand [87] is of the latest

benchmarks having a moderate-scale (35k). However, only

less than half of it contains HOI images. When considering

diverse objects, backgrounds and the large hand pose space,

far more samples are required for training. In [21], the

authors reported the accuracy of hand pose estimator trained

and tested using either ‘hand-only’ or ‘HOI’ data. When

the hand pose estimator is trained by ‘HOI’, it does not

perform well on hand-only testing images in comparison

to the model trained by ‘hand-only’, while increasing the

accuracy on HOI testing images.

In this paper, we aim at adapting the domain of hand-

object interaction (HOI) to the domain of single hand-only

(See Fig. 1 for examples). This helps reduce the number of

3D joint annotations of HOI samples to train HPE. To the

best of our knowledge, this is the first work to fill the gap

between the HOI and hand-only domains. Our contributions

are largely in three-fold:

1) We propose a novel end-to-end learning framework for

the domain adaptation and HPE simultaneously. The domain

adaptation network is trained under weak supervision by 2D

object segmentation masks and 3D pose labels for hand-only

data. Without using 3D annotated HOI data, the method

generalizes well and improves the accuracy of 3D hand pose

estimation under HOI.

2) The domain adaptation is achieved by two guidances

in image space (though they can also be done in feature

space). Two image generation methods are investigated

and combined: a generative adversarial network and mesh

renderer using estimated 3D meshes and textures. As an

outcome, input HOI images are transformed to segmented

and de-occluded hand-only images, effectively improving

HPE accuracies.

3) The use of various losses, and the proposed archi-

tecture optimises the performance. In addition to the main

pipeline, we also investigate the use of real HOI data with

its 3D pose labels when available. In extensive experiments

for both hand-only and hand-object-interaction, the method

outperforms or is on par with state-of-the-arts.

The code is available at the project page1.

2. Related work

HPE for single hand-only. 3D pose estima-

tion of isolated hands (either from depth im-

ages [83, 38, 66, 75, 38, 81, 34, 50, 81, 1, 76] or from RGB

images [22, 7, 86, 24]) has achieved great success. Depth-

based 3D pose estimation has been well established as depth

maps inherently contain 3D information [81, 68, 31], and

1https://github.com/bsrvision/weak_da_hands

automatic data synthesis methods [83, 12, 4] help generate

large-scale 3D hand pose datasets. In the RGB domain,

automatic data generation is much more challenging and it

has only recently been tackled using multi-view information

and/or differentiable 2D projections [7, 22]: Simon et

al. [59] proposed an automatic data annotation scheme

which enforces label consistency in a multiple camera

setup [24] and Kocabas et al. reconstructed 3D human body

skeletons using multi-view 2D skeletons [28]. Further, dif-

ferentiable renderers and perspective models [6, 15, 21, 31]

have enabled training CNNs for 3D mesh reconstruction

from single RGB images. They typically employ 2D/3D

skeletons and 2D segmentation masks as weak-supervision.

3D hand pose estimation methods can also be cate-

gorized into generative and discriminative approaches:

Generative methods fit a 3D mesh model to point

clouds [72, 69, 54, 67, 65, 64, 51, 42] or intermediate data

representations such as 2D skeletons [46]. Most generative

methods optimize non-linear data fitting criteria, and there-

fore susceptible to local optima. With the advent of CNNs

and large-scale datasets [59, 81, 68, 81], discriminative

methods have shown promising performances and have been

established as a strong alternative to generative approaches.

However, these methods are agnostic to kinematic and/or ge-

ometric (mesh) constraints. Hybrid methods [70, 47, 73, 56]

attempt to combine the merits of both discriminative and

generative methods. A common strategy in this context is

to construct the initialization using discriminative methods

and subsequently refine it using generative methods. For

example, Tompson et al. [73] apply CNNs to predict hand

joint positions and apply particle swarm optimization (PSO)

to refine them. Similarly, Sharp et al. [56] estimate the initial

joint angles and refine them via PSO. Further exploiting

multi-view inputs from strongly interacting hands, Taylor et

al. [70] realized a real-time hybrid system.

HPE under hand object interaction (HOI) scenarios.

Early works in this domain focused on fitting 3D generative

models to RGBD images [45, 18, 30, 19], whereas some

works took discriminative approaches, e.g. based on random

forests [52, 53]. Model-based hand trackers often suffer from

model drift, limiting the range of applicable HOI scenarios.

Multi-camera systems have also been exploited [43, 44].

Recently, CNNs have been applied to recover-

ing the HOI hand poses from single RGB im-

ages [62, 12, 20, 21, 11, 37, 35, 55, 57, 43, 71]. As

annotating 3D joints under occlusion is challenging, exploit-

ing synthetic data has been recently investigated (e.g. GAN-

erated [35], SynthHands [37], and Obman [21]). However,

existing datasets exhibit a high level of artifacts including

unrealistic hand poses (when interacting with objects), and

the rendered images therein show a considerable gap from

real-world images. Real datasets in the HOI scenarios have

also been collected for 3D pose estimation [12, 20, 87] and
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Figure 2: Schematic diagram of the proposed 3D hand mesh and pose estimation framework via domain adaptation. Our domain

adaptation network receives an input HOI RGB image x and extracts 2D feature maps f and joint heatmaps h (via 2D feature and

pose estimator gFPE). Based on them, the mesh renderer gMR reconstructs the corresponding 3D meshes m and textures t, and

thereafter render these to an initial hand-only image estimate x′. The 2D maps {f ,h} and {f ′,h′} extracted respectively from

x and x′ are then fed to the GAN generator gGAN which synthesizes a refined hand-only image x′′. Finally, gFPE and gMR are

applied to x′′ to generate the hand free mesh m′′ which are then 1) rendered to the corresponding hand-only image z and 2) used

to generate skeletal joint poses y. The green and blue arrows represent the flow of data processing and supervision, respectively.

action recognition [57, 3]. However, they lack in quantity.

The state-of-the-art: Oberweger et al. [41] proposed

a feedback loop framework that embeds a depth map

generator and uses it to iteratively refine the estimated

skeletons. Wei et al. [78] developed a part-based human

body pose estimation approach that uses global scene

context to compensate for occluded joints. This algorithm

generates and gradually refines intermediate 2D heatmap

responses. Similar ideas have also been exercised in 3D HOI

hand pose estimation ( e.g. [35]). However, they require

constructing large HOI hand pose datasets. Our algorithm

builds upon the architecture of Wei et al. [78] and it achieves

superior or comparable performance to the state-of-the-arts

without using 3D labels for HOI data. Similarly to our

approach, Goudie et al.’s algorithm [16] takes a two-stage

approach and uses hand segmentation masks from the HOI

images. However, unlike ours, this method does not perform

de-occlusion (or inpainting) of the occluded parts, and

therefore fails when hands are severely occluded.

There also have been works for tackling the interactions

between two hands [74, 36].

Domain adaptation for HPE. Several methods have been

developed for reducing the gap between real and synthetic

hand data (where only isolated hands appear) [50, 58] or

between RGB and depth data [49, 82]. However, to the

best of our knowledge, none of prior work has tackled the

adaptation of HOI and hand-only domains.

3. Our hand domain adaptation framework

Constructing a pose estimator of hands (HPE) that

interact with objects (HOI) is a challenging problem:

Existing HPEs trained on hand-only datasets struggle due

to object occlusions. Also, training a new HPE under

the HOI scenario is not straightforward as the annotated

real-world HOI datasets are limited. We propose to mitigate

this challenge by mapping the input HOI image to the

corresponding object free (hand-only) image, leveraging

only easily accessible datasets: the input RGB images in

hand-only and HOI scenarios, skeleton annotations for

hand-only images, and 2D binary segmentation masks for

hand-only and HOI images (which can be extracted based

on the accompanying depth maps; See Table 2 for the

summary of training datasets and data types that we use).

While this requires restoring (or inpainting) occluded

hand regions, which does not have a generally agreed

solution, we demonstrate that our framework often faithfully

restores occluded hands, and by doing so, it can provide

significant performance improvements over existing hand

pose estimation approaches.

Overview. Our domain adaptation network (DAN) fDAN

receives an input 256×256-sized RGB HOI image x ∈X

and generates the corresponding hand-only image x′ ∈X

and 21 3D skeletal joints y∈Y estimates. Table 1 provides

a summary of notations.

Motivated by the success of recent approaches for hand
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Table 1: Summary of notations.

X⊂R
256×256×3

RGB images (x: input; x′: rendered by gMR;

x′′: synthesized by gGAN;

z: final mesh estimate rendered by gMR)

Y ⊂R
21×3 3D skeletal pose space

F ⊂R
128×32×32 2D feature space

H⊂R
21×32×32 2D heatmap space

M⊂R
778×1538 3D mesh space: 778 vertices × 1,538 faces

T ⊂R
1538×3 RGB mesh texture (3 × 1,538 faces)

gFPE :X→F×H 2D feature and pose estimator

gHME :F×H→M Hand mesh estimator

gTex :F×H→T Texture estimator

gNR :M×T →X Neural renderer [25]

gReg :M→Y Hand joint regressor [54]

gMR :F×H→X×Y Mesh renderer: gMR=[gNR◦[gHME,gTex],gReg◦gHME]
gGAN :F×H×F×H→X GAN generator

dGAN
1

,dGAN
2

:X→R GAN discriminators

fDAN :X→X×Y Domain adaptation network: fDAN=gMR◦gFPE

pose estimation [2, 10, 32, 6], we guide the training of DAN

by decomposing it into components each provided with

intermediate-level supervision: fDAN combines 2D feature

and pose estimator (FPE) gFPE and mesh renderer (MR) gMR.

FPE extracts 2D spatial feature maps f ∈F and generates

heatmaps h ∈ H representing the estimated locations of

21 skeletal joints in the image pane. MR consists of 1)

hand mesh estimator gHME, 2) texture estimator gTex, 3)

neural renderer gNR, and 4) hand joint regressor gReg. gHME

and gTex both receive the two outputs {f ,h} of gFPE and

estimate the corresponding hand-only mesh m and texture

t, respectively, which are then fed to gNR to synthesize a

hand-only image x′. Here, we denote the hand-only image

estimated based on x by x′. Thereafter, gReg calculates the

joint locations y from m. For gNR and gReg, we use the

models obtained from [25] and [54], respectively. They

are held fixed throughout the entire training process of

DAN. However, as both are differentiable, they facilitate the

training of gHME and gTex end-to-end.

Training DAN is further guided by generative adversarial

networks (GANs): The GAN generator gGAN generates

a refined version x′′ of x′ conditioned on the features

extracted from x′ and x, respectively. The corresponding

discriminators dGAN
1

,dGAN
2

are trained to distinguish 1) the

synthesized hand-only images and real hand-only images

and 2) hand-only images and HOI images, respectively.

Figures 2 and 1 show an overview of our DAN architecture

and the corresponding examples, respectively.

3.1. 2D feature and pose estimator gFPE :X→F×H

This receives a 256 × 256-sized RGB image and

generates 128 32 × 32-dimensional spatial feature maps

f and 21 32×32-dimensional heatmaps h, each encoding

2D spatial information at 8 times downsampled resolution

from x. The effectiveness of generating such intermediate

2D maps to guide the training of hand and human pose

estimators has been demonstrated in [32, 6]. We use the

convolutional pose machine (CPM) architecture [78] and

the weights pre-trained for hand pose estimation [86]: This

algorithm iteratively improves the estimated heatmaps h

by exploiting the corresponding feature maps f as auxiliary

information: The number of total iterations are fixed at

3. Details of all network structures are provided in the

accompanying supplemental document.

3.2. Mesh renderer gMR :F×H→X×Y

Given the 2D maps f ,h extracted from the input HOI

image x, gMR synthesizes the corresponding hand-only

image x′ and skeletal joints y based on its component

functions gHME, gTex, gNR, and gReg: Following [6, 2, 21],

we stratify the training of gMR by first estimating a hand

mesh m as proxy geometric features and then render it to

a 2D image x′. The MANO hand model is used to facilitate

this process [54]: Our hand mesh estimator gHME first

estimates a 63-dimensional MANO parameter vector p and

then converts it to a MANO mesh m using a differentiable

MANO layer gMANO. In parallel, the texture estimator gTex

receives f ,h and calculates the corresponding mesh color

values t. Finally, gNR projects m and t onto the image pane

to generate the hand-only counter part x′ of the input HOI

image x, and gReg determines the 3D skeletal joints y from

m. Details of the operations of gHME, gTex, gReg, and gNR

are provided in the supplemental document.

3.3. GAN generator gGAN :F×H×F×H→X

Our GAN generator gGAN provides an adaptation of

images x in the HOI domain to the corresponding hand-only

images x′′, and it has the standard encoder/decoder architec-

ture commonly used in unpaired image translation [85, 23].

Inspired by the work of Kossaifi et al. [29] which involves

key points as auxiliary geometric information to improve

facial image synthesis, the features f , h extracted from

x are used as inputs. Further, we augment the input by

adding the features f ′,h′ extracted from x′: By adopting the

MANO hand model, gMR can synthesize clean hand-only

images x′ free of occlusions and background clutters. Even

though x′ might not be perfectly aligned with the underlying

ground-truth, being combined with features f ,h of x, f ′,h′

can help gGAN generate realistic hand images. We assessed

in preliminary experiments, a more straightforward setting

where gGAN is conditioned only on f ,h without generating x′.

The corresponding results were significantly worse than x′′

indicating that directly estimating the hand-only counterpart

of an HOI image is challenging, and having an initial hand

reconstruction x′ guided by mesh reconstruction m helps

refine the search space of gGAN parameters during training.

3.4. Training

DAN is trained end-to-end based on 1) hand-only input

images x, and the corresponding 3D skeletal joints and

hand segmentation masks s and 2) HOI images and the

corresponding segmentation masks each covering hands and
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Table 2: Data types for training DAN. sHand and sHOI

represent the foreground hand(-only) and HOI segmentation

masks, respectively. For real-world datasets, the segmen-

tation masks are calculated using the accompanying depth

maps. Note we do not use sHand for DR
HOI as extracting

hand-only regions is challenging.

DR
Hand={(x,sHand,y)} Real hand-only data (STB)

DS
Hand={(x,sHand,y)} Synthetic hand-only data (SynthHands, RHD)

DR
HOI={(x,sHOI)} Real HOI data (CORe50)

DS
Paired={(x,x∗,sHand,sHOI}

Paired synthetic HOI (x) and

hand-only (x∗) images (Obman)

DHand=[DR
Hand,D

S
Hand] Hand-only data

D=[DHand,D
R
HOI,D

S
Paired] All training data that we use

objects. Our algorithm is weakly supervised in that it does

not use the ground-truth 3D skeletal joints or hand-only

segmentation masks for HOI images. However, optionally,

when the 3D joints annotations are provided for the HOI

images, our algorithm can also exploit them. The training

process is summarized in Fig. 2. This section details super-

visory information provided to each component of DAN.

2D heatmap supervision LHeat. gFPE’s CPM architec-

ture [78] is initialized with pre-trained weights provided

by Zimmermann and Brox [86] and is refined based on

the ground-truth 2D heatmaps hGT of hand-only images

which are induced from the corresponding 3D skeletal

annotations [86]. The corresponding loss is given below:

LHeat([g
FPE]H |DHand)=‖gFPE(x)−hGT‖

2

2
, (1)

where ‖A‖2 is the L2 norm of vec[A] with vec[A] vector-

izing the input multi-dimensional array A and [v]H extracts

the 2D heatmap component from the output v of gFPE. We

use the notation ‘(·|D)’ to signify the type of dataset D

from which individual data instances are sampled. As the

estimated heatmaps are iteratively improved (see Sec. 3.1),

LHeat is applied to each step of iteration. Further, since gFPE

generates the heatmaps three times in the training process

(for x, x′, and x′′, respectively; See Sec. 3.3 and Fig. 2),

LHeat is accordingly applied multiple times: x in Eq. 1 is

replaced by x′ and x′′, respectively.

Image-level supervision LImg. Each input image x in

the training dataset D is provided with the corresponding

2D segmentation mask s enabling to extract foreground

hand regions x ⊙ s with ⊙ being element-wise product.

For hand-only images, we penalize the deviation between

these foreground hands and the corresponding hand-only

reconstructions x′ and x′′ generated by gMR and gGAN,

respectively. Additional supervison is provided via two

GAN discriminators: dGAN
1

and dGAN
2

take images x,x′,x′′

and respectively distinguish between 1) real and synthesized

images and 2) HOI and hand-only images: Images in the

hand-only datasets (STB, RHD, SH: see Sec. 4) and HOI

datasets (CORe50) are used as real images for the first and

the second tasks, respectively, while the images generated by

gGAN are used as fake images in both tasks. This image-level

supervision information is encoded in the loss LImg:

LImg(g
FPE,gHME,gTex|D)

=

2
∑

i=1

E[log(1−dGAN
i

(x′′))]+E[log(1−dGAN
i

(x′))]

+‖x′′−x⊙sHand‖1+‖x′−x⊙sHand‖1. (2)

The last two terms are not used for real HOI images (DR
HOI:

see Table 2) as they do not have the corresponding hand-only

segmentation masks sHand. The discriminator dGAN is further

supervised using an adversarial loss:

Ld(d
GAN|D)=−E[log([dGAN

2
(x⊙sHand)])]

−E[log(1−[dGAN
2

(x⊙sHOI)])] (3)

−E[log([dGAN
1

(x⊙sHand)])]−E[log(1−[dGAN
1

(x′′)])],

where the masked images x⊙s are used whenever available,

e.g. DS
HOI provides both sHand and sHOI while for DR

Hand,

DS
Hand and DR

HOI, either sHand or sHOI are provided.

3D skeleton supervision LPos. For hand-only data,

ground-truth 3D skeletons yGT are provided to gFPE and

gHME:

LPos(g
FPE,gHME|DHand)=‖[gMR(gFPE(x))]Y −yGT‖

2

2
, (4)

where [v]Y extracts the skeleton components from the

output v of gMR. Similarly to LHeat, LPos is applied twice

in each pass of the training images (for x and x′; the latter

case replaces x in Eq. 4 by x′).

Training sequence. We observed in our preliminary

experiments that initializing gFPE and gHME helps the

convergence of the training process. Therefore, we train

them for the first 30 epochs using LHeat and LPos. Thereafter,

all component functions are jointly trained based on the

combined loss L (see our supplemental document for the

details of the training process):

L=LHeat+LPos+LImg+Ld. (5)

3.5. Testing

Applying the trained DAN to a test image x follows the

same pipeline as training (Fig. 2) except that at testing, no

supervision is provided. Once estimated, the MANO param-

eter vector p of x uniquely determines the corresponding

hand mesh m and skeletal joints y. In general, these outputs

do not have to perfectly agree with intermediate variables

that are generated during the estimation of p, and enforcing

consistency with them can help improve p and thereby gen-

erate more accurate mesh and skeleton estimates (see [2] for
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Table 3: Error rates of different algorithms on HO3D (lower

is better) used in Task 3 of HANDS 2019 challenge [8]. The

results of all algorithms that participated in this challenge are

displayed. The three best results are highlighted with bold-

face blue, italic green, and plain orange fonts, respectively.

Participant ID EXTRAP OBJECT

potato 24.74 27.36

Nplwe 29.19 18.39

lin84 31.51 30.59

yhasson 38.42 31.82

LSL 41.81 72.70

SehoKim 49.64 53.79

myunggi 57.45 54.81

sirius.xie 80.06 45.34

Ours 28.24 25.93

Ours + HO3D 3D annot. 23.63 20.59

a similar idea exercised in a different context). In particu-

lar, checking and enforcing the consistency of p and x′′ is

straightforward as gFPE, gHME, and gReg are all differentiable

with respect to p: Suppose that j is the 2D skeletal joints

recovered by 2D heatmaps h′′ estimated on x′′. Then, we it-

eratively refine p(0) :=p based on the following update rule:

p(t+1)=p(t)−γ ·∇p

(

‖[y]XY −j‖2
2

)

, (6)

where [y]XY represents the projection of 3D joints y onto

the image pane (note that [y]XY depends on p(t)). The

number of iterations T and γ are fixed at 50 and 0.01,

respectively. This corresponds to the first 50 iterations of

the steepest descent on the energy E(p)=‖[y]XY (p)−j‖2
2

using p(0) and γ as the initialization and the corresponding

step size respectively. The final solution p(T ) improves the

average hand pose estimation accuracy from p(0) by 4.3%
and 6.5% on DO and ED datasets, respectively: ‘Ours’ and

‘Ours (wo/ test refine.)’ in Fig. 4(a-b) represent the results

obtained from p(T ) and p(0), respectively.

4. Experiments

We evaluated our algorithm on three datasets in 1) the

HOI scenario where weak supervision is provided. Also, we

performed experiments on 2) hand-only images, to confirm

that our method realizes comparable performance to existing

approaches that are designed for the hand-only scenario

and 2) on HOI images, after we retrain our system on fully

annotated HOI 3D skeletons. The latter set of experiments

demonstrate that once available, our algorithm is capable

of fully exploiting 3D skeletons and thereby significantly

outperforming existing approaches targeted at this setting.

Testing data. We use three challenging real-world HOI

datasets: Dexter-object (DO) [62], Ego-Dexter (ED) [37],

and Hand Object-3D (HO3D) [20]. Further, to evaluate the

performance in the hand-only scenarios, we use the testing

split of STB. DO provides 3,145 video frames sampled

from 6 video sequences recording a person interacting with

an object and the corresponding 3D fingertip annotations

(see Fig. 5(DO) for examples). ED contains 3,190 RGBD

images of hands interacting with 6 objects captured at

ego-centric viewpoints. For a subset of 1,485 images in this

dataset, 3D fingertip positions are annotated, and we use

these labeled images for testing. STB has 15,000 hand-only

testing frames of a single subject and the corresponding

21 3D skeleton joint annotations. HO3D has 6,636 video

frames collected in the HOI scenario providing examples of

severe object occlusions. Each frame is provided with 21 3D

skeleton joint annotations. HO3D was originally used in the

Task 3 of the HANDS 2019 Challenge [8] and it provides

settings for multiple experimental scenarios. Among them,

we use ‘OBJECT’ and ‘EXTRAP’ configurations which

target at assessing the performance of hand pose estimators

under varying object categories and hand pose/shape/object

category combinations, respectively.

Training data. Our training set consists of real hand-only

data DR
Hand, synthetic hand-only data DS

Hand, real HOI data

DR
HOI, and synthetic pairs of HOI and hand-only images

DS
paired. All images in these training subsets are provided

with the corresponding foreground segmentation masks

(hand masks for hand-only images and hand+object masks

for HOI images). The images in DR
Hand and DS

Hand are also

accompanied by skeletal joint annotations (see Table 2).

To facilitate direct comparisons with existing work, we

used different training set combinations per test dataset: To

test on DO and STB, the training splits of STB and RHD are

used as the hand-only training set DHand, while for ED test

set, STB, RHD, and SH are used. Note that SH contains both

hand-only and HOI images, each provided with ground-truth

3D skeletons. For training, we use only hand-only images of

SH, while Iqbal et al.’s algorithm [22] that we compare with,

uses all images and 3D skeleton annotations. For HO3D test

set, STB, RHD and SH are used as DHand.

Evaluation methods. We evaluated our algorithm based on

the ratio of correct keypoints (PCK) with varying thresholds

and area under the curve (AUC) (of the PCK curves), and

compared it with 4 state-of-the-art RGB-based 3D hand

pose estimation algorithms [86, 35, 22, 1]: Mueller et al.’s

algorithm [35] is tailored for the HOI scenario basing on

synthetic images and the corresponding 3D joint annotations

in their GANerated dataset [35]. Iqbal et al.’s algorithm [22]

builds upon the heat map-based framework of [78] and uses

a latent depth map generation module that helps recover 3D

maps from 2D heat map responses.

On STB consisting of hand-only data, we compared with

7 state-of-the-art algorithms designed for the hand-only

domain [61, 86, 46, 22, 26, 47, 63] in addition to [22].2

For ED, apart from [22], we are not aware of any existing

2The accompanying supplemental document provides a detailed dis-

cussion of the algorithms that are compared.
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Figure 3: Example hand only image restoration results:

(left) input HOI images, (middle) and (right) restored hand

images generated by GANs trained with only dGAN (middle)

and with dGAN, gFPE, gMR (right), respectively.

work that assesses the accuracies in 3D PCK. To facilitate

comparisons with existing work, we also measured the

accuracies of our method in 2D PCK.

Results. Figure 4 summarizes the results. On DO (Fig. 4a),

our algorithm significantly outperformed Mueller et al.’s

algorithm [35] and Iqbal et al.’s algorithm [22] both of

which were trained on the 3D HOI skeleton annotations.

Interestingly, Baek et al.’s hand mesh reconstruction algo-

rithm [2] also showed significant improvements over [35, 22]

even though the former was not designed for the HOI scenar-

ios. This can be attributed to the fact that by employing an

explicit 3D hand shape model (the MANO model similarly to

ours), [2] provides robustness against moderate occlusions,

and further, most input images in DO exhibit such mild

object occlusions. When the error threshold is larger than

40mm (which is typically the case when hands show severe

occlusions), our algorithm consistently outperformed [2],

and it becomes comparable to [2] as the threshold decreases.

Figure 4(b-c) show the results for the ED dataset: When

evaluated in 3D PCK, our algorithm clearly outperformed

Iqbal et al.’s algorithm. In 2D PCK, the performance of our

algorithm is comparable to [22, 35] and it outperforms [86]

which uses hand-only images.

On STB, ours is again significantly better than or compara-

ble to state-of-the-art algorithms [61, 86, 46, 22, 26, 47, 63]

demonstrating that it continues to offer state-of-the-art

performance even in the hand-only domain (Fig. 4(d)).

Note that directly applying the system trained on the HOI

data (Mueller et al.’s algorithm [35]) to hand-only images

can significantly degrade the performance. Iqbal et al.’s

algorithm [22] is retrained on hand-only images.

Table 3 shows the results of our algorithm compared

with (all) eight algorithms that participated in the Task 3 of

HANDS 2019 challenge which used HO3D. Our algorithm

achieved the best and second-best results for EXTRAP

and OBJECT, respectively (disregarding Ours + HO3D

3D annot.) further confirming our initial thesis that it can

provide stare-of-the-art performance in the HOI scenarios

even without requiring 3D skeletal annotations and/or known

object types: It should be noted that our algorithm has been

trained on datasets that are disjoint from HO3D and there is

no overlap between the object categories of HO3D and our

training datasets. Further, when provided with such skeletal

annotations, our algorithm ranked the best and second best

for EXTRAP and OBJECT, respectively demonstrating its

ability to fully accommodate such high-quality supervision.

Figure 5 exemplifies how such a significant performance

gain can be achieved using only weak-supervision: By

employing the MANO 3D hand model and GAN generators,

and iteratively enforcing the consistency of the final mesh

reconstruction over 2D maps, our algorithm can faithfully

recover the hand-only counterpart of the input HOI image.

It should be noted that the initial errors in hand-only restora-

tion x′ has been subsequently corrected via GAN generators

x′′ and/or mesh refinement performed at the testing (z).

Ablation study. To gain an insight into the contribution

of our system components, we measured the pose estimation

accuracies of our system that uses 1) only the initial mesh

reconstruction x′ (without the subsequent explicit domain

adaptation steps) and 2) the final mesh estimation without

the testing refinement step. The corresponding results

(‘Ours (init. mesh est.)’ and ‘Ours (wo/ test refine.)’ in

Fig. 4 (a, b) for DO and ED datasets, respectively) show that

both domain adaptation steps, and the iterative refinement

step contribute significantly in improving the performance.

We also trained a separate instance of our system on

the training splits of HO3D using the corresponding 3D

annotations to assess its performance when provided with

3D skeletons. In Table 3, the resulting system is denoted as

‘Ours+HO3D 3D annot.’ while our final system trained with-

out HO3D’s 3D skeletal annotations is denoted as ‘Ours’.

Discussion. The hand-only images synthesized by our

GANs are rather blurry. This can be attributed to the

fact that in our framework, the GAN parameters are

updated based not only on the discriminator dGAN but

also on the 2D feature and pose estimator gFPE and mesh

renderer gMR: The latter two components do not promote

sharpness in the final results. When we remove these two

components, corresponding reconstructions are not blurry

but the final hand pose estimates become less accurate. The

corresponding synthesized examples are shown in Fig. 3.

Our PyTorch-based implementation takes 600ms and 2s

per frame on a single NVIDIA Geforce GTX1080 Ti GPU

and on a Geforce GTX 1050 mobile GPU, respectively.
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Figure 4: Performances of different algorithms on three benchmark datasets: (a) DO, (b-c) ED, (d) STB, respectively.
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Figure 5: Example hand image restoration results via domain adaptation under the HOI (HO3D, DO, ED) and hand-only

(STB) scenarios. (a) input images x, (b) images x′ generated by our initial mesh renderer gMR, (c) images x′′ generated by

our GAN generator gGAN, (d) final images z generated by the mesh renderer gMR.

5. Conclusions

Existing approaches to estimating skeletons of hands

that interact with objects require fully annotated 3D skeletal

joints, which are costly to build due to object occlusions.

We have presented a new framework that trains an estimator

without having to construct such fully annotated datasets.

The crux of our approach is a new domain adaptation

framework that transfers input HOI images to the corre-

sponding hand-only images only based on 2D foreground

segmentation masks, 3D skeletons for hand-only images,

and synthetic hand-only and HOI image pairs, all of which

can be easily constructed for synthetic datasets or real RGB

images accompanied by depth maps. We designed a new

training process that fully leverages such weak supervision

in an end-to-end manner. Evaluated on 3 real-world HOI

datasets and a hand-only dataset, we demonstrated that 1) on

HOI images, our algorithm provides superior or comparable

performance to existing approaches that are trained on fully

annotated skeletons and 2) ours still retains state-of-the-art

performance on hand-only images. Further, 3) when pro-

vided with optional skeleton annotations, it can significantly

outperform existing HOI pose estimation approaches.

As our method is learning-based, it suffers from a

new-type of testing data. We illustrated the “yellow

bottle” as one such data in the supplemental. Furthermore,

ours does not exploit 1) temporal information and 2) the

class/shape of objects under interaction. Future work should

explore the possibilities of enforcing temporal consistency

over the estimated mesh shapes and refining pose estimates

via exploiting (recognized) action contexts exercised on

objects under interaction.
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