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ESRGANLow-res input Other perfectly consistent reconstructions produced with our approach

Figure 1: Exploring HR explanations to an LR image. Existing SR methods (e.g. ESRGAN [26]) output only one

explanation to the input image. In contrast, our explorable SR framework allows producing infinite different perceptually

satisfying HR images, that all identically match a given LR input, when down-sampled. Please zoom-in to view subtle details.

Abstract

Single image super resolution (SR) has seen major per-

formance leaps in recent years. However, existing methods

do not allow exploring the infinitely many plausible recon-

structions that might have given rise to the observed low-

resolution (LR) image. These different explanations to the

LR image may dramatically vary in their textures and fine

details, and may often encode completely different seman-

tic information. In this paper, we introduce the task of ex-

plorable super resolution. We propose a framework com-

prising a graphical user interface with a neural network

backend, allowing editing the SR output so as to explore the

abundance of plausible HR explanations to the LR input. At

the heart of our method is a novel module that can wrap

any existing SR network, analytically guaranteeing that its

SR outputs would precisely match the LR input, when down-

sampled. Besides its importance in our setting, this module

is guaranteed to decrease the reconstruction error of any

SR network it wraps, and can be used to cope with blur ker-

nels that are different from the one the network was trained

for. We illustrate our approach in a variety of use cases,

ranging from medical imaging and forensics, to graphics.

1. Introduction

Single image super resolution (SR) is the task of pro-

ducing a high resolution (HR) image from a single low

resolution (LR) image. Recent decades have seen an in-

creasingly growing research interest in this task, peaking

with the recent surge of methods based on deep neural

networks. These methods demonstrated significant perfor-

mance boosts, some in terms of achieving low reconstruc-

tion errors [4, 10, 14, 24, 12, 29, 11] and some in terms of

producing photo-realistic HR images [13, 26, 23], typically

via the use of generative adversarial networks (GANs) [5].

However, common to all existing methods is that they do not

allow exploring the abundance of plausible HR explanations

to the input LR image, and typically produce only a single

SR output. This is dissatisfying as although these HR expla-

nations share the same low frequency content, manifested in

their coarser image structures, they may significantly vary

in their higher frequency content, such as textures and small

details (see e.g., Fig. 1). Apart from affecting the image ap-

pearance, these fine details often encode crucial semantic

information, like in the cases of text, faces and even tex-

tures (e.g., distinguishing a horse from a zebra). Existing

SR methods ignore this abundance of valid solutions, and

arbitrarily confine their output to a specific appearance with

its particular semantic meaning.

In this paper, we initiate the study of explorable su-

per resolution, and propose a framework for achieving it

through user editing. Our method consists of a neural net-

work utilized by a graphical user interface (GUI), which

allows the user to interactively explore the space of per-

ceptually pleasing HR images that could have given rise to
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Figure 2: An example user editing process. Our GUI allows exploring the space of plausible SR reconstructions using a

variety of tools. Here, local scribble editing is used to encourage the edited region to resemble the user’s graphical input.

Then the entire shirt area (red) is edited by encouraging its patches to resemble those in the source (yellow) region. At any

stage of the process, the output is perfectly consistent with the input (its down-sampled version identically matches the input).

ESRGAN
Ours

(pre-edited)

Lo
w

-re
s i

np
ut

Resulting corresponding SR reconstructions:

Attempting to imprint optional digits:

Figure 3: Visually examining the likelihood of patterns

of interest. Given an LR image of a car license plate, we

explore the possible valid SR reconstructions by attempting

to manipulate the central digit to appear like any of the dig-

its 0− 9, using our imprinting tool (see Sec. 4). Though the

ground truth HR digit was 1, judging by the ESRGAN [26]

result (or by our pre-edited reconstruction) would probably

lead to misidentifying it as 0. In contrast, our results when

imprinting digits 0,1 and 8 contain only minor artifacts, thus

giving them similar likelihood.

a given LR image. An example editing process is shown

in Fig. 2. Our approach is applicable in numerous scenar-

ios. For example, it enables manipulating the image so as

to fit any prior knowledge the user may have on the cap-

tured scene, like changing the type of flora to match the

capturing time and location, adjusting shades according to

the capturing time of day, or manipulating an animal’s ap-

pearance according to whether the image was taken in the

zebras or horses habitat. It can also help determine whether

a certain pattern or object could have been present in the

scene. This feature is invaluable in many settings, including

in the forensic and medical contexts, exemplified in Figs. 3

and 4, respectively. Finally, it may be used to correct un-

pleasing SR outputs, which are common even with high ca-

pacity neural network models.

Our framework (depicted in Fig. 5) consists of three key

ingredients, which fundamentally differ from the common
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Figure 4: Visually examining the likelihood of a medical

pathology. Given an LR shoulder X-ray image, we evalu-

ate the likelihood of a Supraspinatus tendon tear, typically

characterized by a less than 7mm Acromiohumeral distance

(measured between the Humerus bone, marked red, and the

Acromion bone above it). To this end, we attempt to im-

print down-shifted versions (see Sec. 4) of the Acromion

bone. Using the image quality as a proxy for its plausibility,

we can infer a low chance of pathology, due to the artifacts

emerging when forcing the pathological form (right image).

practice in SR. (i) We present a novel consistency enforc-

ing module (CEM) that can wrap any SR network, analyti-

cally guaranteeing that its outputs identically match the in-

put, when down-sampled. Besides its crucial role in our

setting, we illustrate the advantages of incorporating this

module into any SR method. (ii) We use a neural network

with a control input signal, which allows generating diverse

HR explanations to the LR image. To achieve this, we rely

solely on an adversarial loss to promote perceptual plau-

sibility, without using any reconstruction loss (e.g. L1 or

VGG) for promoting proximity between the network’s out-

puts and the ground-truth HR images. (iii) We facilitate the

exploration process by creating a GUI comprising a large

set of tools. These work by manipulating the network’s

control signal so as to achieve various desired effects1. We

elaborate on those three ingredients in Secs. 2,3 and 4.

1Our code and GUI are available online.
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Figure 5: Our explorable SR framework. Our GUI al-

lows interactively exploring the manifold of possible HR

explanations for the LR image y, by manipulating the con-

trol signal z of the SR network. Our CEM is utilized to turn

the network’s output x̂inc into a consistent reconstruction x̂,

presented to the user. See Secs. 2,3 and 4 for details.

1.1. Related Work

GAN based image editing Many works employed GANs

for image editing tasks. For example, Zhu et al. [30] per-

formed editing by searching for an image that satisfies a

user input scribble, while constraining the output image to

lie on the natural image manifold, learned by a GAN. Per-

arnau et al. [21] suggested to perform editing in a learned

latent space, by combining an encoder with a conditional

GAN. Xian et al. [28] facilitated texture editing, by allow-

ing users to place a desired texture patch. Rott Shaham

et al. [23] trained their GAN solely on the image to be

edited, thus encouraging their edited output to retain the

original image characteristics. While our method also al-

lows traversing the natural image manifold, it is different

from previous approaches in that it enforces the hard consis-

tency constraint (restricting all outputs to identically match

the LR input when down-sampled).

GAN based super-resolution A large body of work has

shown the advantage of using conditional GANs (cGANs)

for generating photo-realistic SR reconstructions [13, 26,

22, 25, 27]. Unlike classical GANs, cGANs feed the gen-

erator with additional data (e.g. an LR image) together with

the stochastic noise input. The generator then learns to syn-

thesize new data (e.g. the corresponding SR image) condi-

tioned on this input. In practice, though, cGAN based SR

methods typically feed their generator only with the LR im-

age, without a stochastic noise input. Consequently, they

do not produce diverse SR outputs. While we also use a

cGAN, we do add a control input signal to our generator’s

LR input, which allows editing its output to yield diverse

results. Several cGAN methods for image translation did

target outputs’ diversity by keeping the additional stochas-

tic input [31, 3, 9], while utilizing various mechanisms for

binding the output to this additional input. In our method,

we encourage diversity by simply removing the reconstruc-

tion losses that are used by all existing SR methods. This is

made possible by our consistency enforcing module.

2. The Consistency Enforcing Module

We would like the outputs of our explorable SR method

to be both perceptually plausible and consistent with the LR

input. To encourage perceptual plausibility, we adopt the

common practice of utilizing an adversarial loss, which pe-

nalizes for deviations from the statistics of natural images.

To guarantee consistency, we introduce the consistency en-

forcing module (CEM), an architecture that can wrap any

given SR network, making it inherently satisfy the consis-

tency constraint. This is in contrast to existing SR networks,

which do not perfectly satisfy this constraint, as they en-

courage consistency only indirectly through a reconstruc-

tion loss on the SR image. The CEM does not contain any

learnable parameters and has many notable advantages over

existing SR network architectures, on which we elaborate

later in this section. We next derive our module.

Assume we are given a low resolution image y that is

related to an unknown high-resolution image x through

y = (h ∗ x) ↓α . (1)

Here, h is a blur kernel associated with the point-spread

function of the camera, ∗ denotes convolution, and ↓α sig-

nifies sub-sampling by a factor α. With slight abuse of no-

tation, (1) can be written in matrix form as

y = Hx, (2)

where x and y now denote the vectorized versions of the

HR and LR images, respectively, and the matrix H corre-

sponds to convolution with h and sub-sampling by α. This

system of equations is obviously under-determined, render-

ing it impossible to uniquely recover x from y without ad-

ditional knowledge. We refer to any HR image x̂ satisfy-

ing this constraint, as consistent with the LR image y. We

want to construct a module that can project any inconsistent

reconstruction x̂inc (e.g. the output of a pre-trained SR net-

work) onto the affine subspace defined by (2). Its consistent

output x̂ is thus the minimizer of

min
x̂

‖x̂− x̂inc‖
2 s.t. Hx̂ = y. (3)

Intuitively speaking, such a module would guarantee that

the low frequency content of x̂ matches that of the ground-

truth image x (manifested in y), so that the SR network

should only take care of plausibly reconstructing the high

frequency content (e.g. sharp edges and fine textures).

Problems like (3) frequently arise in sampling theory

(see e.g. [17]), and can be conveniently solved using a ge-

ometric viewpoint. Specifically, let us utilize the fact that
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Figure 6: CEM architecture. The CEM, given by Eq. (8),

can wrap any given SR network. It projects its output x̂inc

onto the space of images that identically match input y

when downsampled, thus producing a super-resolved image

x̂ guaranteed to be consistent with y. See Sec. 2 for details.

PN (H)⊥ = HT (HHT )−1H is known to be the orthogonal

projection matrix onto N (H)⊥, the subspace that is perpen-

dicular to the nullspace of H . Now, multiplying both sides

of the constraint in (3) by HT (HHT )−1, yields

PN (H)⊥ x̂ = HT (HHT )−1y. (4)

This shows that we should strictly set the component of x̂

in N (H)⊥ to equal the right hand side of (4).

We are therefore restricted to minimize the objec-

tive by manipulating only the complementary component,

PN (H)x̂, that lies in the nullspace of H . Decomposing the

objective into the two subspaces,

‖PN (H)(x̂− x̂inc)‖
2 + ‖PN (H)⊥(x̂− x̂inc)‖

2, (5)

we see that PN (H)x̂ only appears in the first term, which it

minimizes when set to

PN (H)x̂ = PN (H)x̂inc. (6)

Combining the two components from (4) and (6), and using

the fact that PN (H) = I −HT (HHT )−1H , we get that

x̂ = PN (H)x̂+ PN (H)⊥ x̂

= (I −HT (HHT )−1H)x̂inc +HT (HHT )−1y. (7)

To transform (7) into a practical module that can wrap

any SR architecture with output x̂inc, we need to replace

the impractical multiplication operations involving the very

large H matrix, with their equivalent operations: convolu-

tions, downsampling and upsampling. To this end, we ob-

serve that since H corresponds to convolution with h fol-

lowed by sub-sampling, HT corresponds to up-sampling

followed by convolution with a mirrored version of h,

which we denote by h̃. The multiplication by (HHT )−1

can then be replaced by convolving with a filter k, con-

structed by computing the inverse of the filter (h ∗ h̃) ↓α
in the Fourier domain. We thus have that

x̂ = x̂inc − h̃∗
[

k ∗ (h∗ x̂inc) ↓α
]

↑α +h̃∗ (k ∗y) ↑α . (8)

2× 3× 4×
EDSR [14] 35.97 32.27 30.30

EDSR+CEM 36.11 32.36 30.37

Table 1: Wrapping a pre-trained SR network with CEM.

Mean PSNR values over the BSD100 dataset [15], super-

resolved by factors 2, 3 and 4. Merely wrapping the network

with our CEM can only improve the reconstruction error, as

manifested by the slight PSNR increase in the 2nd row.

Thus, given the blur kernel2 h, we can calculate the fil-

ters appearing in (8) and hardcode their non-learned weights

into our CEM, which can wrap any SR network, as shown in

Fig. 6 (see Supplementary for padding details). Before pro-

ceeding to incorporate it in our scheme, we note the CEM is

beneficial for any SR method, in the following two aspects.

Reduced reconstruction error Merely wrapping a pre-

trained SR network with output x̂inc by our CEM, can only

decrease its reconstruction error w.r.t. the ground-truth x, as

‖x̂inc − x‖2 ≥ ‖PN (H)(x̂inc − x)‖2
(a)
= ‖PN (H)(x̂− x)‖2

(b)
= ‖x̂− x‖2. (9)

Here, (a) is due to (6), and (b) follows from (4), which

implies that ‖PN (H)⊥(x̂ − x)‖2 = 0 (as PN (H)⊥ x̂ =

HT (HHT )−1Hx = PN (H)⊥x). This is demonstrated in

Tab. (1), which reports PSNR values attained by the EDSR

network [14] with and without our CEM, for several differ-

ent SR scale factors.

Adopting to a non-default down-sampling kernel Deep

learning based SR methods are usually trained on LR im-

ages obtained by down-sampling HR images using a spe-

cific down-sampling kernel (usually the bicubic kernel).

This constitutes a major drawback, as their performance

significantly degrades when processing LR images corre-

sponding to different kernels, as is the case with most real-

istic images [18, 24]. This problem can be alleviated using

our CEM, that takes the down-sampling kernel as a param-

eter upon its assembly at test time. Thus, it can be used for

adopting a given network that was pre-trained using some

default kernel, to the kernel corresponding to the LR image.

Figure 7 demonstrates the advantage of this approach on a

real LR image, using the kernel estimation method of [2].

3. Editable SR Network

To achieve our principal goal of creating an explorable

super resolution network, we develop a new framework,

that comprises a GUI with a neural network backend (see

Fig. 5). Our SR network differs from existing SR meth-

ods in two core aspects. First, it is capable of producing a

2We default to the bicubic blur kernel when h is not given.
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Figure 7: Accounting for a different blur kernel at test

time. The CEM can be used to adopt any SR network to a

blur kernel other than the one it was trained on. We demon-

strate this on a real LR image. Here, ESRGAN [26], which

was trained with the bicubic kernel, produces blurry results.

However, wrapping it with our CEM, with the kernel esti-

mated by [2], results in a much sharper reconstruction. Cor-

responding kernels are visualized on each image.

wide variety of plausible and inherently consistent HR re-

constructions x̂, for any input LR image y. This is achieved

thanks to the CEM, which omits the need to use any re-

construction loss (e.g. L1 or VGG) for driving the outputs

close on average to the corresponding ground truth training

images. Such losses bias the outputs towards the average of

all possible explanations to the LR image, and are thus not

optimal for the purpose of exploration. Second, our network

incorporates a control input signal z, that allows traversing

this manifold of plausible images so as to achieve various

manipulation effects on the output x̂. Using our GUI, the

user can either tune z manually to achieve simple effects

(e.g. control the orientation and magnitude of gradients as

in Fig. 8) or use any of our automatic manipulation tools

that take as input e.g. user scribbles or some pattern to im-

print (see Figs. 2-4,10,12).

We use the same network architecture as ESRGAN [26],

but train it wrapped by the CEM, and by minimizing a loss

function comprising four terms,

LAdv + λRangeLRange + λStructLStruct + λMapLMap. (10)

Here, LAdv is an adversarial loss, which encourages the

network outputs to follow the statistics of natural images.

We specifically use a Wasserstein GAN loss with gradi-

ent penalty [6], and avoid using the relativistic discrimina-

tor [8] employed in ESRGAN, as it induces a sort of full-

reference supervision. The second loss term, LRange, pe-

nalizes for pixel values that exceed the valid range [0, 1],
and thus helps prevent model divergence. We use LRange =
1
N
‖x̂−clip[0,1]{x̂}‖1, whereN is the number of pixels. The

Diversity Percept. Reconst.

quality error

(σ) (NIQE) (RMSE)

ESRGAN 0 3.5± 0.9 17.3± 7.2
ESRGAN with z 3.6± 1.7 3.7± 0.8 17.5± 6.9

Ours 7.2± 3.4 3.7± 0.9 18.2± 7.4

Table 2: Quality and diversity of SR results. We report

diversity (standard deviation, higher is better), perceptual

quality (NIQE [19], lower is better) and RMSE (lower is

better), for 4× SR on the BSD100 test set [15]. Values are

measured over 50 different SR outputs per input image, pro-

duced by injecting 50 random, spatially uniform z inputs.

Note that our model, trained without any full-reference loss

terms, shows a significant advantage in terms of diversity,

while exhibiting similar perceptual quality. See Supplemen-

tary for more details about this experiment.

last two loss terms, LStruct and LMap, are associated with the

control signal z. We next elaborate on the control mecha-

nism and these two penalties.

3.1. Incorporating a Control Signal

As mentioned above, to enable editing the output image

x̂, we introduce a control signal z, which we feed to the

network in addition to the input image y. We define the

control signal as z ∈ R
w×h×c, where w × h are the dimen-

sions of the output image x̂ and c = 3, to allow intricate

editing abilities (see below). To prevent the network from

ignoring this additional signal, as reported for similar cases

in [7, 16], we follow the practice in [20] and concatenate z

to the input of each layer of the network, where layers with

smaller spatial dimensions are concatenated with a spatially

downscaled version of z. At test time, we use this signal to

traverse the space of plausible HR reconstructions. There-

fore, at train time, we would like to encourage the network

to associate different z inputs to different HR explanations.

To achieve this, we inject random z signals during training.

Incorporating this input signal into the original ESR-

GAN method already affects outputs diversity. This can

be seen in Tab. 2, which compares the vanilla ESRGAN

method (1st row) with its variant, augmented with z as de-

scribed above (2nd row), both trained for additional 6000
generator steps using the original ESRGAN loss. However,

we can obtain an even larger diversity. Specifically, recall

that as opposed to the original ESRGAN, in our loss we use

no reconstruction (full-reference) penalty that resists diver-

sity. The effect can be seen in the 3rd row of Tab. 2, which

corresponds to our model trained for the same number of

steps3 using only the LAdv and LRange loss terms. Note that

3Weights corresponding to z in the 2nd and 3rd rows’ models are ini-

tialized to 0, while all other weights are initialized with the pre-trained
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Edited Edited 
regionsregions

Pre-edited output

Strong
vertical gradientsWeak gradients Strong gradients
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Figure 8: Manipulating image gradients. A user can explore different perceptually plausible textures (e.g. the Mandrill’s

cheek fur), by manually adjusting the directions and magnitudes of image gradients using the control signal z.

all three models are on par in terms of perceptual quality.

Now that the output of our network strongly depends on

z, we move on to make this dependence easy to manipulate

by a user. To allow manual control, we want simple modi-

fications to z to lead to variations that are intuitive to grasp.

To allow optimization-based manipulations, we want to en-

sure that any plausible output image could be generated by

some z. These two requirements are encouraged by the last

two loss terms in (10), as we describe next.

Controlling image gradients with the LStruct loss To al-

low intuitive manual control, we encourage spatially uni-

form perturbations to z to affect the spatial derivatives of

the output image x̂. Figure 8 demonstrates how manipulat-

ing the gradients’ magnitudes and directions, can be used

to edit textures, like fur. We choose to associate the 3

channels of z with the 3 degrees of freedom of the struc-

ture tensor of x̂, which is the 2 × 2 matrix defined by

Sx̂ =
∫∫

(∇x̂(ξ, η))(∇x̂(ξ, η))T dξdη. We encode this link

into our network through the loss term LStruct, which pe-

nalizes for the difference between desired structure tensors

Sd, determined by a randomly sampled, spatially uniform z,

and the tensors corresponding to the actual network’s out-

puts, Sx̂ (see Supplementary for more details).

Facilitating optimization based editing via the LMap loss

Denoting our network output by x̂ = ψ(y, z), we would

like to guarantee that ψ can generate every plausible im-

age x̂ with some choice of z. To this end, we introduce

the loss term LMap = minz ‖ψ(y, z) − x‖1, which penal-

izes for differences between the real natural image x, and

its best possible approximation using some signal z. Within

each training step, we first solve the internal minimization

of LMap over z for 10 iterations, and then freeze this z for the

minimization of all loss terms in (10). Note that in contrast

to LStruct, which only involves spatially uniform z inputs,

the minimization over z in LMap exposes our network to

the entire z space during training, encouraging its mapping

onto the entire natural image manifold. Figure 9 illustrates

how incorporating the LMap loss term improves our model’s

ability to generate plausible patterns.

ESRGAN model from the 1st row.

LR    Imprint

Figure 9: Effect of LMap. Incorporating the LMap loss term

into our model’s training introduces spatially non-uniform

z inputs, and improves the model’s ability to cover the nat-

ural image manifold. We demonstrate this by comparing

a model trained with vs. without this term, in the task of

imprinting the digit ‘8’ on the license plate of Fig. 3.

3.2. Training details

We train our network using the 800 DIV2K training im-

ages [1]. We use the standard bicubic downsampling kernel,

both for producing LR training inputs and as h in our CEM

(Eq. (8)), and feed our network with 64× 64 input patches,

randomly cropped from these LR images. We initialize our

network weights with the pre-trained ESRGAN [26] model,

except for weights corresponding to input signal z, which

we initialize to zero. We minimize the loss in (10) with

λRange = 5000, λStruct = 1 and λMap = 100. We set the

Wasserstein GAN gradient penalty weight to λgp = 10. We

establish critic’s credibility before performing each genera-

tor step, by verifying that the critic correctly distinguishes

fake images from real ones for 10 consecutive batches. We

use a batch size of 48 and train for ∼ 80K steps.

4. Editing Tools

We incorporate our trained SR network described in

Sec. 3 as the backend engine of an editing GUI, that al-

lows manipulating the output SR image x̂ by properly shap-

ing the control signal z. Our GUI comprises several tools

that can be applied on selected regions of the image, which

we achieve by manipulating only the corresponding regions

of z (recall that the dimensions of z and x̂ are the same).

The most basic tool constitutes three knobs (top middle

in Fig. 5) that manually control the triple channeled z sig-

nal in a spatially uniform manner, so as to affect the im-

age structure tensor Sx̂ (Sec. 3.1). We make this tool user

intuitive by binding the knobs with the eigenvalue decom-

position of Sx̂, thus affecting image gradients. The user
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Our pre-edited SR

Manipulating variance

 

 
 

 

Adjusting periodicity

 

Propagating patch distribution

Figure 10: Editing using tools that optimize over z. Here we use our variance manipulation, periodicity, and patch dictio-

nary tools. Each optimizes over z space to achieve a different objective. See Sec. 4 for more details.

Imprinting eyes from Imprinting eyes from 
external imageexternal image

Brightness Brightness 
reductionreduction

Piecewise TV Piecewise TV 
minimizationminimization

ESRGANLow-res input Utilizing our editing tools Our edited result

Figure 11: Utilizing scribble editing tools. Our tools allow regaining small details and producing crisper and more realistic

images (compared to, e.g. ESRGAN [26]). Here we use the piecewise smoothness tool (TV minimization) to enhance edges

between teeth, and restore forehead wrinkles using our brightness reduction pen. We imprint the eye region from an online

available image of (brown-eyed) Mark Ruffalo to restore the crisp appearance of the blue eyes of Emmanuel Macron.

can control the orientation θ and magnitude λ1 of promi-

nent gradients, and the magnitude λ2 in the perpendicular

direction (see Fig. 8).

To allow a more diverse set of intricate editing opera-

tions, we also propose tools that optimize specific editing

objectives (e.g. increasing local image variance). These

tools invoke a gradient descent optimization process over z,

whose goal is to minimize the chosen objective. This is

analogous to traversing the manifold of perceptually plau-

sible valid SR images (captured by our network), while re-

maining consistent with the LR image (thanks to the CEM).

Our GUI recomputes x̂ after each edit in nearly real-

time, ranging from a couple of milliseconds for the basic

tools to 2-3 seconds for editing a 100 × 100 region using

the z optimization tools (with an NVIDIA GeForce 2080

GPU). We next briefly survey and demonstrate these tools,

and leave the detailed description of each objective to the

supplementary.

Variance manipulation This set of tools searches for a z

that decreases or increases the variance of pixel values. This

is demonstrated in Fig. 10 for yielding a smoother table map

and more textured trousers. A variant of this tool allows

locally magnifying or attenuating exiting patterns.

User scribble Our GUI incorporates a large set of tools

for imposing a graphical input by the user on the SR image.
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A user first scribbles on the current SR image and chooses

the desired color and line width. Our GUI then optimizes

over z, searching for the image x̂ that satisfies the imposed

input while lying on the learned manifold of valid percep-

tually plausible SR images. Figure 2 (1st editing operation)

demonstrates how we use line scribbles for creating the de-

sired shirt pattern. Variants of this tool (demonstrated in

Fig. 11) enable increasing or decreasing brightness, as well

as enforcing smoothness across a specific scribble mark, by

minimizing local TV.

Imprinting This tool enables a user to impose content

taken from an external image, or from a different region

within the same image. After selecting the desired region,

our GUI utilizes the CEM to combine the low frequency

content corresponding to y with the high frequency content

of the region to be imprinted. This results in a consistent im-

age region, but which may not necessarily be perceptually

plausible. We then invoke an optimization over z, which

attempts to drive x̂ close to this consistent region, while re-

maining on the natural image manifold. Example usages

are shown in Figs. 1 (right-most image), 3, 11 and 4, where

the tool is used for subtle shifting of image regions.

Desired dictionary of patches This tool manipulates the

edited region to comprise patches stemming from a desired

patch collection. A user first marks a source region contain-

ing desired patches. This region may be taken either from

the edited image or from an external image. Our GUI then

optimizes z to encourage the target edited region to com-

prise the same desired patches, where we use patches of

size 6 × 6. Figures 2 (2nd editing operation) and 10 (right)

show how we use this tool to propagate a desired local cloth

pattern (yellow region) to the entire garment. Variants of

this tool allow matching patches while ignoring their mean

value or variance, to allow disregarding color and pattern

magnitude differences between source and target patches.

Encouraging periodicity This tool enhances the periodic

nature of the image along one or two directions marked by

the user. The desired period length can be manually ad-

justed, as exemplified in Fig. 10 for the purpose of produc-

ing different stripe widths. Alternatively, a user can choose

to enhance the most prominent existing period length, auto-

matically estimated by our GUI.

Random diverse alternatives This tool offers an easy

way to explore the image manifold. When invoked, it op-

timizes z to simultaneously produce N different SR image

alternatives, by maximizing the L1 distance between them,

in pixel space. The user can then use each of the alternatives

(or sub-regions thereof) as a baseline for further editing. A

variant of this tool constraints the different alternatives to

remain close to the current SR image.

The wide applicability of our method and editing tools

is further demonstrated in Figs. 12 and 13 in two use cases.

Low-res inputs

Gray horse Young zebra

Spotless deer Spotted deer
Consistent SR reconstructions

Figure 12: More exploration examples. Using our frame-

work to explore possible SR images corresponding to dif-

ferent semantic contents, all consistent with the LR input.

Low-res inputs ESRGAN Our edited results

Figure 13: Correcting SR outputs. Our method can be

used to enhance SR results, relying on the user’s prior

knowledge (e.g. the appearance of buildings and Alphabet

characters). Please zoom-in to view subtle differences, and

refer to the Supplementary for the editing processes.

Figure 12 demonstrates our method’s exploration capabili-

ties, illustrating how utterly different semantic content can

be generated for the same LR input. Figure 13 shows how

our method’s editing capabilities can enhance SR outputs,

by relying on the user’s external knowledge. Please see

more editing process examples and results in Supplemen-

tary.

5. Conclusion

A low resolution image may correspond to many dif-

ferent HR images. However, existing SR methods gener-

ate only a single, arbitrarily chosen, reconstruction. In this

work, we introduced a framework for explorable super reso-

lution, which allows traversing the set of perceptually plau-

sible HR images that are consistent with a given LR image.

We illustrated how our approach is beneficial in many do-

mains, including in medicine, surveillance, and graphics.

Acknowledgment This research was supported by the Is-
rael Science Foundation (grant 852/17) and by the Technion
Ollendorff Minerva Center.

2723



References

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pages 126–135, 2017. 6

[2] Sefi Bell-Kligler, Assaf Shocher, and Michal Irani. Blind

super-resolution kernel estimation using an internal-gan.

arXiv preprint arXiv:1909.06581, 2019. 4, 5

[3] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya

Sutskever, and Pieter Abbeel. Infogan: Interpretable repre-

sentation learning by information maximizing generative ad-

versarial nets. In Advances in neural information processing

systems, pages 2172–2180, 2016. 3

[4] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In European conference on computer vi-

sion, pages 184–199. Springer, 2014. 1

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014. 1

[6] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Advances in neural information pro-

cessing systems, pages 5767–5777, 2017. 5

[7] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. arxiv, 2016. 5

[8] Alexia Jolicoeur-Martineau. The relativistic discriminator:

a key element missing from standard gan. arXiv preprint

arXiv:1807.00734, 2018. 5

[9] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4401–4410, 2019. 3

[10] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1646–1654, 2016. 1

[11] Idan Kligvasser, Tamar Rott Shaham, and Tomer Michaeli.

xunit: Learning a spatial activation function for efficient im-

age restoration. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2433–

2442, 2018. 1

[12] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-

Hsuan Yang. Fast and accurate image super-resolution with

deep laplacian pyramid networks. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2018. 1

[13] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4681–4690,

2017. 1, 3

[14] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition workshops,

pages 136–144, 2017. 1, 4

[15] David Martin, Charless Fowlkes, Doron Tal, Jitendra Malik,

et al. A database of human segmented natural images and its

application to evaluating segmentation algorithms and mea-

suring ecological statistics. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, 2001. 4, 5

[16] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error.

arXiv preprint arXiv:1511.05440, 2015. 5

[17] Tomer Michaeli and Yonina C. Eldar. Optimization tech-

niques in modern sampling theory. Cambridge, UK: Cam-

bridge Univ. Press, 2010. 3

[18] Tomer Michaeli and Michal Irani. Nonparametric blind

super-resolution. In Proceedings of the IEEE International

Conference on Computer Vision, pages 945–952, 2013. 4

[19] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Mak-

ing a completely blind image quality analyzer. IEEE Signal

Processing Letters, 20(3):209–212, 2012. 5

[20] Pablo Navarrete Michelini, Dan Zhu, and Hanwen Liu.

Multi–scale recursive and perception–distortion controllable

image super–resolution. In Proceedings of the European

Conference on Computer Vision Workshops, 2018. 5

[21] Guim Perarnau, Joost Van De Weijer, Bogdan Raducanu, and
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