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Abstract

The counting problem aims to estimate the number of ob-

jects in images. Due to large scale variation and labeling

deviations, it remains a challenging task. The static den-

sity map supervised learning framework is widely used in

existing methods, which uses the Gaussian kernel to gen-

erate a density map as the learning target and utilizes the

Euclidean distance to optimize the model. However, the

framework is intolerable to the labeling deviations and can

not reflect the scale variation. In this paper, we propose an

adaptive dilated convolution and a novel supervised learn-

ing framework named self-correction (SC) supervision. In

the supervision level, the SC supervision utilizes the out-

puts of the model to iteratively correct the annotations and

employs the SC loss to simultaneously optimize the model

from both the whole and the individuals. In the feature

level, the proposed adaptive dilated convolution predicts a

continuous value as the specific dilation rate for each loca-

tion, which adapts the scale variation better than a discrete

and static dilation rate. Extensive experiments illustrate

that our approach has achieved a consistent improvement

on four challenging benchmarks. Especially, our approach

achieves better performance than the state-of-the-art meth-

ods on all benchmark datasets.

1. Introduction

The counting task is an important topic in computer

vision. There are many practical applications, such as

traffic management and congestion estimation under video

surveillance. In recent years, the methods using convo-

lutional neural network (CNN) have achieved remarkable

progress. However, this task remains challenging, which is

mainly faced with two challenges: how to effectively super-

vise the learning process and address the large scale varia-

tion problem?

Firstly, compared to the bounding-box annotation, the

dotted annotation is less labour-intensive, which is widely
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Figure 1. Two challenges for the counting problem. a) The location

of the dotted annotation (yellow points) is inconsistent, whether it

is a vehicle or a person. b) There is large scale variation in the

same scene and different scenes.

used in most of the counting datasets[11, 50, 15, 14, 43].

However, as shown in Fig. 1 (a), the dotted annotations

are not consistent on different targets because of subjec-

tive deviation. Most of the existing state-of-the-art methods

[48, 20, 23, 37, 26, 30] use Gaussian distribution to generate

a density map as the learning target. The model is optimized

by comparing the Euclidean (L2) distance between the tar-

get density map and the model estimation. However, there

are three limitations in this supervised method: 1) The la-

beling deviation makes the target density map not accurate.

2) The variance of the Gaussian density map does not match

the scale of the target. 3) L2 loss is sensitive to the devia-

tion of position and the change of variance. As a result,

the model cannot learn consistent mapping relationships be-

tween density maps and features, which greatly limits the

upper bound of the performance. Recently, some works

[51, 36, 39, 22] have been proposed to alleviate the inconsis-

tency, including introducing additional loss function (e.g.,

adversarial loss [34] and structural similarity (SSIM) loss

[2]) and fusing the density maps of different variances [42].

These methods mainly focus on the loss function while ig-

noring the deviation of the target density map.

Secondly, as shown in Fig. 1 (b), there is large scale vari-

ation in different scenes. Even in the same scene, the scale

still changes dramatically due to perspective phenomenon.
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In order to address large scale variation problem, some pre-

vious methods use multi-column network[50, 33, 17, 39, 40,

41], stacked multi-branch blocks [2, 25], or multi-dilated

decoders [12, 24] to extract features with different receptive

fields. Other methods [29, 13, 35, 45] apply different reso-

lution features to estimate the density maps, and then fuse

the density maps with the attention maps [13] or perspec-

tive maps [35, 8] to obtain the final result. In fact, the value

of the scale is continuous, but the aforementioned methods

only consider several discrete scales or receptive fields, and

there is no way to adapt to a wider range of continuous scale

variation. At the same time, extracting multi-scale features

will bring more computation load.

Towards the aforementioned issues, we propose a novel

supervised learning framework. The framework utilizes

the model estimation to correct the annotation with an

expectation-maximization (EM) manner, which effectively

alleviates the effect of labeling deviations. We consider the

density map as a Gaussian mixture model, which consists of

K two-dimensional Gaussian distributions, where K is the

number of objects in the image. In this setting, the dotted

annotation is used to initialize the Gaussian mixture model.

The expectation (E) step works as correcting and estimat-

ing the responsibility between each position and Gaussian

distribution. Then, the maximization (M) step functions

work as updating the parameters (e.g., means, the covari-

ances, and the mixing coefficients) of the Gaussian mixture

by maximizing the complete data likelihood. The E step

and the M step execute alternately. Instead of using L2 loss

to optimize the model, the self-correction (SC) loss is pro-

posed to optimize both the whole and individuals. For the

whole, we generate a new density map with the re-estimated

parameters as the GT. For the individuals, we introduce the

supervision to the mixing coefficient of each Gaussian.

Furthermore, the scale variation is continuous, which

means that the continuous receptive field matches the target

scale better than the discrete. To distinguish the different re-

gions, the specific receptive fields at different locations are

more effective than the same. Based on the analysis above,

we have designed an adaptive dilated convolution module.

Instead of static and discrete dilation rate, each location has

a specific dilation rate to match the scale variation. More-

over, the range of dilation is continuous and it is learned

from the preceding feature maps, which costs less compu-

tation load than extracting multi-scale feature.

• We propose a novel supervised learning framework,

which effectively utilizes results of model learning to

progressively correct the labeling deviations. Besides,

the self-correction loss is proposed to simultaneously

optimize the model from both the whole and the indi-

viduals perspective.

• We propose an adaptive dilated convolution, which

learns a specific continuous dilation rate to effectively

match the scale variation at different locations. More-

over, it gains better performance than multi-scale fea-

tures fusion or multi-column networks with less com-

putation load.

• Extensive experiments illustrate that our approach has

achieved a consistent improvement on four challeng-

ing benchmarks. Especially, our approach achieves

better performance than the state-of-the-art methods

on all benchmark datasets.

2. Related Works

As a crucial topic in computer vision, the counting prob-

lem has been researched for many years. The early methods

[19, 52, 10, 1, 9, 21] regard it as a detection problem, but it is

difficult to detect all targets in congested areas. To improve

the accuracy of counting in some extremely dense cases,

the methods [3, 4, 5, 32] of direct regression are proposed.

Recently, CNN-based methods have achieved remarkable

progress. These methods mainly concentrate on solving

two challenging problems: large scale variation and lack

of effective supervision. We review related works about the

counting problem from the aforementioned two aspects.

Methods of alleviating large scale variation. One way

to cope with large scale variation is to obtain more rich fea-

ture representation. MCNN [50] designs a multi-column

convolutional neural network, in which different branches

use different kernel sizes to control the size of the recep-

tive fields. Switch-CNN [33] introduces a switch classifier

is trained to relay the crowd scene patch to the best branch.

SANet [2] applies stacked multi-branch blocks to extract

features with different receptive fields. Using a single CNN,

CSRNet [20] employs dilated convolution to expand the re-

ceptive field, which improves accuracy and proves the ef-

fectiveness of dilated convolution. DADNet [12] applies

multi-dilated convolution to capture rich spatial context and

utilizes deformable convolution to generate a high-quality

density map. Another way is to effectively combine fea-

tures of different resolutions. Hydra-CNN [29] uses a pyra-

mid of image patches extracted at multiple scales to perform

the final density prediction. With only one scale, SPN [44]

extracts multi-scale features from different layers by the

scale pyramid module. SAAN [28] employs the attention

mechanism to fuse the density maps estimated by multi-

resolution features. PACNN [35] introduces the additional

branch to predict the perspective map, which is used to fuse

the multi-resolution density maps. Obviously, these meth-

ods use discrete receptive fields, which limits their ability

to better adapt to continuous scale changes. Moreover, ex-

tracting multi-scale features adds more computation load.

Methods of effective supervison. The mainstream

state-of-the-art approaches are based on density map super-
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Figure 2. Overview of our counting framework. The input image is first fed into the backbone network to obtain feature representation.

The decoder consists of six adaptive dilated convolutions and outputs the estimated density map. Each adaptive dilated convolution

estimates a specific dilation rate for each location over the input feature. Then, the sampled locations are determined with the dilation

rates and the feature is sampled by bilinear interpolation. The current network estimation is used to correct the annotation with an EM-like

manner. Furthermore, the SC loss simultaneously optimizes the model from both the whole and the individuals perspective.

vision. Lempitsky et al. [18] start to use Gaussian distribu-

tion to generate a density map as the learning target, which

is widely adopted by subsequent methods [15, 23, 48, 37].

L2 loss is commonly used in these CNN based methods.

However, this kind of supervised learning framework is in-

tolerable to the inconsistency mapping relationships caused

by labeling deviation between density maps and features.

Some methods [49, 48, 15, 51, 36, 39] introduce the super-

vision of additional tasks (e.g., depth maps, segmentation

graphs, quantity estimation) to mitigate the effects of incon-

sistency. SANet [2] adds the local pattern consistency loss

to reduce the sensitivity of L2 loss. CODA [34] introduces

an adversarial loss to attenuate the blurry effects of den-

sity map. ADMG [42] uses a learned refinement network to

fuse the density maps of different variances as a new density

map. DSSINet [22] utilizes a dilated multi-scale structural

similarity loss to learn the consistency within regions of var-

ious sizes. However, most of these methods [2, 34, 47] pri-

marily focus on the design of the loss function and employ

hand-craft variance and scale settings.

3. Methodology

We propose a framework for objects counting, which is

shown in Fig. 2. It consists of the adaptive dilated convolu-

tion network and the self-correction supervision. In this sec-

tion, firstly, we revisit the conventional target density map

from the Gaussian Mixture Model (GMM). Then we will

present a novel supervised learning framework, which uti-

lizes the network estimation to correct the annotation with

an expectation-maximization manner. Furthermore, we de-

scribe the architecture and the operation details of the adap-

tive dilated convolution.

3.1. Self-Correction Supervision

Gaussian density maps are widely used as the learning

target in CNN-based methods. It is formulated as:

Dgt(xn) =

KX

k=1

N (xn |µk,Σk), (1)

where D represents the density map of size H ×W . Dest

and Dgt denote the estimated and target density maps. xn

denotes the nth two-dimensional location (hn, wn) in the

image, and X represents the 2D location map of size 2×N .

N = H × W is the number of locations, and K is the

number of objects in the image. N (x |µk,Σk) denotes the

kth 2D Gaussian distribution. We use µk to indicate the

kth dotted annotation. Σk represents the variance of the

kth Gaussian. Commonly, the variance is pre-defined or

calculated by the K-means algorithm [50, 15].

Considering the density map divided by K, it can be re-

gard as a Gaussian Mixture Model:

p(xn) =
Dgt(xn)

K
=

KX

k=1

πkN (xn |µk,Σk)

s.t.
P

K
k=1 πk=1,0≤πk≤1

. (2)

The Gaussian mixture model has K hidden variables and
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Figure 3. Comparison of different supervision methods. Here are four common situations in density map estimation (jitter, reshuffle,

missing and the change of Gaussian kernel). In the top row, we visualize the model estimation. In the second row, the initial GT and the

corrected GT are shown. The residual between the GT and model estimation is compared in the third row. In the bottom, we compare the

sum of the per-pixel L1 distance without self-correction, the absolute difference of overall counts, and the SC loss. The SC supervision has

a unique property that it tolerates the local bias but reacts strongly to the change of the number of objects.

the mixing coefficient πk = 1
K

, and the dotted annotation

µk is used as the mean. Due to the subjective bias and the

scale matching problem mentioned in section 1, this Gaus-

sian mixture model is not an optimal probability distribu-

tion. As the model learns, the model predicts more accu-

rate density maps, but inaccurate annotations limit the up-

per bound of the performance. Benefitting from features of

images, the density map Dest estimated by the current net-

work could be better than annotation or at least yiled com-

plementary information, in terms of the consistency of the

response locations and the matching of the response range

to the target scale to some extent.

This fact inspires us to utilize the current network esti-

mation Dest to correct the annotation Dgt for generating a

more reliable density map for training network in the next

time. We propose an EM-like iterative algorithm for this

goal. Specially, the annotation is used as the initial param-

eters of GMM. In the E step, we introduce a responsibility

estimation setup, in which the responsibility between each

position and each latent distribution are estimated by the

current parameters and corrected by the network estimation.

In the M step, the parameters of GMM is re-estimated with

the current responsibility by maximizing the complete data

likelihood. The E step and the M step execute alternately.

At each training iteration, the corrected GT will be regener-

ated. Furthermore, the supervision to the estimated mixing

coefficient is introduced to balance the individuals.

Overall, the proposed SC supervision has three key parts,

including responsibility estimation, likelihood maximiza-

tion and self-correction (SC) loss. To simplify the symbols,

we reshape Dest into 1×N . It is noteworthy that the prob-

ability is non-negative. So we add a ReLU layer behind

the output layer. Firstly, the probability matrix Z of size

K ×H ×W is initialized, which represents the conditional

probability of xn belonging to the kth Gaussian (object).

The kth matrix of size H × W in Z is initialized with a

Gaussian distribution with the mean of the dotted annota-

tion and pre-defined variance. Similar with D, we reshape

Z into K×N . Here, we use 0.5 as the initialization value of

the variance. As the iteration proceeds, Zt is re-generated

with new Gaussian distributions based on re-estimated pa-

rameters (e.g., µ(t−1), Σ(t−1) ).

Responsibility estimation. Responsibility estimation

works as the E step in the EM algorithm. From the view

of dotted annotations, we use the posterior probability to

evaluate the responsibility of the nth position and the kth
Gaussian distribution. It is formulated as:

Γ
(t)
kn =

Z
(t−1)
knPk

j=1 Z
(t−1)
kn

, (3)

where t denotes the tth iteration, and Zkn denotes the value

of Z at the position of (k, n). However, the aforementioned

responsibility can not reflect the actual data distribution.

The corrected responsibility is given by:

R
(t)
kn = Γ

(t)
kn ×Dest(xn). (4)

Finally, using Eq. (4), the responsibility matrix is obtained

as R of size K ×N .

Likelihood maximization. Likelihood maximization

works as the M step of EM algorithm. The parameters are

re-estimated with the responsibility matrix:

µ
(t)
k =

1

N
(t)
k

R
(t)
k ×X

T , (5)

Σ
(t)
k =

1

N
(t)
k

R
(t)
k × ((X− µ

(t)
k ) · (X− µ

(t)
k )))T , (6)

π
(t)
k =

N
(t)
kPN

n=1 Dest(xn)
, (7)
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where Nk =
PN

n=1 R
(t)
kn. Specially, in the counting prob-

lem, we can only determine the number of objects in the

image and the fact that the probability between each target

are same, which means the dimension of the hidden vari-

able is K, and πk = 1
K

. Therefore, we only update the

mean and variance, and fix the πk as 1
K

. In addition, if

we consider the limit Σ → 0, the log-likelihood function

will also go to infinity when K > 1. It will cause a patho-

logical solution, so the constraint is necessary. Here, we

introduce the constraint 0.5 ≤ Σ ≤ 5. As responsibility es-

timation and likelihood maximization executing alternately,

D
(t)
gt becomes more compatible and reasonable than the ini-

tial density map.

Self-correction loss. In general, a more reasonable den-

sity map is obtained through online updating. Most methods

use the Euclidean (L2) distance to optimize the model:

LL2 =

NX

n=1

|Dest(xn)−Dgt(xn)|
2. (8)

Here, we use the L1 distance of pixel-level subregion to

supervise the density map:

Ldensity map =
1

N

NX

n=1

|Dest(xn)−D
(t)
gt (xn)|. (9)

However, the mixing coefficients π are not learned in the

aforementioned process (Eq. (5) and (6)) since we fix it all

the time. From another point of view,
PN

n=1 Γ
(t)
kn

×Dest(xn)
P

N
n=1 Dest(xn)

,

the mixing coefficients represent the proportions of the tar-

gets assigned to the whole distribution. As mentioned

above, the proportion of each target should be same, as well

as πk = 1
K

. But the re-estimated πk is not a constant 1
K

in

the Eq. (7). Besides, the sum of estimated map is not ac-

curate. Here, we set eπk =
PN

n=1 Rkn(xn)P
N
n=1 Dgt(xn)

= 1
K

PN

n=1 Rkn.

To balance the individuals, we introduce a loss function as:

Lcoefficient =

KX

k=1

|eπ(t)
k −

1

K
|. (10)

Finally, the proposed SC loss is formulated as:

L = λ1Ldensity map + λ2Lcoefficient. (11)

Here, we simply set λ1 = λ2 = 1. Overall, the proposed SC

supervision has a number of desirable properties. Firstly,

it tolerates the labeling deviation. Dynamically updating

the target density map corrects some labeling deviation and

helps the model to learn the consistent feature representa-

tion. Secondly, it is robust to scale variation. The response

area reflects the scale feature of images, and the variance

is iteratively adjusted to adapt the response area. Thirdly,

it is sensitive to the change of the number of objects. The

fluctuation of the mixing coefficients effectively reflect the

missed and false detection. These properties are illustrated

in Fig. 3.

3.2. Adaptive Dilated Convolution

In order to address large scale variation, many network

structures with rich receptive fields have been proposed.

There is no doubt that a reasonable receptive field plays an

important role in the counting problem. Here, we introduce

two designs to the proposed adaptive dilated convolution.

1) From the aspect of scale variation, we use a continuous

range of receptive fields to match the continuous scale vari-

ation. 2) To learn specific awareness, a specific receptive

field is learned for each location.

In detail, a standard 2D convolution with the kernel 3×3
uses a regular grid to sample the input feature map, the grid

G is defined as:

G = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)}. (12)

The output feature Fo(xn) is calculated as:

Fo(xn) =
X

∆xi∈G

w(∆xi)Fi(xn +∆xi × d), (13)

where d represents the static dilation rate. w denotes the

parameters of the convolution.

Commonly, the dilation rate d is a pre-set integer value

(e.g.,1,2 and 3) and static. In adaptive dilated convolution,

the dilation is adjusted with ed, which is dramatic. Then, Eq.

(13) becomes

Fo(xn) =
X

∆xi∈G

w(∆xi)Fi(xn +∆xi × edn). (14)

For the nth location, the dilation rate is defined as edn, which

is typically fractional. The value of Fi(x + ∆xi × edn) is

computed by bilinear interpolation.

As shown in the red box of Fig. 2, through a standard

convolutional layer with the kernel size 3× 3 and dilation 1

over the same input feature map, the specific dilations ed are

estimated. Particularly, we add a ReLU layer to guarantee

the dilations are no-negative. The output dilation maps have

the same spatial resolution with the input feature maps. The

channel dimension becomes 1. The gradients of the dila-

tions are back-propagated through the bilinear operations.

Why is deformable convolution not used here? The de-

formable convolution [7] introduces unsymmetrical offsets

for every position in the sampling grid, which causes the

extracted feature has spatial deviations. In the task of object

detection, the estimated boxes are corrected by regression

to alleviate the deviations. However, the counting problem

is position-sensitive task, in which the density and feature

of each location need strong consistency. The feature with
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Layer Size Type

1 3× 3× 512 adconv. + bn + relu
2 3× 3× 512 adconv. + bn + relu
3 3× 3× 512 adconv. + bn + relu
4 3× 3× 256 adconv. + bn + relu
5 3× 3× 128 adconv. + bn + relu
6 3× 3× 64 adconv. + bn + relu
7 1× 1× 1 adconv. + relu

Table 1. The architecture of the decoder of ADNet. The adaptive

dilated convolution is represented as “adconv.”.

spatial deviations will lead to wrongful learning, so adap-

tive dilated convolution is more reasonable than deformable

convolution in the counting problem. Moreover, Compared

with predicting offsets for every kernel weight, only pre-

dicting one value as the dilation rate is more lightweight.

4. Experiments

4.1. Implementation Details

Network structure. The first ten convolutional layers of

VGG16 bn [38, 16] (pretrained on ImageNet [31]) are used

as our backbone. The decoder structure is shown in Table

1. The stochastic gradient descent optimizer with an initial

learning rate of 0.005 is used to update the parameters, and

the learning rate is decayed by gamma 0.2 once the number

of epoch reaches one of the milestones. ADNet denotes our

adaptive dilated network with the conventional supervision.

ADSCNet represents our adaptive dilated network with the

SC supervision.

Training details. We augment the training data using

horizontal flipping, random cropping and resizing. Without

upsampling, the size of the density map is 1
8 of the original

image, and the batch size of each iteration is 32. Specially,

to get a better initialization model, we pre-train our model

with conventional L2 supervision method for 20 epochs. In

the SC iterative process, the iterations is set to 2, and we

set the initial variance of each Gaussian to 0.5 at the output

size.
Evaluation details. The mean absolute error (MAE) and

the root mean squared error (MSE) is commonly used as
evaluation metrics, which are defined as follows:

MAE =
1

M

M
X

i=1

|Cest
i −C

gt

i |,MSE =

v

u

u

t

1

M

N
X

i=1

(Cest
i − C

gt

i )2,

(15)

where M is the number of test images. Cest
i and C

gt
i are

the estimated and labeling count number of the ith image.

The lower MAE and MSE, the better performance.

Strong baseline. Due to the small datasets and dramatic

scene changes, many state-of-the-art methods [20, 25] still

train the model with batch size 1, which is time-consuming.

As illustrated in Fig. 4, the performance of CSRNet [20]

ADNet 1 2 3 4

MAE (↓) 61.3 56.2 55.4 57.6 58.3
MSE (↓) 103.9 94.8 97.7 98.7 101.3

Table 2. Performances of models with the different iteration num-

ber on the ShanghaiTechA.

0 10 20 30 40 50 60

64

68

72

76

M
A
E

Batch size

 CSRNet  CSRNet*  Our Baseline

Figure 4. The effect of batch size and batch normalization layer.

declines with the batch size increasing on ShanghaiTechA

with 400 training images, but the CSRNet* can achieve an

effective boost as the batch size increases after we introduce

the batch normalization layers and the data augmentation

(random cropping and resizing). Therefore, our baseline

uses VGG16 bn [38, 16] as the backbone and the same de-

coder with CSRNet* but dilation as 1. In particular, our

baseline achieves MAE of 66.5 on ShanghaiTech A, which

outperforms the best performance [2] in 2018.

4.2. Ablation Studies

4.2.1 Self-Correction Supervision

Iteration Number. As illustrated in Table 2, when SC su-

pervision is introduced, MAE has achieved a significant de-

cline. With the increase of the iteration number, MAE first

declines and then increases. It gets the best performance

when the iteration number reaches 2. Besides, the overall

fluctuations are not very large. With the increase of the it-

eration number, the generated density map will over-fit the

estimated result. Especially, the variation σ will be too large

which will exceed the target scale. Then the interference

from background information is introduced. So an appro-

priate iteration number 2 is used in our experiment.

Robustness to annotation error. As mentioned in sec-

tion 1, subjective label deviation is a very common phe-

nomenon in the dotted annotation. In order to further eval-

uate the robustness of our method to label deviation. We

further introduce uniform random noise to the original la-

beling results. In Fig. 6, as the proportion of noised anno-

tations increases, the MAE of SC supervision is not signif-

icantly affected, but the MAE of the conventional supervi-

sion method continuously declines. It proves the robustness

of SC supervision to the annotation errors.

Expansion capability. In order to verify the expansion

capability of the proposed method, we introduce our SC su-

pervision to boost MCNN, CSRNet and our VGG Baseline.
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(1) Input image (2) Conventional supervision (3) Self-Correction supervision (4) Dilation map

Figure 5. Visualization of estimated density maps and dilation maps. Compared with the baseline, the results of SC supervision have

consistent response locations (the upper left contours of the head) and uniform response intensity for each person whether in dense or

sparse regions. From sparse regions to dense regions, the estimated dilation has obvious decline in (4).

0.0 0.2 0.4 0.6 0.8 1.0

56

60

64

M
A
E

The percent of random noise

 Baseline    EM supervison

Figure 6. Robustness evaluations to annotation error.

Baseline Baseline+SC
Methods MAE (↓) MSE (↓) MAE (↓) MSE (↓)

MCNN* 108.2 167.5 101.5 152.4
CSRNet* 64.2 100.6 58.7 98.9
VGG 66.5 106.9 60.7 100.6

Table 3. The effect of SC supervision on three different methods on

the ShanghaiTechA.

To exclude interference from other factors, we use the same

experimental environment and introduce the normalization

layer to reimplement MCNN (denoted as MCNN*), CSR-

Net (denoted as CSRNet*). As shown in Table 3, our SC su-

pervision boosts all three baselines with consistent improve-

ments. They gain relative MAE improvements of 6.19%,

8.57%, 8.72%, which verifies the effectiveness of our SC

supervision method.

Visualization of the estimated density maps. We vi-

sualize the density maps with different supervision meth-

ods in Fig. 5. Firstly, compared with the traditional su-

pervision method, the response positions of SC supervision

are more consistent, which mainly concentrate on the up-

per left contours of the head. It means that the upper left

contours of the head is an easily discernible annotation for

crowd counting. The response positions of the conventional

results are more random (e.g., face, eyes, or head). This

shows that SC supervision enables the model to correct the

human annotations itself. Secondly, in estimated density

maps of the conventional method, the dense-crowd regions

are usually underestimated, while sparse-crowd regions are

usually overestimated. But the results of SC supervision

have uniform response intensity whether in dense-crowd or

sparse-crowd regions. It means that the SC loss effectively

balances the proportion of the individuals. Thirdly, the den-

sity map has different response ranges for different objects,

which reflects the scale variation.

4.2.2 Adaptive Dilated Convolution

Effect of dilation rate. In this section, we evaluate the ef-

fectiveness of adaptive dilated convolution. For the pur-

pose of comparison, we train multiple variants of base-

line. “Dilation-m” indicates the baseline has the static di-

lation rate m of decoder. “Adaptive-Dila.” denotes that

the adaptive dilated convolution is introduced. The multi-

branch decoder with dilation rates (1, 3, 5) is given as

“Multi-Dila.(1,3,5)”, and the DADNet [12] is a multi-

dilated method. “Deformable-Dila.” indicates that the de-

formable convolution is introduced into the decoder. As il-

lustrated in Table 5, the size of the receptive field influences

the performance greatly. The model with dilation 2 achieves

the best performance among single static dilated networks.

The concatenation of multiple dilated features has a slight

improvement but brings heavy computation load. Our AD-

Net only replaces the dilated convolution in CSRNet [20]
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UCF QNRF ShanghaiTechA ShanghaiTech B UCF CC 50 TRANCOS
Methods MAE(↓)MSE(↓) MAE(↓)MSE(↓) MAE(↓)MSE(↓) MAE(↓)MSE(↓) MAE(↓)MSE(↓)

MCNN(2016) [50] 277 426 110.2 173.2 26.4 41.3 377.6 509.1 - -
Switch-CNN(2017)[50] 228 445 90.4 135.0 21.6 33.4 318.1 439.2 - -
ACSCP(2018) [34] - - 75.7 102.7 17.2 27.4 291.0 404.6 - -
CSRNet(2018) [20] - - 68.2 115.0 10.6 16.0 266.1 397.5 3.56 -
SANet(2018) [2] - - 67.0 104.5 8.4 13.6 258.4 334.9 - -
CAN(2019) [25] 107 183 62.3 100.0 7.8 12.2 212.2 243.7 - -
DSSINet(2019)[22] 99.1 159.2 60.6 96.0 6.9 10.3 216.9 302.4 - -
BL(2019) [27] 88.7 154.8 62.8 101.8 7.7 12.7 229.3 308.2 - -
SPN(2019)[44] - - 61.7 99.5 9.4 14.4 259.2 335.9 3.35 -
SPANet+SANet(2019) [6] - - 59.4 92.5 6.5 9.9 232.6 311.7 - -
PGCNet(2019) [46] - - 57.0 86.0 8.8 13.7 - - - -

Baseline 99.7 161.3 66.5 106.9 8.1 12.5 273.5 357.7 3.21 4.52
Our ADNet 90.1 147.1 61.3 103.9 7.6 12.1 245.4 327.3 2.99 4.28
Our ADSCNet 71.3 132.5 55.4 97.7 6.4 11.3 198.4 267.3 2.60 3.89

Table 4. Comparisons with State-of-the-art methods on four datatsets.

Methods MAE(↓) MSE(↓)

Dilation-1 66.5 106.9
Dilation-2 64.2 100.6
Dilation-3 65.7 100.5
Multi-Dila.(1,3,5) 63.6 98.8
DADNet [12] 64.2 99.9
Deformable-Dila. 62.6 97.0
Adaptive-Dila. 61.3 103.9

Table 5. The effect of different dilation rates on the Shang-
haiTechA.

with adaptive dilated convolution and adds BN layer. The

efficiency of the adaptive dilated convolution is between di-

lated convolution and deformable convolution. Our ADNet

improves CSRNet [20] a lot with a small extra computa-

tional burden.

Visualization of the dilation maps. As illustrated in

Fig. 5, large-scale targets and large-area backgrounds

have larger receptive fields, while small-scale targets have

smaller receptive fields. In particular, from the large-scale

target center to the edge, the value of the dilation has a con-

secutive from high to low variation, which effectively re-

flects the scale variation. For the background, a large recep-

tive field is necessary to effectively distinguish it. However,

it is difficult for the static dilated network to address the

scale variation problem and distinguish the background.

4.3. Comparisons with State-of-the-art

We evaluate our method on four datasets, including

crowd datasets ShangHaiTech [50] , UCF CC 50 [14]

,UCF QNRF [43] and vehicle dataset TRANCOS [11]. The

ShanghaiTech crowd counting dataset consists of two parts:

PartA and PartB. PartA is more congested than PartB.

UCF CC 50 is a tiny crowd counting dataset with only 50

images, but it has extremely congested scenes with heavy

background noise. The UCF QNRF dataset is a large and

high-resolution crowd counting dataset with 1.25 million

head annotations. As an extension, TRANCOS is a vehi-

cle counting dataset with various perspectives.

Table 4 reports the results of four challenging datasets.

The proposed method achieves the consistent improve-

ments. Furthermore, it performs better than existing state-

of-the-art methods on all the four benchmark datasets. On

UCF QNRF, ADNet and ADSCNet gain relative MAE im-

provements of 9.6%, 28.5%. The EM supervision is benefit

to the high-resolution images. On ShanghaiTech dataset,

ADNet and ADSCNet improve the Baseline with rela-

tive MAE improvements of 7.8%, 16.7% on part A, and

6.2%,21.0% on part B. Since the labeling deviation in the

sparse scenes is more serious, ADSCNet gets more im-

provement in the sparse scenes than the crowd. In addi-

tion, the adaptive dilated convolution bring similar improve-

ment both the sparse and crowd scenes. ADNet and AD-

SCNet improve the Baseline with relative MAE improve-

ments of 10.3%, 27.5% on UCF CC 50, and 6.85%, 19.0%

on TRANCOS, which indicates that our method has expan-

sion capability to more congested scenes and other objects

counting task.

5. Conclusion

In this paper, we present a novel supervised learning

framework for the counting problem. It utilizes the model

estimation to iteratively correct the annotation and intro-

duces the SC loss to supervise the whole and individuals,

which could be integrated into all CNN-based methods. To

adapt the large scale variation, the adaptive dilated convo-

lution is proposed, which learns a dynamic and continuous

dilation rate for each location. Experiments on four datasets

demonstrate that it significantly improve the performance

of the baseline. Furthermore, the estimated density map

shows the consistent response position and uniform inten-

sity, which illustrates that using the model estimation to

correct the annotation is an efficient way to obtain a suit-

able annotation for network learning.
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