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Abstract

We present a method for 3D face reconstruction from

multi-view images with different expressions. We formulate

this problem from the perspective of non-rigid multi-view

stereo (NRMVS). Unlike previous learning-based methods,

which often regress the face shape directly, our method

optimizes the 3D face shape by explicitly enforcing multi-

view appearance consistency, which is known to be effec-

tive in recovering shape details according to conventional

multi-view stereo methods. Furthermore, by estimating face

shape through optimization based on multi-view consis-

tency, our method can potentially have better generalization

to unseen data. However, this optimization is challenging

since each input image has a different expression. We fa-

cilitate it with a CNN network that learns to regularize the

non-rigid 3D face according to the input image and pre-

liminary optimization results. Extensive experiments show

that our method achieves the state-of-the-art performance

on various datasets and generalizes well to in-the-wild data.

1. Introduction

3D face reconstruction from images has been exten-

sively studied in computer vision and graphics due to its

wide range of applications in face recognition, entertain-

ment, and medical analysis. Multi-view approaches have

been one of the typical choices for high-end products of

face reconstruction. With the images captured under well

calibrated multi-view systems like camera arrays, faithful

3D geometry can be recovered with algorithms leverag-

ing multi-view geometric constraints [5, 10]. However, this

class of methods heavily rely on synchronized multi-view

data which could be expensive, or sometimes even impos-

sible, to acquire due to either the bulky equipment setup

or the static face assumption. This drawback severely lim-

its the possible application realms, especially in daily en-

tertainment and communication. To handle this limitation,

non-rigid multi-view approaches, i.e., Non-Rigid Structure-

from-Motion (NRSfM), are proposed to leverage multi-

view geometry constraints for reconstructing deformable

Inputs Optimization

Figure 1: We present Deep Facial Non-Rigid Multi-View

Stereo (DFNRMVS) to recover high-quality 3D models

from multiple images of dynamic faces through multi-view

optimization. From left to right are input images, initial 3D

models, and 3D models after three-level optimization. Our

DFNRMVS can gradually improves 3D models.

subjects, e.g., faces with expression changes. However, the

majority of works in this category only deal with sparse fea-

ture points [15, 31, 65]. Recently, dense approaches have

been proposed [22, 33, 34], but usually contain complex

modeling of geometry and rarely utilize data-driven priors.

With recent progress on deep learning, many face recon-

struction methods are proposed to directly learn the image-

to-parameter or image-to-geometry mapping purely from

training data (i.e. regression), which makes their models

data hungry. As a result, they normally resort to synthetic

data [42], pre-computed 3DMM fitting [56, 64], or self-

supervised learning [25, 49], which harms either the gen-

eralization or the reconstruction accuracy.

In this paper, we introduce the Deep Facial Non-Rigid

Multi-View Stereo (DFNRMVS), which is the first end-to-

end trainable network learning non-rigid multi-view stereo

reconstruction for faces. This is achieved by first for-
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mulating the dynamic face reconstruction task as a Non-

Rigid Multi-View Stereo (NRMVS) optimization, which

optimizes the 3D face shape by explicitly enforcing multi-

view appearance consistency. Then, deep learning com-

ponents are injected into this optimization pipeline to al-

leviate the problem difficulty with data-driven priors. Dif-

ferent from all previous NRSfM as well as learning-based

face reconstruction methods, our model learns the process

of parameter optimization explicitly in the network. It not

only reduces the burden of the network and leads to better

reconstructions, but also increases the generalization abil-

ity of our model, since the optimization brings in the do-

main knowledge of multi-view geometry. As a result, our

model can be trained on limited but informative 3D scans to

boost the performance while generalizing well to different

3D scan datasets and even to in-the-wild images.

To better regularize the ill-posed non-rigid setup as well

as deal with the limited representation power of 3DMM, we

also propose to learn an adaptive face model, which gener-

ates additive shape bases according to input images and pre-

liminary optimization results. Comparing to generic face

model, this additional information helps to customize the

solution space case-by-case, making it more suitable for the

optimization to produce better reconstructions. Our DFN-

RMVS achieves the state-of-the-art performance on vari-

ous datasets with good generalization to the data in the

wild. The code is available at https://github.com/zqbai-

jeremy/DFNRMVS.

2. Related Work

Geometry-based methods. Geometry-based methods re-

construct the 3D face model based on multi-view stereo

(MVS) [20] and photometric stereo [59]. Beeler et al. [5]

proposed a stereo system to capture the 3D face geometry

using seven cameras under standard light sources. Bradley

et al. [10] presented a facial capture approach using a cam-

era array which was able to reconstruct high resolution

time-varying face meshes at 30 frames per second. These

pure passive methods normally have poor reconstruction

quality in the textureless regions as the stereo methods heav-

ily rely on the feature matching. Many methods [26,30,44]

also use the photometric stereo [59] for face reconstruction.

Given the images captured under different illuminations,

the surface normal is estimated first and then the 3D mesh

is recovered through normal integration. These methods

normally suffer from the convex/concave ambiguity. Ap-

proaches [21, 27] have been proposed to utilize the best of

both worlds, where MVS recovers the base shape and pho-

tometric stereo recovers fine details. One major drawback

of all mentioned methods is that they require either the im-

ages are synchronized or the subject is static during data

capturing, which limits the applicable scenarios.

To address this problem, Non-Rigid Structure-from-

Motion (NRSfM) has proposed to reconstruct objects with

non-rigid deformations, such as face with different expres-

sions. Bregler et al. [11] proposed to use linear subspace of

low rank to represent the non-rigid 3D shape. Dai et al. [15]

proved that the ill-posedness of NRSfM can be solved by

only the low rank assumption, which was extended to tem-

poral domain [3, 19]. More recently, progresses have also

been made for methods based on union-of-subspace [2,65],

sparse prior [31], and deep learning [32]. However, this

set of methods mainly focus on sparse points. Very re-

cently, dense NRSfM becomes possible with variational ap-

proach [22], and Grassmann manifold [33, 34]. However,

these methods rarely utilize the strong capability of data-

driven priors captured by deep learning.

Different from all previous dense non-rigid methods, our

method injects deep learning techniques into the reconstruc-

tion pipeline to alleviate the difficulty of the problem via

priors learned from informative ground truth.

Learning-based methods. The data-driven prior of facial

geometry is also exploited for face reconstruction from im-

ages. 3D Morphable Model (3DMM) [7] is a classic ex-

ample, which is widely used to parameterize the shapes of

human faces. Given input images, the optimal 3DMM pa-

rameters that fit the input are usually estimated by analysis-

by-synthesis optimization [6, 43, 52]. As the optimization

depends on the initialization, these methods are not quite

robust in practice. Moreover, these methods are limited

by the representation power of 3DMM. So extensive facial

databases have been published recently to deal with com-

plex expressions [8, 28, 35, 58, 62]. More recent works take

a step further to also recover medium- and fine-scale details

via corrective basis [9, 24] and Shape-from-Shading [23].

However, their models are usually computationally expen-

sive due to the large amount of parameters to be optimized.

With the recent advances of deep learning, many meth-

ods are proposed for monocular face reconstruction. Var-

ious networks are designed to regress parameters of face

models or 3D geometry with supervision from synthetic

data [25, 42, 47], pre-computed 3DMM fitting [17, 56],

RGB images [16, 50, 51, 54, 55], and identity labels [45].

To handle complex face geometry more flexibly, meth-

ods [13, 53, 57] regress the geometric residuals to recover

fine-scale details. However, these methods mainly focus

on single-view reconstruction. Only very recently, multiple

images based methods are proposed [49, 60].

Different from prior learning-based multi-view methods,

where reconstruction is generally formulated as regression,

our method explicitly incorporates multi-view geometric

constraints inside the learning framework via end-to-end

trainable optimization. Thus, our model is a novel fusion of

geometry- and learning-aspects leveraging the best of both

worlds: the quality and generalization of geometry-based

methods and the robustness of learning-based methods.
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Figure 2: An overall of our method including (1) Non-Rigid Multi-View Stereo (NRMVS) optimization (Sec. 3.1, Sec. 3.2);

(2) Adaptive Face Model (Sec. 3.3); (3) Multi-level reconstruction scheme (Sec. 3.4); and (4) Training losses (Sec. 3.5).

3. Proposed Method

Given multiple facial images, we aim to design a deep

neural network to generate detailed 3D face models by ex-

ploiting the multi-view appearance consistency explicitly in

the network. As shown in Fig. 2, our framework mainly

consists of three modules: feature extraction, adaptive face

model generation, and non-rigid multi-view stereo opti-

mization. We will first present the non-rigid multi-view

stereo optimization (Sec. 3.1) and explain how this opti-

mization is integrated with deep learning through a learn-

able objective and solver (Sec. 3.2). Then we will introduce

the adaptive face model generation (Sec. 3.3). Finally, we

present our multi-level reconstruction scheme (Sec. 3.4) and

training losses (Sec. 3.5).

3.1. NonRigid MultiView Stereo

Given a set of M facial images {Ii}
M
i=1 capturing the

same person but under different expressions and views, the

estimation of 3D facial geometry Vi and 6 DoF rigid head

pose pi for each image can be formulated as a Non-Rigid

Multi-View Stereo (NRMVS) optimization by minimizing

the appearance-consistency error and landmark fitting error.

Parameterization. For head pose p, we parameterize it

with p = (s,R, t) under the weak perspective camera

model assumption, where s is a scale factor, R ∈ SO(3)
is the rotation matrix, and t ∈ R

2 is the 2D translation on

the image plane. Thus, the projection Π : R3 → R
2 map-

ping a 3D point v ∈ R
3 to the image plane is,

Π(v) =

[

s 0 0
0 s 0

]

Rv + t. (1)

Similar to linear 3DMM [7], we parameterize the face shape

as V = f(x), where the generator function f(x) maps the

low-dimensional parameter vector x ∈ R
K to the vector

comprising 3D coordinates of all N vertices, V ∈ R
3N .

Therefore, the parameters of the non-rigid multi-view stereo

optimization can be represented as X = (s,R, t,x).
Objective Function. The objective function of our non-

rigid multi-view stereo optimization is as the following,

E = λaEa + λlEl, (2)

where Ea is the appearance consistency error across views,

and El is the facial landmarks alignment error. λa and λl

balance the importance of two objectives.

For appearance consistency Ea, a naı̈ve option is to use

image intensity difference as the consistency metric. For

each view i, we project the current reconstruction (Vi,pi)
onto the image Ii by Eq. (1), and sample the intensity via

bilinear interpolation. As a result, each vertex will have an

intensity value I(vi). Then, for each pair of views (i, j)
where i 6= j, we compute the intensity difference of corre-

sponding vertices and average across all vertices and views.

To sum up, we have

Ea =
2

M(M − 1)

∑

i 6=j

1

N

N
∑

k=1

‖I(vk
i )− I(vk

j )‖
2
2, (3)
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Figure 3: Overview of one iteration of the NRMVS opti-

mization described in Sec. 3.1 and Sec. 3.2.

where vk
i (vk

j ) denotes the k-th vertex of view i (view j).

We also take vertex visibility into account and approximate

it by backface culling as in [50].

In terms of landmark alignment El, we adopt a similar

objective as Tewari et al. [49,50], which takes sliding land-

marks on the face contour into account. Given the 68 de-

tected landmarks {uk
i }

68
k=1 on each image Ii via an off-the-

shell method [12], the objective reads as:

El =
1

M

M
∑

i=1

1

68

68
∑

k=1

‖uk
i −Π(vu

k

i )‖22, (4)

where vu
k

i denotes the mesh vertex corresponding to k-th

landmark for view (or image) i.

Optimization Solver. Due to the differentiability, the ob-

jective E can be minimized by gradient based solvers. For

simplicity, we choose the first order optimization solver

(i.e., gradient descent). The reconstruction parameters can

be updated iteratively by

X← X+ α∇XE(X), (5)

where α is the step size.

3.2. Learnable Objective and Solver

Directly solving the proposed NRMVS optimization

(Sec. 3.1) could be extremely difficult due to the highly non-

convex intensity space. Inspired by recent works on rigid

3D reconstruction [48, 61] and motion estimation [38], we

inject deep learning from two aspects to alleviate the diffi-

culty: (1) more robust objective; (2) more flexible solver.

Feature-metric Appearance Objective. We replace the

raw images {Ii}
M
i=1 with feature maps {Fi}

M
i=1 extracted

by a Feature Pyramid Network (FPN) [36] Ffpn shown

in Fig. 2 when computing the appearance consistency Ea.

Thus, the objective (3) becomes:

Ea =
2

M(M − 1)

∑

i 6=j

1

N

N
∑

k=1

‖F (vk
i )− F (vk

j )‖
2
2, (6)

where F (vi) is the per-vertex feature vector sampled from

the feature map Fi, replacing the per-vertex image intensity

I(vi) sampled from raw image Ii.

Step Size Prediction. Traditionally, the step size α for gra-

dient descent is heavily tuned to ensure good performance.

Instead, we use an MLP Fmlp shown in Fig. 3 that learns

to predict α given the absolute residuals of the objectives

averaged across vertices and views.

End-to-end learnable. The parameters of both networks

Ffpn (in Fig. 2) and Fmlp (in Fig. 3) can be updated dur-

ing end-to-end training. In principle, Ffpn learns to ex-

tract feature maps that are suitable for the optimization (i.e.,

more smooth and convex), while Fmlp learns to predict bet-

ter step sizes that expedite the convergence (i.e., larger step

size with larger magnitudes of objectives), reducing the dif-

ficulty of the optimization.

3.3. Adaptive Face Model

To better leverage existing 3DMM while not lim-

ited by its representation power, we propose an Adap-

tive Face Model that contains two linear subspaces x =
(xbfm,xadap). The final facial shape V is represented as,

V = f(x) = V +Bbfmxbfm +Badapxadap, (7)

where V ∈ R
3N is the mean shape, Bbfm ∈ R

3N×Kbfm

is the PCA basis from Basel Face Model (BFM) [40] that

is common to all faces, and Badap ∈ R
3N×Kadap is the

adaptive basis that is built from the input images and pre-

liminary reconstructions. The coefficient xbfm ∈ R
Kbfm ,

termed as the BFM parameter, is constant across different

views, while xadap ∈ R
Kadap , termed as the adaptive pa-

rameter, varies across views.

Since the adaptive basis Badap is built according to

the initial (or intermediate) pose {p̂i}
M
i=1 and geometry

{V̂i}
M
i=1, it can hopefully capture the aspects where prelim-

inary reconstructions fail to explain the input. To achieve

this goal, it needs to be built right before the NRMVS opti-

mization, as shown in Fig. 2.

For each view i, a feature map F′
i is firstly extracted from

the image Ii via a separate FPN [36] F ′
fpn shown in Fig. 2

as the following,

F′
i = F

′
fpn(Ii). (8)

In total, we have M feature maps {F′
i}

M
i=1, i.e., the left

most column in Fig. 4. Then, we can obtain the adaptive

basis Badap by feeding these feature maps and the prelim-

inary reconstructions ({V̂i}, {p̂i})
M
i=1 into the basis net-

work Fbasis shown in Fig. 4,

Badap = Fbasis

(

{F′
i}

M
i=1, ({V̂i}, {p̂i})

M
i=1

)

. (9)

More specifically, we map these feature maps {F′
i}

M
i=1

into the UV texture space according to the preliminary 3D
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Figure 4: Pipeline of adaptive basis generation (Sec. 3.3).

face shape. We also convert each preliminary reconstruc-

tion to the UV space as Position Map [17] (i.e., a 2D im-

age recording 3D positions of all vertices in the UV space),

and concatenate it with the corresponding unwrapped fea-

ture map along the channel dimension. The resulting M

feature maps go through M Siamese branches separately,

then are max pooled along the view dimension, and decoded

to the UV texture representation of the adaptive basis. The

final adaptive basis Badap can be generated through stan-

dard texture mapping. Please refer to our supplementary

for more details about the basis network Fbasis for adaptive

face model generation.

3.4. Multilevel Reconstruction

In order to better recover the details of 3D face shapes,

we adopt a multi-level scheme. Specifically, we split the

reconstruction process into 3 sequential levels l = 1, 2, 3,

each of which solves a NRMVS optimization and outputs

the reconstructions for all views ({Vl
i}, {p

l
i})

M
i=1.

At each level, the face model is updated as

Vl = f l(xl) = V +Bbfmxbfm +
l

∑

j=1

B
j
adapx

j
adap,

(10)

where the shape basis Bbfm is fixed for all levels, and the

adaptive basis Bl
adap is updated from level to level. Dur-

ing NRMVS optimization at each level l, only head poses

{pi}
M
i=1, BFM parameter xbfm, and the current level adap-

tive parameter {xl
adap,i}

M
i=1 will be optimized. Poses and

BFM parameter are initialized with outputs from the previ-

ous level, and the adaptive parameter is initialized to zero at

the beginning. At the very beginning (i.e., level 0), the ini-

tial head pose is regressed by a pre-trained neural network

(please refer to the supplementary material for details). The

initial BFM parameter is set to zero. The initial prelim-

inary reconstruction for each view is the mean face from

BFM [40] transformed by the regressed pose. For later lev-

els, the preliminary reconstructions are the output of the

previous level.

3.5. Training Losses

Given ground truth meshes with the corresponding ver-

tices of the reconstructed meshes, our network, i.e., 2 FPNs

Ffpn and F ′
fpn, the MLP Fmlp for step size prediction, and

the basis network Fbasis, is trained in a supervised man-

ner with standard losses. For each vertex, we compute the

point-to-point L2 distance between ground truth and recon-

structed meshes (with poses) of all iterations, all views, and

all levels after depth alignment and dense alignment sep-

arately (i.e., 2 losses per vertex). For depth alignment, we

compute the mean depth difference between predictions and

ground truth, and add this difference to ground truth before

computing the loss. For dense alignment, we use the corre-

spondence of face mesh vertices to rigidly (with scale) align

predictions to ground truth. These 2 vertex losses read as

Lv dep =
∑

‖Vgt −V‖22, (11)

Lv den =
∑

‖Vgt −Vden‖
2
2. (12)

Intuitively speaking, the dense aligned loss Lv den only

measures the geometry error while the depth aligned loss

Lv dep also accounts for poses.

We also consider the supervision on per-vertex normal

by measuring cosine similarity loss,

Lnorm =
∑

(1− cos(ngt,nalign)). (13)

Following Liu et al. [37], an edge loss is also added,

Ledge =
1

#E

∑

(i,j)∈E

∣

∣

∣

∣

∣

‖Vi −Vj‖

‖Vgt
i −V

gt
j ‖
− 1

∣

∣

∣

∣

∣

, (14)
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where E is the pre-defined edge graph of the template. The

motivation of using Lnorm and Ledge is to improve surface

smoothness while preserve high-frequency details [37]. Fi-

nally, a landmark loss Lland similar to Eq. (4) is included.

To sum, the total training loss is as the following,

L = λ1Lv dep+λ2Lv den+λ3Lnorm+λ4Ledge+λ5Lland,

(15)

where λ1,2,3,4,5 are hyperparameters that adjust the weights

of different losses.

3.6. Optimization and Training

Here we further clarify the relationship between the

NRMVS optimization and the training procedure. The

NRMVS optimization belongs to the forward pass of our

model. It can be analogized to a differentiable module,

which takes in old reconstruction parameters and computes

the updates to output new reconstructions iteratively. Then,

the training losses are computed on the outputs of each iter-

ation, whose gradient will be backwarded through the whole

NRMVS optimization to update learnable weights (i.e., the

weights of Ffpn and F ′
fpn in Fig. 2, Fmlp in Fig. 3, and

Fbasis in Fig. 4).

4. Experiments

4.1. Experimental Setup

Training data. We adopt the Stirling/ESRC 3D face

database [1] to train our model. The dataset contains high

quality 3D scans of more than 100 subjects. The majority of

subjects have 3D scans for 8 different expressions. For each

scan, 2 RGB images taken from ±45 yaw angles are used

as textures. We use the textured 3D scans to render images

for training. More specifically, we select 85, 20, 35 non-

overlapping subjects as training, validation, testing splits.

To generate a training sample, two random expressions of

the same subject are firstly selected. Then, we render one

image for each expression with different poses and same

global illumination using Spherical Harmonics (SH) [41].

As a result, around 8K training samples are generated.

To obtain the ground truth dense correspondences, we

run Non-Rigid ICP [4] to register the mean shape from

BFM [40] to each 3D scan, and use the results as the ground

truth dense correspondences. Note that even trained on this

limited number of samples, our model can still generalize

to other 3D scan datasets as well as in-the-wild images.

Implementation. Our model is implemented with Py-

torch [39]. For the optimization, the objective weights are

λa = 0.25, and λl = 0.025. We use 3 levels of optimiza-

tion with the feature map resolution of 32 × 32, 64 × 64,

and 128×128 respectively. In each level, 3 iterations of pa-

rameter updates are computed. During training, the losses

are weighted as λ1 = 1, λ2 = 1, λ3 = 100, λ4 = 0.01, and

Single view Two views

Inputs [17] [13] proxy & detail [49] Ours

Figure 5: Qualitative comparison with Feng et al. [17],

Chen et al. [13], and Tewari et al. [49]. For two-view meth-

ods, images of two consecutive rows are input together.

Readers may zoom in and pay attention to details such as

(1) face contour alignment (2nd & 4th row), (2) inputs with

large expression change (5th & 6th row), and (3) medium-

scale details such as large wrinkles (2nd row), smiling line

(6th row), half-opened eyes (4th row), and geometry around

eyes (1st & 3rd & 7th row).

λ5 = 0.1. The Adam [29] optimizer is applied for training

with learning rate of 2.0× 10−5. The batch size is set to 2.

Baseline Methods. We choose the following methods as

baselines in the qualitative and quantitative evaluations.

Tewari et al. [49] is a regression-based method that also

tackles non-rigid multi-view face reconstruction, which is

the most related one to ours. Thus, we treat it as an im-

portant baseline in both qualitative and quantitative evalua-

tions. Several single-view reconstruction methods are also

compared. Feng et al. [17] directly regress the face geome-

try in the form of Position Maps. Tewari et al. [50] learn a

corrective basis on top of 3DMM and regress the basis pa-

rameters. These two baselines represent single-view meth-

ods that are not restricted by the 3DMM subspace. Deng et

al. [16] act as the baseline for state-of-the-art 3DMM fitting

method. We also include Chen et al. [13] in the comparison

as it presents an interesting combination of optimization-
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Table 1: Geometric errors on BU3DFE [62] dataset. [Key: Two input images with the same (S), or different expressions (D)]

Two Views Single View

Ours (S) Ours (D) Ours NoAdap (S) Tewari et al. [49] (S) Deng et al. [16] Tewari et al. [50]

Mean (mm) 1.11 1.14 1.12 1.74 1.38 1.78
STD (mm) 0.29 0.29 0.33 0.45 0.37 0.49

Table 2: Geometric errors on Bosphorus database [46]. In-

puts are 2-view image pairs with different expressions.

Ours Deng et al. [16]

Mean (mm) 1.44 1.47
STD (mm) 0.38 0.40

based landmark fitting and emotion priors captured by deep

learning while can also synthesis facial details.

4.2. Qualitative Evaluation

We perform qualitative comparison on VoxCeleb2 [14],

an in-the-wild facial video dataset collected from YouTube.

We use the same set of images as Tewari et al. [49] up-

loaded in their website. For Tewari et al. [49], we directly

use their uploaded results for comparison. For other base-

lines, we use their public implementations to generate the

results. The visualizations are shown in Fig. 5.

Comparison with Tewari et al. [49]. Our results are bet-

ter aligned to the faces due to the explicit optimization on

the multi-view appearance consistency. Note that [49] is

trained on a large amount of in-the-wild data, which should

generalize better to the tested in-the-wild faces. However,

even though we use limited 3D scans with rendered images

during training, our model still achieves comparable or even

better generalization on these in-the-wild faces. In addition,

since our model is trained on high-quality 3D scans, it is

able to capture medium-level details while [49] only gives

coarse reconstructions.

Comparison with single-view methods. We also com-

pared with single-view reconstructions [17] and [13]. Our

method gives better results than [17] with the help of multi-

view geometry. Our method also performs better than the

emotion-driven proxy estimation in [13]. Although the ad-

ditional detail synthesis in [13] can produce locally appeal-

ing results (e.g., wrinkles on the forehead), it cannot correct

the unfaithful geometry from proxy estimation.

4.3. Quantitative Evaluation

The BU3DFE [62] and the Bosphorus [46] datasets are

used to quantitatively evaluate our method. The authors

of [49] and [50] kindly provided their reconstructed meshes.

For other baselines, the reconstructions are obtained with

their public implementations. Then, we compute the geo-

metric errors on all reconstructions in a consistent manner.

Evaluation on BU3DFE [62]. The BU3DFE dataset [62]

includes 3D scans of 100 subjects with neutral face and

24 expressions. Each scan in BU3DFE is associated with

2 RGB images taken from ±45◦ yaw angles. We use the

Figure 6: Visualization of our reconstructions on BU3DFE

[62] (first 2 rows) and Bosphorus [46] (last 2 rows). Our

method can capture different expression changes.

testing split provided by Tewari et al. [49] to evaluate our

method with 2-view images of the same subject, either un-

der the same expression or different ones.

To compute the geometric errors, we first align the re-

constructions with ground truth using 8 landmarks given

by BU3DFE [62]. Then, ICP [63] is performed to further

align the reconstructions to ground truth. Finally, we crop

the ground truth based on landmarks with a similar strat-

egy as [18] and compute the point-to-plane distance from

ground truth to reconstruction. Our results are shown in Ta-

ble 1 and compared to the state-of-the-art approaches. We

also show qualitative examples of our results in Fig. 6.

Our learning-based optimization outperforms the

regression-based approach [49]. Note that their model

is trained in a self-supervised manner with in-the-wild

videos for the sake of better generalization, which may

affect the geometry accuracy. It is unclear whether their

method can be trained with limited 3D scans without

harming generalization. In contrast, our model can leverage

3D scans for better geometry accuracy without affecting

generalization. Our method also outperforms state-of-

the-art single-view approaches [16, 50] as we leverage the

additional multi-view cue via learning-based optimization.

Evaluation on Bosphorus [46]. The Bosphorus database

contains 105 subjects, each with expressive face images

under frontal-view and neutral face images under various

poses. For each subject, we select all images with emotion

labels (only frontal-view provided), including expressions
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Table 3: Geometric errors on rendered images using ESRC

face database [1] for multi-view evaluation.

2 Views 3 Views 4 Views

Mean (mm) 1.04 1.03 1.02

STD (mm) 0.33 0.30 0.29

of happy, surprise, fear, sadness, anger and disgust; then we

select the neutral face image under−30◦ yaw angle to form

2-view image pairs. Note that for some subjects, only a sub-

set of the mentioned expressions are available. In total, we

collect 453 samples of 2-view images.

We use the mentioned protocol to compute the geometric

errors, however, with a different set of 5 landmarks given

by the database for alignment. The errors of neutral faces

are down weighted accordingly as they are measured for

multiple times. Results are shown in Table 2.

Our method achieves slightly better performance than

Deng et al. [16] in both mean and standard deviation of

errors. Note that the content difference between Bospho-

rus [46] and BU3DFE [62] leads to a non-trivial domain

gap, which could affect the performance gain of our method

comparing to Ours (D) in Table 1.

4.4. Ablation Study

More than Two Views. We evaluate how the number of

views affect our method. For this evaluation, we use our test

split of ESRC face database [1] with 35 subjects to render

test images. To generate a test sample, we randomly select

4 expressions from a subject and render 4 images with an

arbitrary global illumination and different poses. Here we

order the images with increasing yaw angles for better illus-

tration. When testing 2-view cases, the 1st and 4th images

are used. For 3-view cases, (1st, 2nd, 4th) and (1st, 3rd, 4th)

images are used separately. For 4-view cases, all images are

used. We only measure the errors of the 1st and 4th images

for fair comparison. Before testing with more that 2 views,

we further finetune our model accordingly on the training

split to better fit different number of views.

As shown in Table 3, by introducing more views dur-

ing training and testing, our method achieves better per-

formance in terms of both mean and standard deviation of

geometric errors, which demonstrates the effectiveness of

multi-view information.

Adaptive vs. Generic Basis. To demonstrate the benefit of

adaptive basis, we design a baseline where we replace the

adaptive basis with a generic one, which is common to dif-

ferent subjects and fixed during the optimization. Basically,

we remove the basis networkFbasis in Fig. 4 and set the UV

texture representation of the basis (also shown in Fig. 4) as

network parameters, which derives the generic basis via the

same texture mapping. The quantitative result is shown in

Table 1 as Ours NoAdap (S). Although the mean error of

generic basis is comparable to the one of adaptive basis, its

standard deviation (STD) of error is larger, indicating that

Inputs Ours AdapB Ours GeneB

Figure 7: Qualitative comparison between Adaptive Basis

(AdapB) and Generic Basis (GeneB).

Table 4: Geometric errors and running time on BU3DFE

[62] dataset for multi-level scheme evaluation. Tested with

RTX2080Ti.

Level 1 Level 2 Level 3
Mean (mm) 1.29 1.18 1.11

STD (mm) 0.32 0.30 0.29

Time (s) 0.12 0.22 0.31

the results of generic basis are less stable. The qualitative

comparison in Fig. 7 shows that generic basis tends to give

more noisy reconstructions. Note that an additional smooth

loss is applied when training the generic basis model, which

has reduced the STD of geometric errors and alleviated the

noisy pattern on outputs to some extent. The adaptive ba-

sis is able to derive the relationships among vertices from

the spatial information of the images and the preliminary

reconstructions, while generic basis treats each vertex in-

dependently. This property enables the adaptive basis to

produce robust and smooth results.

Multi-level Scheme. We also investigate the effectiveness

of the multi-level scheme. Table 4 shows the quantitative

results on BU3DFE [62]. The geometric error and its stan-

dard deviation (STD) consistently decrease as more levels

of optimization are performed. Note that even our level 1

reconstructions outperform all baselines in Table 1. The

last three columns in Fig. 1 are typical qualitative examples,

showing that higher levels can better capture personalized

details, i.e., wrinkles between eyebrows.

5. Conclusions

We solve 3D face reconstruction from multi-view im-

ages with different expressions by a novel Non-Rigid Multi-

View Stereo (NRMVS) optimization framework. Our

method introduces the traditional multi-view geometry (in

terms of photo/feature-consistency) to the popular CNN-

based face reconstruction. Solving 3D reconstruction by en-

forcing multi-view geometry constraints is effective in cap-

turing shape details, and also improves the generalization

to unseen data. Experiments demonstrate that our method

achieves state-of-the-art performance and generalizes well

to in-the-wild images, which proves the effectiveness of

conventional multi-view geometry based optimization com-

bined with modern CNNs. Although our NRMVS is still

specific to faces, it is the first formulation of dense multi-

view stereo with non-rigid motions, and hence, can be po-

tentially applied to other non-rigid reconstruction problems.
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Rätsch. Evaluation of dense 3d reconstruction from 2d face

images in the wild. In 2018 13th IEEE International Confer-

ence on Automatic Face & Gesture Recognition (FG 2018),

pages 780–786. IEEE, 2018. 7

[19] Katerina Fragkiadaki, Marta Salas, Pablo Arbelaez, and Ji-

tendra Malik. Grouping-based low-rank trajectory comple-

tion and 3d reconstruction. In Proc. of Advances in Neu-

ral Information Processing Systems (NeurIPS), pages 55–63,

2014. 2

[20] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and

robust multiview stereopsis. IEEE Trans. on Pattern Analysis

and Machine Intelligence (PAMI), 32(8):1362–1376, 2009. 2

[21] Graham Fyffe, Paul Graham, Borom Tunwattanapong, Ab-

hijeet Ghosh, and Paul Debevec. Near-instant capture of

high-resolution facial geometry and reflectance. In Com-

puter Graphics Forum, volume 35, pages 353–363. Wiley

Online Library, 2016. 2

[22] Ravi Garg, Anastasios Roussos, and Lourdes Agapito. Dense

variational reconstruction of non-rigid surfaces from monoc-

ular video. In Proc. of Computer Vision and Pattern Recog-

nition (CVPR), pages 1272–1279, 2013. 1, 2

[23] Pablo Garrido, Levi Valgaerts, Chenglei Wu, and Chris-

tian Theobalt. Reconstructing detailed dynamic face ge-

ometry from monocular video. Proc. of ACM SIGGRAPH,

32(6):158–1, 2013. 2

[24] Pablo Garrido, Michael Zollhöfer, Dan Casas, Levi Val-
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