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Abstract

Few-shot learning is a challenging problem where the

goal is to achieve generalization from only few examples.

Model-agnostic meta-learning (MAML) tackles the problem

by formulating prior knowledge as a common initialization

across tasks, which is then used to quickly adapt to unseen

tasks. However, forcibly sharing an initialization can lead

to conflicts among tasks and the compromised (undesired by

tasks) location on optimization landscape, thereby hindering

the task adaptation. Further, we observe that the degree

of conflict differs among not only tasks but also layers of

a neural network. Thus, we propose task-and-layer-wise

attenuation on the compromised initialization to reduce its

influence. As the attenuation dynamically controls (or selec-

tively forgets) the influence of prior knowledge for a given

task and each layer, we name our method as L2F (Learn

to Forget). The experimental results demonstrate that the

proposed method provides faster adaptation and greatly im-

proves the performance. Furthermore, L2F can be easily

applied and improve other state-of-the-art MAML-based

frameworks, illustrating its simplicity and generalizability.

1. Introduction

Recent deep learning models demonstrate outstanding

performance in various fields; however, they require super-

vised learning with a tremendous amount of labeled data.

On the other hand, humans are able to learn concepts from

only few examples. Considering the cost of data annota-

tion, the capability of humans to learn from few examples is

desirable.

When there are concerns for overfitting in few-data

regime, data augmentation and regularization techniques are

often used. Another commonly used technique is to fine-tune

a network pre-trained on large labelled data from another

dataset or task [19, 26]. Fine-tuning often does provide adap-

tation without overfitting even in few-data regime, however

at the cost of computation due to many update iterations [31].

In contrast, meta-learning tackles the problem systematically

via two stages of learners: a meta-learner learns common

Figure 1: When there is a large degree of conflict, the up-

dated initialization ends up in the location neither of tasks

desires. Such undesired (hence compromised) initialization

location can make learning difficult during fast adaptation to

each task. Our method makes the fast adaptation easier by

minimizing the influence of the compromised initialization

for each task, through attenuation parameter γ generated

by the task-conditioned network g. This makes the opti-

mization landscape smoother and hence helps achieve better

generalization to unseen examples.

knowledge across a distribution of tasks, which is then used

for a learner to quickly learn task-specific knowledge with

few examples. A popular instance is the model-agnostic

meta-learning (MAML) [5], where a meta-learner is formu-

lated such that it learns a common initialization that encodes

the common knowledge across tasks.

The assumption of the existence of a task distribution may

justify MAML for seeking a common initialization among

tasks. But, there still exists variations among tasks, some

of which may lead to the disagreement among tasks on the

location of the initialization. We call such disagreement

conflict and formally define it in this paper. Some of prior

knowledge encoded in such compromised initialization is

useful for one task but may be irrelevant or even detrimen-

tal for another. Consequently, a learner struggles to learn

new concepts quickly with the prior knowledge that conflicts

with information from new examples, as illustrated in Fig-
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Figure 2: Visualization of optimization landscape: In [23], they analyze the stability and smoothness of the optimization

landscape by measuring Lipschitzness and the “effective” β-smoothness of loss. We use these measurements to analyze

learning dynamics for both MAML and our proposed method during training on 5-way 5-shot miniImageNet classification

tasks, i.e. investigating fast-adaptation (or inner-loop) optimization. At each inner-loop update step, we measure variations in

loss (a), the l2 difference in gradients (b), and the maximum difference in gradient over the distance (c) as we move to different

points along the computed gradient for that gradient descent. We take an average of these values over the number of inner-loop

updates and plot them against training iterations. The thinner shade in plots (a) and (b) and the lower the values in plot (c)

indicate the smoother loss landscape and thus less training difficulty [23].

ure 1. Such learning difficulty can manifest as the sharp

loss landscape and thereby poor generalization to new exam-

ples [11, 23]. Motivated by our hypothesis, we analyze and

indeed observe the sharp landscape during fast adaptation to

new examples (as shown in Figure 2) and suggest that the

learned initialization by MAML is a “bad” location.

One solution for a meta-learner would be to simply forget

the part of the initialization that hinders adaptation to the

task, minimizing its influence. This raises two questions:

Where do these conflicts occur? To what extent? We hy-

pothesize that the degree of conflict varies among layers of a

neural network, especially CNN, since deeper layers learn

more task-specific knowledge or class-specific knowledge

in classification [34]. To test the hypothesis, we measure

conflict at each layer and observe that conflict is indeed more

severe at deeper layers, as shown in Figure 3(a). We also

observe that the amount of agreement between the learned

initialization and the initialization desired by a given task

differs for each task in Figure 3(c). Thus, we argue that

conflicts occur at two levels: task and layer.

Motivated by the observation, we propose to learn selec-

tive forgetting by applying a task-and-layer-wise attenuation

on MAML initialization, controlling the influence of prior

knowledge for each task and layer. For each task, we ar-

gue that initialization weights and its gradients (obtained

from support examples of task), together, encode informa-

tion about optimization specific to a task, and thus propose

to condition on them to generate attenuation parameters.

As for layer-wise attenuation, we generate an attenuation

parameter for each layer. The proposed method, named

L2F (Learn to Forget), indeed improves the quality of the

initialization (illustrated by a smoother loss landscape in

Figure 2) and consistent performance improvement across

different domains, managing to maintain the simplicity and

generalizability of MAML.

2. Related Work

Meta-learning aims to learn across-task prior knowledge

to achieve fast adaptation to specific tasks [2, 7, 24, 25, 29].

Recent meta-learning systems can be broadly classified

into three categories: metric-based, network-based, and

optimization-based. The goal of metric-based system is

to learn relationship between query and support examples

by learning an embedding space, where similar classes are

closer and different classes are further apart [9, 27, 28, 32].

Network-based approaches encode fast adaptation into

network architecture, for example, by generating input-

conditioned weights [14, 17] or employing an external mem-

ory [15, 22]. On the other hand, optimization-based systems

adjust optimization for fast adaptation [5, 18, 16].

Among optimization-based systems, MAML [5] has re-

cently received interests, owing to its simplicity and general-

izability. The generalizability stems from its model-agnostic

algorithm that learns across-task initialization. The initial-

ization aims to encode prior knowledge that helps the model

quickly learn and achieve good generalization performance

over tasks on average. While MAML boasts the simplicity,

it shows relatively low performance on few-shot learning.

There has been several works that tried to improve the

performance, especially on few-shot classification [1, 10, 12,

35, 8]. However, none of these methods tackles the problem
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with the sharing of the starting point of adaptation to different

tasks. Recently, there has been a few works [17, 21, 33] that

try to achieve task-wise model or initialization through their

proposed task embeddings. The metric-based system has a

similar issue with MAML, and thus TADAM [17] proposes

to learn task embeddings, which are then used to generate

affine transformation parameters that transform the features.

In this work, we focus on analyzing the problems of

MAML and improving its performance, while maintaining

its generalizability. LEO [21] tries to solve the issue with the

shared initialization by learning task embeddings through

relation network, which are then used to generate input-

dependent initializations in low-dimensional latent space.

Another work that tries to relax the constraint on sharing

the initialization is Multimodal MAML [33], where they

propose to learn task embeddings and transform the MAML

initialization with affine parameters.

In contrast to [33, 21] that only focus on making the

initialization task-dependent, we approach the problem from

the perspective of optimization and provide a new insight

that the quality of MAML initialization is compromised due

to conflicts among tasks on the location of the initialization

in optimization landscape. Such compromised initialization

will hinder fast adaptation and is illustrated by sharp loss

landscape in Figure 2. Motivated by the phenomenon of

conflicts, we argue that we only need to attenuate (forget)

the compromised part of the initialization. In fact, a large

portion of the performance boost comes from the attenuation,

not from the task-conditioned transformation (see Table 4).

From the perspective of optimization, we also provide

more effective and efficient task embedding. Previous

works [21, 33] try to achieve task-wise initializations through

learning task embeddings directly from the input. However,

learning such task embeddings without any task label is dif-

ficult and require specialized techniques, such as relation

network [21] and metric learning [17] that may not be appli-

cable in other complex problems such as in reinforcement

learning. We argue and observe that the amount of conflicts

varies among tasks, hinting that conflicts can be used to iden-

tify tasks. Since conflicts between the desired initialization

by task and the learned initialization can be described with

gradients (see Section 3.3), we demonstrate that gradients

itself give task-specific optimization information and thus

can be used to represent tasks. Because gradients are easily

obtainable and model-agnostic, not only do we achieve ef-

fective task-wise initialization but also manage to maintain

the simplicity and generalizability of MAML.

Overall, our proposed method greatly improves the perfor-

mance of MAML while managing to maintain the simplicity

and generalizability of MAML. Owing to its generalizability,

we further show that not only does our method demonstrate a

consistent improvement across domains, including reinforce-

ment learning; but also our method can be easily applied to

other MAML-based methods.

3. Proposed Method

3.1. Problem Formulation

Before introducing the proposed method, we start with

the formulation of a generic meta-learning algorithm. We

assume there is a distribution of tasks p(T ), from which

meta-learning algorithm aims to learn the prior knowledge,

represented by a model with parameters θ. Tasks, each of

which is sampled from p(T ), are split into three disjoint

sets: meta-training set, meta-validation set, and meta-test

set. In k-shot learning, a task Ti is first sampled from the

meta-training set, followed by sampling k number of ex-

amples DTi
from Ti. These k examples are then used to

quickly adapt a model with parameters, θ. Then, new ex-

amples D
′

Ti
are sampled from the same task Ti to evaluate

the generalization performance on unseen examples with the

corresponding loss function, LTi
. The feedback from the

loss is then used to adjust the model parameters θ to achieve

better generalization. Finally, the meta-validation set is used

for model selection, while the meta-test set is used for the

final evaluation on the selected model.

3.2. ModelAgnostic MetaLearning

To tackle the problem of fast adaptation to unseen tasks

with few examples, we borrow the philosophy and the

methodology from MAML [5]. MAML encodes prior knowl-

edge in an initialization and seeks for a “good” common ini-

tial set of values for weights of a neural network across tasks.

Formally, given a network fθ with weights θ, MAML learns

a set of initial weight values, θ, which will serve as a good

starting point for fast adaptation to a new task Ti, sampled

from a task distribution p(T ). Given few examples DTi
and

a loss function LTi
from the task Ti, the network weights

are adapted to Ti during inner-loop update as follows:

θ′i = θ − α∇θL
DTi

Ti
(fθ). (1)

To give feedback on the generalization performance of the

model with adapted weights θ′i to each task, the model is

evaluated on new examples,D
′

Ti
sampled from the same task

Ti. The feedback, manifested in the form of loss gradients, is

used to update the initialization θ so that better generalization

is achieved:

θ ← θ − η∇θ

∑

Ti

L
D

′

Ti

Ti
(fθ′

i
). (2)

3.3. Definition of Conflict

While MAML is elegantly simple, its limitation comes

from the very fact that the initialization is shared across a

distribution of tasks. Despite the goal of MAML, which
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Figure 3: Analysis on degree of conflict and attenuation: (a) Throughout training, degree of conflict is measured and observed

to vary among layers. For MAML, deeper layers exhibit greater extent of conflict, which aligns with the observation that

deeper layers encode more task specific features [34]. After applying L2F to MAML, conflict is observed to have decreased

greatly. (b) Manual attenuation of an initialization by different levels (the lower γ, the stronger attenuation) for each layer

affects the classification accuracy of a 4-layer CNN on miniImageNet. The figure suggests that deeper layers prefer the

stronger attenuation. This supports our argument that the larger degree of conflict suggests the initialization quality is more

compromised and that the compromised part needs to be minimized. (c) The degree of conflict between each meta-train task

and the MAML initialization is observed to vary. This indicates that the amount of prior knowledge that is useful is different

for each task. (d) Different attenuation parameters γ are generated by the proposed method for each meta-test task, especially

for middle-level layers. This suggests that the degree of conflict varies for each task, especially in middle-level layers.

is to learn a “good” starting point for fast adaptation to

new tasks, the shared initialization, in fact, hinders the fast

learning process. This is illustrated by sharp optimization

landscape during fast adaptation in Figure 2. This is mainly

due to disagreement between tasks on the location of a “good”

starting point. We call such disagreement conflict.

At each training iteration, each task Ti takes the initial-

ization closer to the desired location via gradient: ui =
−∇θL

D′

Ti
(fθ′

i
) during meta-update. However, since MAML

shares the initialization, the update is made via gradients

accumulated over a batch of tasks
∑

i ui as in Equation

(2). Hence, in the example of two tasks, the conflict occurs

between tasks Ti and Tj when their gradient directions, i.e.

directions of ui and uj , differ. The more their directions

differ, the more the initialization update diverges from ui

and uj , pointing towards the location that is not desirable for

both Ti and Tj . We refer to this phenomenon as compromise

in the initialization.

We define the degree of conflict among tasks to be the

average angle between ui and
∑

i ui, which is measured

as the average absolute arccosine of the dot product of the

normalized vectors, ETi∼p(T )[
∣

∣cos−1(ûi · v)
∣

∣], where ûi is
ui

‖ui‖
and v is

∑
i
ui

‖
∑

i
ui‖

. Figure 3(a) measures the degree

of conflict at each epoch and demonstrates that the conflict

is indeed more prominent in deeper layers, which aligns

with the observation that the deeper layers encode more

task-specific features [34].

3.4. Learning to Forget

When the degree of conflict is high, we say the initializa-

tion is more compromised, and hence the more difficult it is

to learn new tasks quickly, as illustrated by sharp loss land-

scape in Figure 2. This suggests that the learner finds some

part of the initialization to be irrelevant or even detrimental

for learning a given task. We thus propose to discard such

compromised part of the prior knowledge via attenuating

the initialization parameters θ directly. Then, one may ask

which parameter is compromised?

To answer the question, we refer to the previous finding

that lower layers of a CNN encode general knowledge while

deeper layers contain more task-specific information [34].

Upon this observation, we hypothesize that lower layers

do not need much attenuation while deeper layers do. To

support our hypothesis, we perform an experiment, shown

in Figure 3(b), where we vary the amount of attenuation

(γj) on each layer to observe how much each layer benefits.

As expected, deeper layers favor stronger attenuation while

lower layers prefer little to no attenuation. This leads to

the second question: How much should the parameters be

attenuated layer-wise?

One answer would be to let a model learn to find an opti-

mal set of attenuations. The answers to these two questions

lead to our proposal: learn layer-wise attenuation via ap-

plying a single learnable parameter γj on the initialization

parameters of each layer θj as follows:

θ̄j = γjθj , (3)

where j is the layer index of a neural network. The atten-

uated initialization θ̄ serves as a new starting point for fast

adaptation to tasks. Although this may reduce the extent

of compromise that may exist in the original MAML ini-

tialization, one may ask if the amount of unnecessary or

contradicting information in the initialization is equal across
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Algorithm 1 Proposed Meta-Learning

Require: Task distribution p(T )
Require: Learning rates α, η

1: Randomly initialize θ, φ

2: Let θ = {θj}j=1...l where j is the layer index and l is

the number of layers of a network

3: while not converged do

4: Sample a batch of tasks Ti ∼ p(T )
5: for each task Ti do

6: Sample examples (DTi
,D

′

Ti
) from Ti

7: Compute L
DTi

Ti
(fθ) by evaluating LTi

with respect

to DTi

8: Compute attenuation parameter γ for each layer:

{γj
i }

j=1...l = gφ(∇θL
DTi

Ti
(fθ)),

9: Compute attenuated initialization: θ̄
j
i = γ

j
i θ

j

10: Initialize θ′i = {θ̄
j
i }

j=1...l

11: for number of inner-loop updates do

12: Compute L
DTi

Ti
(fθ′

i
) by evaluating LTi

with re-

spect to DTi

13: Perform gradient descent to compute adapted

weights: θ′i = θ′i − α∇θ′
i
L
DTi

Ti
(fθ′

i
)

14: end for

15: ComputeL
D

′

Ti

Ti
(fθ′

i
) by evaluatingLTi

with respect

to D
′

Ti

16: end for

17: Perform gradient descent to update weights: (θ, φ)←

(θ, φ)− η∇(θ,φ)

∑

Ti
L
D

′

Ti

Ti
(fθ′

i
)

18: end while

tasks.

Surely, the degree of agreement and disagreement with

others differs for different tasks. This can be observed in Fig-

ure 3(c), where the measured degree of conflict is observed

to vary for each task. As a result, there is no consensus

between tasks on what the best attenuation is for layer 2, as

indicated by different attenuation preferred by each task in

Figure 3(d). To resolve such conflict, in addition to the layer-

wise attenuation, we propose a task-dependent attenuation.

But, this poses another question: What information can be

used to make attenuation task-dependent?

We turn to gradients∇θL
DTi

Ti
(fθ) for the answer. Gradi-

ents, used for fast adaptation via gradient descents, not only

hold task-specific information but also encode the quality of

the initialization with respect to the given task Ti from the

perspective of optimization. Thus, we propose to compute

gradient ∇θL
DTi

Ti
(fθ) at the initialization and condition a

network gφ on it to generate the task-dependent attenuation:

γi = gφ(∇θL
DTi

Ti
(fθ)), (4)

where γi = {γj
i } is the set of layer-wise gammas for the

i-th task and gφ is a 3-layer MLP network of parameters φ,

with a sigmoid at the end to facilitate attenuation. For the

network gφ to generate layer-wise gammas, the network is

conditioned on the layer-wise mean of gradients.

After the initialization is adapted to each task, the network

undergoes fast adaptation as in Equation (1) and the initial-

ization is updated as in Equation (2) during training. The

overall training procedure is summarized in Algorithm 1.

4. Experiments

In this section, we demonstrate the effectiveness and gen-

eralizability of our method through extensive experiments

on various problems, including few-shot classification, re-

gression, and reinforcement learning.

4.1. FewShot Classification

Two well-known datasets, miniImageNet and tieredIma-

geNet are used for the classification test, both of which are

extracted from ImageNet dataset while taking into account

for few-learning scenarios. miniImageNet is constructed

by randomly selecting 100 classes from the ILSVRC-12

dataset, with each class consisting of 600 images of size 84

× 84 [32]. The constructed dataset is divided into 3 disjoint

subsets: 64 classes for training, 16 for validation, and 20 for

test as in [18].

tieredImageNet is a larger subset with 608 classes with

779,165 images of size 84× 84 in total. Classes are grouped

into 34 categories, according to ImageNet hierarchy. These

categories are then split into 3 disjoint sets: 20 categories

for training, 6 for validation, and 8 for test. According

to [20], this minimizes class similarity between training

and test and thus makes the problem more challenging and

realistic. Experiments for tieredImageNet and miniImageNet

are conducted under typical settings: 5-way 1-shot and 5-way

Backbone
miniImageNet

1-shot 5-shot

Matching Network [32] 4 conv 43.44± 0.77% 55.31± 0.73%

Meta-Learner LSTM (Ravi et al. 2017) 4 conv 43.56± 0.84% 60.60± 0.71%

MetaNet (Munkhdalai et al. 2017) 5 conv 49.21± 0.96% −
LLAMA [6] 4 conv 49.40± 0.84% −
Relation Network [28] 4 conv 50.44± 0.82% 65.32± 0.70%

Prototypical Network (Snell et al. 2017) 4 conv 49.42± 0.78% 68.20± 0.66%

MAML (Finn et al. 2017) 4 conv 48.70± 1.75% 63.11± 0.91%

MAML++ (Antoniou et al. 2019) 4 conv 52.15± 0.26% 68.32± 0.44%

MAML+L2F (Ours) 4 conv 52.10± 0.50% 69.38± 0.46%

MetaGAN [35] ResNet12 52.71± 0.64% 68.63± 0.67%

SNAIL [13] ResNet12*
55.71± 0.99% 68.88± 0.92%

adaResNet [15] ResNet12 56.88± 0.62% 71.94± 0.57%

CAML [8] ResNet12*
59.23± 0.99% 72.35± 0.71%

TADAM (Oreshkin et al. 2018) ResNet12*
58.5± 0.3% 76.7± 0.3%

MAML ResNet12 51.03± 0.50% 68.26± 0.47%

MAML+L2F (Ours) ResNet12 57.48± 0.49% 74.68± 0.43%

LEO [21] WRN34*
61.76± 0.08% 77.59± 0.12%

LEO (reproduced) WRN34*
61.50± 0.17% 77.12± 0.07%

LEO+L2F (Ours) WRN34*
62.12 ± 0.13% 78.13 ± 0.15%

* a pre-trained network.

Table 1: Test accuracy on 5-way miniImageNet classification
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Backbone
tieredImageNet

1-shot 5-shot

MAML 4 conv 49.06± 0.50% 67.48± 0.47%

MAML+L2F (Ours) 4 conv 54.40± 0.50% 73.34± 0.44%

MAML ResNet12 58.58± 0.49% 71.24± 0.43%

MAML+L2F (Ours) ResNet12 63.94± 0.48% 77.61± 0.41%

LEO WRN34*
66.33± 0.05% 81.44± 0.09%

LEO (reproduced) WRN34*
67.02± 0.11% 82.29± 0.16%

LEO+L2F (Ours) WRN34*
68.00 ± 0.11% 83.02 ± 0.08%

* a pre-trained network.

Table 2: Test accuracy on 5-way tieredImageNet classifica-

tion

5-shot classification. For more experiments on other datasets,

such as FC100 [17], CIFAR-FS [3], and Meta-Dataset [31],

please see the supplementary materials.

4.1.1 Results
The results of our proposed approach, other baselines and

existing state-of-the-art approaches on the miniImageNet

and tieredImageNet are presented in Table 1 and Table 2,

respectively. The proposed method improves MAML by a

large margin. We note that our proposed approach remains

model-agnostic and achieves better or comparable accuracy

to the state-of-the-art approaches with the same backbone,

even without fine-tuning. To show generalization of the con-

tribution, we apply L2F to the state-of-the-art MAML-based

system LEO and demonstrate the performance improvement,

achieving the new state-of-the-art performance.

4.1.2 Ablation Studies

Inner-loop
MAML MAML+L2F(Ours)

update steps

1 56.93± 0.32% 68.16± 0.47%

2 55.63± 0.50% 66.85± 0.49%

3 58.79± 0.49% 68.61± 0.46%

4 62.72± 0.45% 68.66± 0.43%

5 63.94± 0.41% 69.38± 0.46%

6 64.54± 0.46% −

Table 3: Ablation studies on inner-loop update steps on

5-way 5-shot miniImageNet classification.

Inner-loop update steps One may argue that the compar-

isons are not fair because there is one extra adjustment to

initialization parameters before inner-loop updates. Table 3

shows ablation studies on the number of inner-loop updates

for the proposed and the baseline to demonstrate that the per-

formance gain is not due to an extra number of adjustments

to parameters. Rather, the benefits come from forgetting the

unnecessary information, helping the learner quickly adapt

to new tasks.

Attenuation Scope One may be curious and ask: Is layer-

wise attenuation the best way to go? Thus, we analyze differ-

ent scopes of attenuation; a single attenuation parameter for

the whole network, or an individual attenuation parameter

for each layer, each filter, and each weight of the network.

To focus on investigating which scope of attenuation is most

beneficial, we remove the task-dependent part and make the

attenuation parameters learnable (with values initialized to

be 1), rather than generated by the network gφ.

We perform an ablation study with a 4-layer CNN in

5-way 5-shot classification setting on miniImageNet and

present results in Table 4. As expected, the layer-wise at-

tenuation gave the most performance gain. Weight-wise or

filter-wise attenuation parameter may have finer control, but

these parameters have limited scope in that they do not have

information about conflicts that occur at the level of layers

or network. On the other hand, layer-wise and network-

wise parameters gain information about conflicts in neighbor

weights as gradients pass through different weights/filters to

reach the same attenuation parameter, since the attenuation

parameter is shared by these weights/filters. In the meantime,

network-wise parameters do not have enough control and

thus perform worse than the layer-wise parameters. In the

trade-off between control and information gain, layer-wise

has shown to strike the right balance.

Effect of Task-Conditioning Table 4 reports lower per-

formance of layer-wise attenuation model, compared to our

full model, MAML+L2F. The only difference between the

layer-wise attenuation model and ours is that the layer-wise

attenuation model lacks the task-conditioning. One can ob-

serve that the most performance gain in our method comes

from the attenuation, alluding to the importance of attenu-

ation. Regardless, the task-conditioning does improve the

performance as well.

Representation of Task Embedding To verify that gra-

dients contain high-quality information about tasks, we

condition the network g on the mean of class prototypes

from the pre-trained prototypical network [27](similar to

TADAM [17]) as task representation. Table 5 demonstrates

that our method with gradients as task representation per-

forms similarly or slightly better than the one with the mean

of class prototypes. This exhibits the effectiveness of gra-

Attenuation Scope Accuracy

None (MAML, our reproduction) 63.94± 0.48%

parameter-wise 64.7± 0.43%

filter-wise 65.35± 0.48%

layer-wise 68.49 ± 0.41%

network-wise 67.84± 0.46%

MAML+L2F (Ours) 69.38 ± 0.46%

Table 4: Ablation studies on attenuation scope. Except

MAML+L2F, all models learn task-independent attenuation

parameters to illustrate the effect of attenuation scope alone,

without task-conditioning.
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miniImageNet

5-shot

Features (class prototype) 68.73± 0.46%

Gradients (Ours, MAML+L2F) 69.48± 0.46%

Table 5: Ablation studies on types of representation for task

embedding

Model Description Accuracy

1 MAML (our reproduction) 63.94± 0.48%

2 MAML + task-dependent non-sigmoided γ
j

i , δ
j

i 66.22± 0.47%

3 MAML + task-dependent non-sigmoided γ
j

i 67.56± 0.47%

Ours MAML + L2F (task-dependent sigmoided γ
j

i ) 69.38 ± 0.46%

Table 6: Ablation studies on task-conditioned transformation

to illustrate the effectiveness of attenuation.

dients as task representation from the perspective of the

optimization, especially because gradients are simple to ob-

tain and model-agnostic while class prototypes are high-

dimensional and not applicable across different domains.

Effect of Attenuation To analyze how much performance

gain comes from each part of L2F (i.e. forgetting and task-

dependency), we apply each module separately to MAML

and present results in Table 6. Since the investigation on

effectiveness of task-dependency has already been presented

in Table 4, we now focus on the effectiveness of the attenua-

tion, compared to other variant transformations. To that end,

we explore different types of task-dependent transformations

of the initialization. We start with the simple superset of

the attenuation: γ without sigmoid (Model 3) such that γi is

no longer restricted to be between 0 and 1, and hence does

not facilitate attenuation. We also explore a more flexible

option: affine transformation (Model 2), where the network

gφ generates two sets of parameters γi, δi without sigmoid,

which will modulate fθ via γ
j
i θ

j + δ
j
i .

Table 6 illustrates that MAML gains performance boost

throughout different types of task-dependent transformation,

suggesting the benefits of the task-dependency. It is reason-

able to expect that more flexibility of transformation (Model

2 and 3) would allow for tasks to bring the initialization to

more appropriate location for fast adaptation. Interestingly,

the classification accuracy drops as more flexibility is given

to the transformation of the initialization. This seeming con-

tradiction underlines the necessity of attenuation (sigmoided

γ
j
i in our model), rather than just naı̈ve transformation, of

the initialization to forget the compromised part of the prior

knowledge encoded in the initialization.

We would like to stress that MAML with task-

independent layer- or network-wise attenuation in Table 4

performs better than other task-conditioned transformations

in Table 6. This suggests that it is more important to forget

the compromised initialization than making it task-adaptive.

Models 1 step 2 steps 5 steps

5-shot training
MAML 1.2247 1.0268 0.8995

MAML+L2F (Ours) 1.0537 0.8426 0.7096

10-shot training
MAML 0.9884 0.6192 0.4072

MAML+L2F (Ours) 0.8069 0.5317 0.3696

20-shot training
MAML 0.6144 0.3346 0.1817

MAML+L2F (Ours) 0.5475 0.2805 0.1629

Table 7: MSE averaged over the sampled 100 points with

95%confidence intervals on k-shot regression. Our method

consistently outperforms across all gradient steps.

4.2. Regression

We investigate the generalizability of the proposed

method across domains, starting with evaluating the per-

formance in k-shot regression. In k-shot regression, the

objective is to fit a function, given k samples of points. Fol-

lowing the general settings from [5, 12], the target function

is set to be a sinusoid with varying amplitude and phase

between tasks. The sampling range of amplitude, frequency,

and phase defines a task distribution and is set to be the same

for both training and evaluation. Regression is visualized in

Figure 4(a), while its prediction, measured in mean-square

error (MSE), is presented in Table 7. The results demon-

strate that our method not only converges faster but also fits

to target functions more accurately.

To further stress the generalization of the MAML+L2F

initialization, we extensively increase the degree of conflicts

between new tasks and the prior knowledge. To that end, we

modify the setting such that amplitude, frequency, and phase

are sampled from the non-overlapped ranges for training and

evaluation (please refer to the supplementary material for

details). In Figure 4(b), our model exhibits higher accuracy

and thus claims the better generalization.

4.3. Reinforcement Learning

To further validate the generalizability of L2F, we evalu-

ate the performance in reinforcement learning, specifically

in 2D navigation and locomotion environments from [4] as

in [5]. We briefly outline the task description below (please

refer to the supplementary material for details). Figure 5

presents consistent improvement over MAML across dif-

ferent experiments. This solidifies the generalizability and

effectiveness of our proposed method.

4.3.1 2D Navigation

A 2D navigation task is to move an agent from the starting

point to the destination point in 2D space, where the reward

is defined as the negative of the squared distance to the desti-

nation point. We follow the experiment procedure from [5],

where they fix the starting point and only vary the location

of destination between tasks.

Figure 5(a) presents faster and more precise navigation

by our model in both experiment settings, both quantitatively
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(b) Non-overlapped task distributions on 5-shot

Figure 4: MAML + L2F (Ours) vs MAML on Few-shot regression: (a) Tasks are sampled from the same distribution for

training and evaluation. (b) Tasks are sampled from the non-overlapped distributions for training and evaluation. In both cases,

MAML+L2F (Ours) is more fitted to the true function.
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Figure 5: Reinforcement learning results for 3 different environments. The results show that MAML+L2F(Ours) can adapt to

each task substantially faster than MAML.

and qualitatively. This solidifies the severity of the conflicts

between tasks.

4.3.2 Mujoco
As a more complex reinforcement-learning environment, we

experiment on locomotion with the MuJoCo simulator [30],

where there are two sets of tasks: a robot is required to

move in a particular direction in one set and move with a

particular velocity in the other. For both experiments,our

method outperforms MAML in large margins as shown in

Figure 5(b), (c).

4.4. Loss Landscape

We further validate the effectiveness of our model by il-

lustrating the smoother loss landscape after applying L2F to

MAML for the miniImageNet classification tasks, as shown

in Figure 2. At the initial stages of training, L2F appears to

struggle more, while optimization of MAML seems more

stable. This may seem contradictory at first but this actu-

ally validates our argument about conflicts between tasks

even further. At the beginning, the MAML initialization is

not trained enough and thus does not have sufficient prior

knowledge of task distribution yet. As training proceeds, the

initialization encodes more information about task distribu-

tion and encounters conflicts between tasks more frequently.

As for L2F, the attenuator gφ initially does not have enough

knowledge about the task distribution and thus generates

meaningless attenuation γi, deteriorating the initialization.

But, the attenuator increasingly encodes more information

about the task distribution, generating more appropriate at-

tenuation γi that corresponds to tasks well. The generated γi
accordingly allows for a learner to forget the irrelevant part

of prior knowledge to help fast adaptation, as illustrated by

increasing stability and smoothness of landscape.

5. Conclusion

In this paper, we argue that forcibly sharing a common

initialization in MAML induces conflicts across tasks and

thus results in the compromised location of the initialization.

The severely sharp loss landscape asserts that such com-

promise makes the MAML initialization a “bad” starting

position for fast adaptation. We propose to resolve this dis-

crepancy by facilitating forgetting (attenuating) the irrelevant

information that may hinder fast adaptation. Specifically,

we propose a task-dependent layer-wise attenuation, named

L2F, motivated by the observation that the degree of com-

promise varies between network layers and tasks. Through

extensive experiments across different domains, we validate

our argument that selective forgetting greatly facilitates fast

adaptation while retaining the simplicity and generalizability

of MAML.
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