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Abstract

Attribution methods can provide powerful insights into

the reasons for a classifier’s decision. We argue that a key

desideratum of an explanation method is its robustness to

input hyperparameters which are often randomly set or em-

pirically tuned. High sensitivity to arbitrary hyperparam-

eter choices does not only impede reproducibility but also

questions the correctness of an explanation and impairs the

trust of end-users. In this paper, we provide a thorough em-

pirical study on the sensitivity of existing attribution meth-

ods. We found an alarming trend that many methods are

highly sensitive to changes in their common hyperparame-

ters e.g. even changing a random seed can yield a different

explanation! Interestingly, such sensitivity is not reflected in

the average explanation accuracy scores over the dataset as

commonly reported in the literature. In addition, explana-

tions generated for robust classifiers (i.e. which are trained

to be invariant to pixel-wise perturbations) are surprisingly

more robust than those generated for regular classifiers.

1. Introduction

Why did a self-driving car decide to run into a truck [29]?
Why is a patient being predicted to have breast cancer [59]
or to be a future criminal [2]? The explanations for such
predictions made by machine learning (ML) models can im-
pact our lives in many ways, under scientific [53, 37], social
[18] or legal [24, 19] aspects.

A popular medium for visually explaining an image clas-
sifier’s decisions is an attribution map i.e. a heatmap that
highlights the input pixels that are the evidence for and
against the classification outputs [35]. Dozens of attribu-
tion methods (Fig. 1) have been proposed [44] and applied
to a variety of domains including natural images [35], med-
ical brain scans [25], text [12], videos [50], and speech [14].
Notably, attribution maps have been useful e.g. in localizing
malignant tumors in a breast x-ray scan [41] or in revealing
biases in object recognition models [30, 31]. Yet are these
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Input image Attribution maps (i.e. explanations)

Random seed: 0 1 2

Patch size: 5⇥ 5 29⇥ 29 53⇥ 53

Blur radius: 5 10 30

Sample size: 50 200 800

Figure 1: Attribution maps by four methods to explain the
same prediction (match stick: 0.535) made by a ResNet-
50 classifier to an ImageNet image. In each row, the ex-
planations are generated by running the default settings of
a method while varying only one common hyperparameter.
All 12 explanations are unique and can be interpreted differ-
ently. LIME: an explanation changes when one re-runs the
algorithm with a different random seed. SP: the positive ev-
idence for the fire (top-right red blob) grows together with
the patch size. MP: attribution maps become more scat-
tered as the Gaussian blur radius increases. SG: heatmaps
becomes smoother as the number of samples increases.

explanations reliable enough to convince medical doctors or
judges to accept a life-critical prediction by a machine [32]?

First, ML techniques often have a set of hyperparame-
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ters to be tuned empirically and most attribution methods
are not an exception. Second, a major cause of the cur-
rent replication crisis in ML [27] is that many methods,
e.g. in reinforcement learning, are notoriously sensitive to
hyperparameters—a factor which is also often overlooked
in the interpretability field. Aside from being faithful, an
explanation needs to be reproducible and invariant to arbi-
trary hyperparameter choices. In this paper, we studied an
important question: How sensitive are attribution maps to

their hyperparameters? on 7 well-known attribution meth-
ods and found that:1

1. Gradient heatmaps, for robust image classifiers i.e.
models trained to ignore adversarial pixel-wise noise
[21], exhibit visible structures (Fig. 3) in stark contrast
to the noisy, uninterpretable gradient images for regu-
lar classifiers reported in prior work [48] (Sec. 4.1).

2. The gradient images from a robust and a regular clas-
sifier are different but would appear ⇠1.5⇥ more sim-
ilar, potentially causing misinterpretation, under sev-
eral prior methods that attempted to de-noise the orig-
inal explanations [49, 48] (Sec. 4.2).

3. For many attribution methods [42, 22, 60], their out-
put heatmaps can change dramatically (Fig. 1) when a
common hyperparameter changes (Sec. 4.3). This sen-
sitivity of an individual explanation also translates into
the sensitivity of its accuracy scores (Sec. 4.5).

4. Some hyperparameters cause up to 10⇥ more variation
in the accuracy of explanations than others (Sec. 4.6).

5. Explanations for robust classifiers are not only more
invariant to pixel-wise image changes (Sec. 4.1) but
also to hyperparameter changes (Sec. 4.3)

2. Methods and Related Work

Let f : Rd×d×3 ! [0, 1] be a classifier that maps a color
image x of spatial size d ⇥ d onto a probability of a tar-
get class. An attribution method is a function A that takes
three inputs—an image x, the model f , and a set of hy-
perparameters H—and outputs a matrix a = A(f,x,H) 2
[�1, 1]d×d. Here, the explanation a associates each input
pixel xi to a scalar ai 2 [�1, 1], which indicates how much
xi contributes for or against the classification score f(x).

Methods Attribution methods can be categorized into two
main types: (1) exact and (2) approximate approaches. Ex-

act approaches may derive an attribution map by upsam-
pling a feature map of a convolutional network [62], or from
the analytical gradients of the classification w.r.t. the input
i.e. rxf [47, 8], or by combining both the gradients and

1Code is available at https://github.com/anguyen8/sam

the feature maps [45]. These approaches enjoy fast deriva-
tion of explanations and have no hyperparameters in princi-
ples. However, they require access to the internal network
parameters—which may not be available in practice. Also,
taking gradients as attributions faces several issues: (1) gra-
dient images are often noisy [48] limiting their utility; (2)
gradient saturation [51] i.e. when the function f flattens
within the vicinity of a pixel xi, its gradient becomes near-
zero and may misrepresent the actual importance of xi; (3)
sudden changes in the gradient @f/ @xi (e.g. from ReLUs
[36]) may yield misleading interpretation of the attribution
of pixel xi [46].

Therefore, many approximate methods have been pro-
posed to modify the vanilla gradients to address the afore-
mentioned issues [48, 51, 13]. Among gradient-based meth-
ods, we chose to study the following four representatives.
Gradient [47, 8] The gradient image rxf quantifies how a
small change of each input pixel modifies the classification
and therefore commonly serves as an attribution map.
SmoothGrad (SG) [48] proposed to smooth out a gradient
image by averaging out the gradients over a batch of NSG

noisy versions xn of the input image x0. That is, an SG
heatmap is 1

NSG

PNSG

1
rxf(x0 + ✏) where ✏ ⇠ N (0,�).

Gradient � Input (GI) [46] As gradients are often noisy
and thus not interpretable [48], element-wise multiplying
the gradient image with the input i.e. rxf � x can yield
less-noisy heatmaps in practice. Here, the input image acts
as a model-independent smoothing filter. GI is an approxi-
mation of a family of related LRP methods [13] as shown in
[11] and is also a representative for other explicit gradient-
based extensions [25, 61, 34, 46].
Integrated Gradients (IG) [51] In order to ameliorate the
gradient saturation problem [51], IG intuitively replaces the
gradient in GI [46] with an average of the gradients evalu-
ated for NIG images linearly sampled along a straight line
between the original image x and a zero image. IG is intu-
itively a smooth version of GI and depends on the sample
size NIG while GI has no hyperparameters.

Furthermore, there exist other approximate methods that
attempt to compute the attribution of an input region by re-
placing it with zeros [60, 42], random noise [17], or blurred
versions of the original content [22]. These methods inher-
ently depend on many empirically-chosen hyperparameters.
Among the family of perturbation-based methods, we chose
to study the following three famous representatives.
Sliding Patch (SP) [60] slides a square, occlusion patch of
size p⇥ p across the input image and records the prediction
changes into an attribution map. This approach is applicable
to any black-box classifier f and widely used [25, 4, 38, 11].
LIME [42] Instead of a square patch, LIME generates
NLIME masked images {x̄i} by masking out a random set
of S non-overlapping superpixels in the input image. Intu-
itively, the attribution for a superpixel k is proportional to
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the average score f(x̄i) over a batch of NLIME perturbed
images where the superpixel k is not masked out.
Meaningful-Perturbation (MP) [22] finds a minimal
Gaussian blur mask of radius bR such that when applied
over the input image would produce a blurred version that
has a near-zero classification score. MP is the basis for
many extensions [56, 40, 15, 57, 54, 9]. In this paper, we
evaluate MP sensitivity to three common hyperparameters:
the blur radius bR, the number of steps Niter, and the ran-
dom seed (which determines the random initialization).

See Sec. S1 for a detailed description of all methods.

Explanation sensitivity First, recent work has argued
that some attribution methods have a problem of being
highly sensitive to small pixel-wise changes in the input
image [28, 10, 23]. Our results suggest that such sensi-
tivity to image changes also depends on the classifier f .
That is, gradient-based explanations of a robust classifier
stay more consistent when the input image is perturbed with
pixel-wise noise (Sec. 4.1). Second, some attribution meth-
ods were found to behave akin to an edge detector i.e. pro-
ducing similar explanations despite that f ’s parameters are
randomized to various degrees [8]. In sum, previous work
has studied the sensitivity of explanations to input image
changes [28, 10, 23] and classifier changes [8]. In this pa-
per, we present the first systematic study on the sensitiv-
ity of explanations to changes in the hyperparameters H,
which are often randomly or heuristically tuned [48, 58].

3. Experiment framework

Explanation evaluation metrics Currently, there is not
yet a common ground-truth dataset for evaluating the accu-
racy of attribution methods [18]. However, researchers of-
ten approximate explanation correctness via two main tech-
niques: (1) object localization [62]; and (2) Insertion &
Deletion [38]. The localization error measures how ac-
curately an attribution map localizes the main object in the
input image [62]—a reasonable approximation for the Ima-
geNet images [43], which are object-centric and paired with
human-labeled segmentation masks. We did not use evalua-
tion metrics like Pointing Game accuracy [61] and Saliency
Metric [17] as they are derivatives of the localization task.
The Deletion metric [38] measures the classification score
changes as we gradually zero out the input pixels in the de-
scending order of their attributions. The idea is if the attri-
bution values correctly reflect the discriminative power of
the input pixels, knocking out the highest-attribution pixels
should quickly cause the probability to approach zero. In
contrast, Insertion [38] tests whether inserting the highest-
attribution pixels into a zero image would quickly increase
the probability. We used all three above mentioned metrics2

2We used the Insertion and Deletion code by the authors [38].

to quantify how much the variation of explanations trans-
lates into the sensitivity of their accuracy (Sec. 4.5).
Classifiers All of our experiments were conducted on two
groups of classifiers: (a) GoogLeNet [52] & ResNet-50 [26]
(hereafter, ResNet) pre-trained on the 1000-class 2012 Im-
ageNet dataset [43]; and (b) the robust versions of them
i.e. GoogLeNet-R & ResNet-R that were trained to also be
invariant to small adversarial changes in the input image
[20]. We obtained the two regular models from the PyTorch
model zoo [39], the ResNet-R from [20], and we trained
GoogLeNet-R by ourselves using the code released by [20].
While the two robust classifiers are more invariant to pixel-
wise noise they have lower ImageNet validation-set accu-
racy scores (50.94% and 56.25%) than those of the original
GoogLeNet & ResNet (68.86% and 75.59%).
Datasets From the 50,000 ImageNet validation-set im-
ages, we randomly sampled a set of 1735 images that all
four models correctly classify. We used this set of images
in all experiments throughout the paper.
Similarity metrics To quantify the sensitivity of attribu-
tion maps, we followed Adebayo et al. [8] and used three
measures3 that cover a wide range of similarity notions:
Spearman rank correlation, Pearson correlation of the his-
togram of gradients (HOGs), and the structural similarity
index (SSIM). To quantify the sensitivity of the accuracy
scores of explanations, we used the standard deviation (std).

4. Experiments and Results

4.1. Gradient maps of robust classifiers are smooth
and insensitive to pixel-wise image noise

Gradient saliency maps of image classifiers are (1) noto-
riously noisy [47, 48, 13] limiting their utility and (2) sen-
sitive to input changes [10]. Therefore, a number of tech-
niques have been proposed to de-noise the gradient images
[46, 48, 49, 45]. However, are these smoothing techniques
necessary for gradients of robust classifiers?

First, we observed, for the first time, that the vanilla gra-
dients of robust classifiers consistently exhibit visible struc-
tures (see the outline of the goblet in Fig. 3c & e), which is
surprising! They are in stark contrast to the noisy gradients
of regular classifiers (Fig. 3b & d).

Second, we found that the gradient explanations of ro-
bust classifiers are significantly more invariant to a large
amount of random noise added to the input image. Specif-
ically, for each image x in the dataset, we added noise
⇠ N (0, 0.1) to generate a noisy version xn (Fig. 3; bot-
tom) and measured the similarity between the saliency maps
for the pair (x, xn) using all three similarity metrics de-
scribed in Sec. 3. Across all images and all three quantita-
tive metrics, the gradients of robust classifiers are substan-
tially more invariant to noise than their regular counterparts

3We used the implementation by scikit-image [55].
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(a) Input image (b) Grad (c) NSG=50 (d) NSG=100 (e) NSG=200 (f) NSG=500 (g) NSG=800 (h) GB [49] (i) ResNet-R Grad

SSIM 0.5182 0.6674 0.7057 0.7117 0.7374 0.7380 0.7560 1.0000

Figure 2: The SmoothGrad [48] explanations (b–g) for a prediction by ResNet are becoming increasingly similar to the
explanation for a different prediction by a ResNet-R as we increase NSG—a hyperparameter that governs the smoothness
of SG explanations. Similarly, under GuidedBackprop (GB) [49], the explanation appears substantially closer to that of a
different model (h vs. i) compared the original heatmaps (b vs. i). Below each heatmap is the SSIM similarity score between
that heatmap and the ResNet-R heatmap (i). See more examples in Fig. S14.

(a) (b) (c) (d) (e)
Input GoogLeNet GoogLeNet-R ResNet ResNet-R

N
oi

sy
C

le
an

SSIM: 0.2163 0.7372 0.4740 0.8067

Figure 3: Top: The gradients of robust classifiers (c & e)
reflect the structure of the goblet in an example input im-
age (a), which is in stark contrast to the commonly reported
noisy gradients of regular classifiers (b & d). Bottom: The
gradients of robust classifiers remain similar before and af-
ter the addition of noise to the input image (c & e—higher
SSIM scores). An SSIM similarity score is for the two im-
ages in each column.

(Figs. 5a & S13). For example, the average similarity of
the gradient pairs from robust models is ⇠36⇥ higher than
that of the counterparts under the Spearman rank correlation
(Fig. S13; leftmost bars). This result interestingly show that
the gradients of robust models are fairly insensitive to minor
pixel-wise image changes—a concern in [28, 10, 23].

4.2. De-noising explanations may cause misinter-
pretation

We have shown that the vanilla gradients of robust clas-
sifiers can be fairly smooth (Sec. 4.1). That result naturally
raises a follow-up question: Do the smoothing techniques
[48, 45, 49] improve or mislead our interpretation of expla-
nations? To shed light on that question, we quantify the sim-
ilarity between (a) the de-noised explanations by SG [48]
for a regular classifier and (b) the vanilla gradient saliency
maps for a robust classifier.
Experiment For each image, we generated SG explana-
tions for regular models by sweeping across a range of the

sample size NSG 2 {0, 50, 100, 200, 500, 800}. Here, NSG

= 0 yields the vanilla gradient. We measured the similar-
ity between each SG heatmap of a regular model and the
vanilla gradient of a robust counterpart model (e.g. ResNet
vs. ResNet-R).
Results We observed that as the sample size NSG in-
creases, the resultant explanations of ResNet become in-
creasingly more similar to the explanation of ResNet-R—a
completely different classifier! That is, the SSIM similarity
between two heatmaps increases up to ⇠1.4⇥ (Fig. 2; b–g)
on average. This monotonic trend is also observed across
three similarity metrics and two pairs of regular vs. robust
models (Fig. S3).

Additionally, we generated an explanation using another
popular explanation method, GuidedBackprop (GB) [49],
which modifies the gradient by only letting the positive for-
ward activations and backward gradients to flow through
during backpropagation. Across the dataset, the average
similarity between a pair of (ResNet GB heatmap, ResNet-
R gradient heatmap) is 0.377 while the original similarity
between the vanilla gradients of two models is only 0.239.

In sum, our result shows that two explanations from two
completely different classifiers (ResNet vs. ResNet-R) may
become substantially more similar under explanations tech-
niques (here, SG and GB) that attempt to heuristically de-
noise heatmaps, potentially misleading user interpretation.
We reached the same conclusion by comparing GI and its
approximate version i.e. IG [51] (see Sec. S3).

4.3. Gradient-based attribution maps are sensitive
to hyperparameters

In practice, attribution methods often have various hy-
perparameters that are either randomly set (e.g. a random
seed [42]) or empirically tuned (e.g. the number of opti-
mization steps [22]). It is important to understand how such
choices made by the end-user vary the explanations (Fig. 1),
which impedes reproducibility and can impair users’ trust
e.g. a medical doctor’s trust in a model’s explanation of
its prediction [32, 18]. Here, we quantify the sensitivity
of attribution maps generated by two representative meth-
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SSIM: 0.2669

SSIM: 0.8493

(a) Sensitivity to changes in the blur radius bR

SSIM: 0.3536

SSIM: 0.9313

(b) Sensitivity to changes in the number of iterations Niter

Figure 4: MP attribution maps generated for a regular model (ResNet) are highly sensitive to changes (i.e. low SSIM scores)
in the Gaussian blur radius bR (a) and in the number of iterations Niter (b). In contrast, the same MP explanations for a robust
model (ResNet-R) are substantially more stable (see Fig. S8 for quantitative results). Two reference images in this figure are
the top-2 that cause the largest differences between the SSIM scores of ResNet vs. ResNet-R heatmaps. MP being more
unstable with ResNet compared to that with ResNet-R can be seen quantitatively in the loss plot (Fig. S9) and qualitatively
in the evolution of the MP heatmaps (Fig. S10). See Fig. S16 for more examples of the blur sensitivity experiments.

ods (SG and MP) as a common hyperparameter changes.
In all experiments, we compare the average pair-wise sim-
ilarity between a reference heatmap—the explanation gen-
erated using the default settings provided by the authors—
and those generated by changing one hyperparameter.

4.3.1 SmoothGrad is sensitive to sample sizes

SG was created to combat the issue that gradient images
for image classifiers are often too noisy to be human-
interpretable—an issue reported in many previous papers
[48, 49, 13, 47] and also shown in Sec. 4.1. While SG does
qualitatively sharpen the explanations [48] (see Fig. 2b vs.
c), the method also introduces two hyperparameters (1) the
sample size NSG and (2) the Gaussian std � that were em-
pirically tuned [48]. Here, we test the sensitivity of SG ex-
planations when varying these two hyperparameters.
Experiment To test the sensitivity to sample sizes, we
measure the average pair-wise similarity between a refer-
ence heatmap at NSG = 50 (Fig. S12b; ii)—i.e. the default
value in [48]—and each of the four heatmaps generated by
sweeping across NSG 2 {100, 200, 500, 800} (Fig. S12b;
iii—vi) on the same input image. � is constant at 0.15.
Results We found that the SG explanations for robust
models exhibited near-maximum consistency (Fig. S12a;
all scores are near 1.0). In contrast, the robustness of SG
when running on regular models is consistently lower un-
der all three metrics (Fig. S12a; light vs. dark red or light
vs. dark green). SG heatmaps for robust classifiers appear
sharper and less noisy compared to those of regular mod-
els (Fig. S12b; top vs. bottom). Furthermore, while SG
heatmaps may appear qualitatively stable (Fig. S12b; ii–vi),
the actual pixel-wise variations are not. For example, the L1

pixel-wise difference between the ResNet heatmaps at the

two extreme settings (i.e. NSG = 50 vs. 800) is over 5⇥
larger than the difference between the respective ResNet-R
explanations (Fig. S12b; vii).

In sum, we showed that it is non-trivial how to tune a
hyperparameter, here NSG, to yield an accurate explanation
because the heatmaps vary differently for different classi-
fiers. Similarly, we further found SG heatmaps to be highly
sensitive to changes in the amount of noise i.e. Gaussian std
� (Sec. S4.1) added to the input image.

4.3.2 Meaningful-Perturbation is sensitive to the num-

ber of iterations, the Gaussian blur radius, and

the random seed

MP [22] is a representative of a family of methods that
attempt to learn an explanation via iterative optimization
[56, 40, 15, 57, 54, 9]. However, in practice, optimization
problems are often non-convex and thus the stopping crite-
ria for iterative solvers are heuristically set. For instance,
it can be controlled by a pre-defined number of iterations
Niter. Also, MP learns to blur the input image to mini-
mize the classification scores and thus depends on the Gaus-
sian blur radius bR. Here, we test MP sensitivity to three
common hyperparameters: Niter, bR, and the random seed
which governs random initializations.
Experiment In order to test the sensitivity to the number
of iterations, we measure the average similarity between a
reference heatmap at Niter = 300 which is the default set-
ing in [22] and each of the three heatmaps generated by
sweeping across Niter 2 {10, 150, 450} (Fig. 4b) on the
same input image. To measure the sensitivity to the blur ra-
dius settings, we repeated a similar comparison to the above
for a reference heatmap at bR = 10 and other heatmaps by
sweeping across bR 2 {5, 30} (Fig. 4a). For other hyperpa-
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rameters, we used all default settings as in [22].
Results We found that MP explanations are sensitive to
changes in the blur radius but interestingly in opposite ways
for two different types of classifiers. That is, as we in-
crease bR, the heatmaps for ResNet tend to be more noisy
and sparse; however, those for ResNet-R become gradually
more localized and smoother (Fig. 4a; top vs. bottom). See
Fig. S16 for more examples.

Across the number of iterations, MP explanations for
regular classifiers vary dramatically. In contrast, the
heatmaps for robust models are 1.4⇥ more consistent un-
der SSIM similarity metrics (Figs. 4b & S10). The MP
optimization runs for robust models converged substan-
tially faster within only ⇠10 steps (compared to the default
Niter = 300 [22]) which can be seen in both the loss plot
(Fig. S9) and the sequence of heatmaps (Fig. S10). This
inconsistent behavior of MP suggests that when compar-
ing MP explanations between these two classifiers, an end-
user may draw an entirely different conclusion depending
on when optimization stops (which is heuristically chosen).
Sensitivity to the random seed Our previous experiments
followed exactly the setup in [22] where the authors used
a blur circular mask that suppresses the target probability
by 99% as the initial heatmap. This initialization, however,
strongly biases the optimization towards a certain type of
explanation. To avoid that, in practice, MP users randomly
initialize the explanation before optimization [16]. By run-
ning experiments similar to the previous ones, we found that
MP is also sensitive to the random seed, which controls the
random initializations. That is, on average across 3 similar-
ity metrics, heatmaps for robust classifiers are 1.22⇥ more
consistent than those for regular classifiers (see Sec. S4.3
for more details and Fig. S7 for results).

In sum, consistent with SG results (Sec. 4.3.1), robust
classifiers yield more stable explanations than regular mod-
els for the three aforementioned hyperparameters of MP
(Fig. S8). That is, not only the gradients of robust classifiers
are more interpretable but also more invariant to pixel-wise
image changes, yielding more robust explanations (Fig. 4b).

4.4. Non-gradient attribution maps are sensitive to
hyperparameters

4.4.1 Sliding-Patch is sensitive to the patch size

Sec. 4.3 shows that gradient-based explanation methods are
sensitive to hyperparameters and their sensitivity depends
on the robustness of the gradients with respect to the input
changes (Sec. 4.3.2). Here, we test whether methods that
are not gradient-based would have similar shortcomings.
We chose SP [60] which slides a square patch of size p⇥ p
across the input image and records the classification proba-
bility changes into the corresponding cells in the attribution
map. While SP has been widely used [60, 4, 11], it remains
unknown how to choose the patch size.

Input image 5× 5 17× 17 29× 29 41× 41 53× 53

zo
om

ed
-i

n
zo

om
ed

-o
ut

tennis ball: 0.985

tennis ball: 0.998

Figure 6: SP explanations are sensitive to patch sizes.
Zoomed-out: SP attribution region (red squares) for a ten-
nis ball of size 19⇥19 (rendered on a 224⇥224 zero image)
grows as the patch size increases. Zoomed-in: SP outputs
blank heatmaps at patch sizes of 5⇥5, 17⇥17, and 29⇥29,
which are much smaller than the size of the tennis ball (here,
84⇥ 84) in a zoomed-in version of the top image.

To understand the relation between SP patch size and

the size of the object in an input image, we generated two
images, each containing a tennis ball of size 19 ⇥ 19 or
84⇥84 on a zero background of size 224⇥224 (Fig. 6). We
ran SP on these two images sweeping across 5 patch sizes
of p ⇥ p where p 2 {5, 17, 29, 41, 53}. We observed that
the heatmaps tend to be blank when the patch size is much
smaller than the object size (Fig. 6; zoomed-in) because the
occlusion patch is too small to substantially change the clas-
sification score. In contrast, if the patch size is much larger
than the object size (Fig. 6; zoomed-out), the attribution ar-
eas tend to be exaggerated i.e. even larger than the object
size (Fig. 6; the size of the red square increases from left to
right). Therefore, SP explanations are subject to errors as
the size of the object in the image is unknown.
Sensitivity to large changes To quantify the sensitivity of
SP explanations to the patch size, here, we measure the av-
erage similarity between a reference SP attribution map at
p = 29 and each of the four attribution maps generated by
sweeping across p 2 {5, 17, 41, 53} on the same input im-
age. This set of patch sizes covers a large range of settings
(hence, denoted by SP-L) used in the literature [11, 60, 4].
We kept the stride constant at 3. We observed that across
all classifiers, SP is highly sensitive to changes within the
SP-L set. In contrast to the case of gradient-based methods,
SP explanations for robust classifiers are not significantly
more consistent than those for regular models (Fig. S11).
Compared to other methods, SP sensitivity to patch sizes
is higher than the sensitivity of SG and MP (Fig. 5a; SP-
L bars are the shortest on average). See Fig. S15 for more
examples on sensitivity to large changes in patch size.
Sensitivity to small changes We further repeated the pre-
vious experiment but comparing the similarity of SP expla-
nations at p = 53 with those generated at p 2 {52, 54} i.e. a
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(a) SSIM (b) Localization error (c) Deletion (d) Insertion

Figure 5: Average sensitivity of an individual attribution map measured in the pixel space (a) and three accuracy metric
spaces: the Localization error (b), Deletion (c) and Insertion (d) scores (Sec. 4.5). The results were produced by varying the
random seed of LIME and MP (bottom two rows), the patch size in SP (SP-S and SP-L), and the sample size of SG (top row).
SP-S and SP-L are two variants of the SP experiments (Sec. 4.4.1). For Localization performance of SP-S (b), even a change
of ±1px in patch size results in a std of ⇠10% for GoogLeNet (dark red) and ResNet (dark green). Compared to regular
models, robust models (here, GoogLeNet- and ResNet-R) cause the attribution maps to be more consistent pixel-wise under
hyperparameter changes—i.e. higher SSIM scores (a)—and also more consistent in the three accuracy metrics—i.e. lower
standard deviations (b–d). See Table S1 for the exact numbers.

small range (hence, denoted by SP-S). We observed that SP
explanations are not 100% consistent even when the patch
dimension changes within only ±1px (Fig. 5a; SSIM scores
for SP-S are < 1.0).

4.4.2 LIME is sensitive to random seeds and sample

sizes

LIME [42] is a black-box explanation method. Instead
of masking out a single square patch (as in SP), which
can yield the “square artifact” (Fig. 6; zoomed-out), LIME
masks out a finite set of random superpixels.

Our experiments show that LIME is highly sensitive to
its two common hyperparameters. First, LIME attribu-
tion maps interestingly often change as the random seed
(which controls the random sampling of superpixel masks)
changes! Second, LIME is also sensitive to the changes in
the number of perturbation samples. See Sec. S4.2 for more
details. Aligned with the results with SP (Sec. 4.4.1), here,
we did not find robust classifiers to yield more stable LIME
heatmaps than regular classifiers consistently under all three
similarity metrics. An explanation is that GoogLeNet-R and
ResNet-R are robust to pixel-wise changes but not patch-
wise or superpixel-wise changes (as done by SP and LIME)
in the input image. See Fig. S17 for a list of the most sensi-
tive cases across all the LIME sensitivity experiments.

4.5. How do the accuracy scores of an explanation
vary when a hyperparameter changes?

In Sec. 4.3 and Sec. 4.4, we have shown that many at-
tribution methods are highly sensitive to changes in their
common hyperparameters. For example, under SSIM, the
average explanation consistency is often far from the maxi-

mum (Fig. 5a; GoogLeNet and ResNet scores are far below
1.0). However, there is still a need to quantify how the vari-
ation in pixel-wise heatmaps translates into the variation in
accuracy scores. That is, two heatmaps that are different
pixel-wise may have the same accuracy score. Therefore,
it is important for users to understand: How much does the

correctness of an explanation varies, on average, when a

given hyperparameter changes? To answer that, here, we
quantify the variance of three explanation accuracy scores
(i.e. the Localization error, Insertion, and Deletion scores
described in Sec. 3) upon varying the most common hyper-
parameters of the considered attribution methods: (1) the
sample size in SG (Sec. 4.3.1); (2) the patch size in SP
(Sec. 4.4.1; both sweeping across a small range i.e. SP-S
and a large range i.e. SP-L); (3) the random seed in LIME
(Sec. 4.4.2); and (4) the random seed in MP (Sec. 4.3.2).
Experiment For each hyperparameter, we swept across
N values to generate the corresponding N explanations for
each input image. Using an accuracy metric, we evaluated
each set of N attribution maps per image to produce N ac-
curacy scores. From the N scores, we then obtained a mean
and a std, for each image. From the per-image means and
standard deviations, we then calculated the global mean and
average std across the dataset (Fig. 5). We repeated the same
procedure for each accuracy metric and each classifier.
Results First, we found that changing the tested hyperpa-
rameters (i.e. which are the most common) does not only
change the explanations (Fig. 5a; average SSIM scores are
under 1.0) but also their three downstream accuracy scores
(Fig. 5b–d; the average std bars are above 0). However,
explanation accuracy varies differently between the met-
rics. That is, compared to the mean scores (Fig. 5; cir-
cles), the score variation (in std) are higher for object local-
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(a) Localization error (b) Deletion (c) Insertion

Figure 7: Comparisons of the variation in three accuracy scores of attribution methods when changing different hyperpa-
rameters. Here, the horizontal bars show standard deviations (std) for the Localization error (a), Deletion (b) and Insertion
(c) scores obtained by marginalizing over all images and classifiers (see Sec. 4.6). Changing the number of superpixels (in
LIME) and the number of iterations (in MP) causes the largest sensitivity to the accuracy of the two methods, respectively.

ization (Fig. 5b) and lower for deletion and insertion met-
rics (Fig. 5c–d). Notably, the localization scores are highly
sensitive—the average stds of regular and robust models are
0.51⇥ and 0.31⇥ of their respective mean accuracy scores.

Second, varying the patch size of SP by only 1px caused
a small variation in the explanation (Fig. 5a; mean SSIM
scores are ⇡ 1 for SP-S) but a large variation in object local-
ization performance (Fig. 5b; for SP-S, the stds are ⇠10%
of the mean statistics).

Third, across all four tested hyperparameters and three
accuracy metrics, the correctness of explanations for robust
models is on average 2.4⇥ less variable than that for regu-
lar models. In sum, we found that explanations for robust
classifiers are not only more consistent but also more sim-
ilarly accurate upon varying the common hyperparameters
(compared to the darker bars i.e. regular classifiers, lighter
bars are longer in Fig. 5a and shorter in Fig. 5b–d).

4.6. Which hyperparameter when changed causes
a higher variation in explanation accuracy?

In Sec. 4.5, we show that the accuracy of an indi-

vidual explanation, on average, can vary substantially as
we change a hyperparameter. Here, we ask a different
important question: Which hyperparameter when varied

causes a higher variation in explanation accuracy? That
is, we attempt to compare hyperparameters by computing
the marginal effects of changing each hyperparameter to
the variation in accuracy scores (when marginalizing over
all images and four classifiers).
Experiment As a common practice in the literature, for
each classifier, we computed an accuracy score for each
generated explanation and took a mean accuracy score over
the entire dataset. Repeating the computation for N values
of each hyperparameter (e.g. N random seeds of LIME), we
obtained N mean accuracy scores from which we computed
an std s. For each hyperparameter, we averaged over {s}4
i.e. four such stds, each computed for a classifier, yielding
one global std, which is used for comparing hyperparame-
ters. Here, we compare the global stds for different hyper-

parameters within and between methods (see Fig. 7): (1) the
patch size in SP (Sec. 4.4.1; SP-S and SP-L); (2) the random
seed and the number of superpixels in LIME (Sec. 4.4.2);
(3) the random seed, the blur radius, and the number of it-
erations of MP (Sec. 4.3.2).
SP results Within SP, we found that varying the patch size
across a larger range yields a higher variation in accuracy
scores (Fig. 7a; SP-L vs. SP-S).
LIME results Our results enable quantitatively comparing
the effects of changing different hyperparameters. In LIME,
varying the number of superpixels causes far more sensitiv-
ity in the correctness of explanations compared to varying
the LIME random seed (Fig. 7; row 3 vs. 4). Specifically,
the std of Insertion scores when changing the number of su-
perpixels was 130.5⇥ higher as compared to the std when
changing the random seed (Fig. 7c).
MP results In MP, changing the number of optimization
iterations causes the largest sensitivity in explanation ac-
curacy (among the three MP hyperparameters). Precisely,
the std of Insertion scores, when changing the blur radius
bR and the number of iterations Niter, was 16.6⇥ and 74⇥
higher than that when changing the random seed (Fig. 7c;
bottom three rows).
Across methods Changing the random seed in LIME vs.
in MP (two different methods) interestingly causes a similar
variation in all three accuracy metrics (Fig. 7; row 3 vs. 5).

5. Discussion and Conclusion

We present the first thorough study on the sensitivity
of attribution methods to changes in their input hyperpa-
rameters. Our findings show that the attribution maps for
many gradient-based and perturbation-based interpretabil-
ity methods can change radically upon changing a hyperpa-
rameter, causing their accuracy scores to vary as well. We
propose to evaluate the sensitivity to hyperparameters as an
evaluation metric for attribution methods. It is important
to carefully evaluate the pros and cons of interpretability
methods with no hyperparameters and those that have.
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