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Figure 1. Left: MINA matches the straight cylinder X non-rigidly to the curved cylinder Y (their orientations are arbitrary, but we visualise

them with same orientation). It finds the globally optimal correspondences P ∈ P between a sparse set of points (coloured dots), as well

as the non-rigid deformation τ of X so that τ(X ) aligns with Y . MINA is highly flexible, e.g. it can match a mesh to a point cloud

(middle left), match shapes with different topologies (middle right, where the hands in X are not touching, while the hands in Y are, see

the geodesic paths between both hands shown as red lines), or deal with partial overlaps (right). (Best viewed on screen when zoomed in)

Abstract

We present a convex mixed-integer programming formu-

lation for non-rigid shape matching. To this end, we pro-

pose a novel shape deformation model based on an efficient

low-dimensional discrete model, so that finding a globally

optimal solution is tractable in (most) practical cases. Our

approach combines several favourable properties: it is in-

dependent of the initialisation, it is much more efficient to

solve to global optimality compared to analogous quadratic

assignment problem formulations, and it is highly flexible

in terms of the variants of matching problems it can handle.

Experimentally we demonstrate that our approach outper-

forms existing methods for sparse shape matching, that it

can be used for initialising dense shape matching methods,

and we showcase its flexibility on several examples.

1. Introduction

Finding correspondences in geometric data is a long-

standing problem in vision, graphics, and beyond. The ap-

plications range from the creation of statistical shape mod-

els, 3D reconstruction, object tracking, or recognition, to

more recent settings such as the alignment of geometric

data to enable the training of deep learning models. In this

work we consider the problem of finding correspondences

between two given shapes, known as shape matching.

We assume that one shape is a geometrically transformed

version of the other shape. With that, matching shape X to

shape Y can be phrased as finding a transformation τ (which

belongs to a particular class Ω of transformations) such that

the transformed shape τ(X ) best aligns with Y . Formally,

this can be written as the optimisation problem

min
τ∈Ω

d(τ(X ),Y) , (1)

where d(·, ·) is a suitable metric that quantifies the discrep-

ancy between both shapes. The particular shape match-

ing setting depends on the choice of the metric d(·, ·) and

the class of transformations Ω. For example, rigid shape

matching refers to Ω = SE(d), where SE(d) is the spe-

cial Euclidean group in dimension d. In this work we study

the non-rigid shape matching problem, where Ω comprises

non-rigid deformations (to be defined in Sec. 3).

Although many previous works have addressed non-rigid

shape matching, there are several open challenges: (i) due to

the non-convex nature of Problem (1) for virtually all rele-

vant choices of d(·, ·) and Ω, existing methods cannot guar-

antee to find global optima. Hence, these methods heavily

depend on the initial choice of τ . (ii) Oftentimes, non-rigid

shape matching methods require that both shapes have the

same representation (e.g. meshes). (iii) Existing approaches

have a limited flexibility in terms of the matching formula-

tion that can be handled, e.g. they can only handle bijec-

tive matchings, or they cannot guarantee injectivity, they do

not allow for additional constraints (e.g. bounding the max-

imum distortion of a matching), or they cannot deal with

shapes that have different topologies. (iv) Moreover, ex-

isting formulations that purely aim for preserving pairwise

distances when finding a matching (see quadratic assign-

ment problem in Sec. 2) are not guaranteed to maintain the
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orientation of the surface.

Our contribution. Our main idea is to formulate non-

rigid shape matching in terms of a convex mixed-integer

programming (MIP) problem, while addressing (i)-(iv). We

summarise our main contributions as follows:

• We propose a low-dimensional discrete model for non-

rigid shape matching that is highly flexible as it allows

to tackle a wide range of matching formulations.

• Although solving MIP problems to global optimality

has worst-case time complexity that is exponential in

the number of integer variables, our proposed formula-

tion only requires a small number of integer variables

that is independent of the shape resolution.

• Our formulation does not require an initialisation and

it is oftentimes possible to (certifiably) find a globally

optimal solution in practice.

2. Related Work & Background

Due to the vast amount of literature related to shape

matching and correspondence problems, it is beyond the

scope of this paper to provide an exhaustive background of

related work. A broad overview of the topic is for exam-

ple presented in [46]. In the following we summarise works

that we consider most relevant.

Rigid shape matching. Finding a rotation and transla-

tion that aligns two shapes is known as rigid shape match-

ing. The Procrustes problem [40] considers the setting

when the correspondences between points on both shapes

are known, which admits an efficient closed-form solu-

tion. However, rigid shape matching becomes significantly

harder if the correspondences are unknown. Most com-

monly, this is addressed via local optimisation. A popular

approach is the Iterative Closest Point (ICP) algorithm [7],

which also comes in various variants, such as a proba-

bilistic formulation [28]. These methods have in common

that they do not guarantee to find a globally optimal so-

lution and therefore their outcome is highly dependent on

a good initialisation. Contrary to these local methods, for

the rigid shape matching problem there are also global ap-

proaches, e.g. based on a semidefinite programming relax-

ation [25], or on branch and bound algorithms [29, 51].

A downside of these shape matching approaches is that

they have the strong assumption that both shapes can be

aligned based on a rigid-body transformation. However,

in practice this assumption is oftentimes violated, so that

non-rigid shape matching approaches are more appropriate,

which we will discuss next.

Functional maps. A popular paradigm for isometric

shape matching are functional maps (FM) [30, 18, 32],

which define a framework for transferring a function from

a source to a target shape. Although FM were shown to

be a powerful tool for isometric shape matching, they also

have some shortcomings: they are sensitive to noise and
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Figure 2. Runtime comparison between our formulation, a QAP

and a reduced QAP (cf. search space reduction in the Supp. Mat.)

when solved with MOSEK [2].

suffer from symmetries, point-to-point maps obtained from

FM are neither guaranteed to be smooth nor injective, and

they are not suitable for severe non-isometries. Rigid shape

matching methods applied to spectral embeddings (obtained

via FM) can also be used for isometric matching, such as

done in PM-SDP [25]. However, in this case the mentioned

shortcomings also apply.

Quadratic assignment problem. Another popular ap-

proach for non-rigid shape matching are formulations based

on the quadratic assignment problem (QAP) (or graph

matching) [24], which aim for a non-rigid deformation with

small distortion. In a discrete setting this can be phrased as

matching vertices between two shapes in such a way that

pairwise geodesic distances (or similar quantities) are (ap-

proximately) preserved by the vertex-to-vertex correspon-

dences. The QAP is known to be NP-hard [33], so that

most solution approaches are based on heuristic approaches

without formal guarantees, such as e.g. [22]. There are

also more principled methods based on convex relaxations,

including lifting-free [52, 13, 5] and lifting-based relax-

ations [38, 45, 20]. However, they do not guarantee to

find a globally optimal solution of the original non-convex

problem as they rely on some kind of rounding proce-

dure to obtain a binary solution. Globally optimal QAP

solvers are based on combinatorial search, e.g. via branch

and bound [3], and these methods scale exponentially in the

number of variables. Similarly as in the QAP, our method

also takes the spatial context of matchings into account, but

we demonstrate that in practice our proposed formulation is

significantly faster to solve, cf. Fig. 2. We believe that this

is because our formulation has a special structure (based on

our sparse deformation model) that can more efficiently be

leveraged by combinatorial solvers.

Global non-rigid matching. It was shown that certain

matching problems can be solved globally optimal by find-

ing shortest paths in a graph, or based on dynamic program-

ming. These include matching 2D shapes (contours) to a

2D image [11, 14, 39], or matching a 2D contour to a 3D

shape [21]. As for example pointed out in [4], non-rigidly

matching two objects in 3D is a significantly more difficult

problem as it does not allow such a formulation. In [50] the

elastic matching of two 3D meshes is addressed based on

a linear programming formulation. However, the formula-

tion is sensitive to the mesh triangulation, requires a large
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number of binary variables, and due to the non-tightness of

relaxation it relies on sophisticated rounding techniques af-

ter which global optimality cannot be guaranteed anymore.

In [10] the authors propose a convex formulation for non-

rigid registration that is solved via message passing. This

approach requires an extrinsic term in order to disambiguate

intrinsic symmetries, which in practice means that an initial

alignment between both shapes is indispensable, thereby

mitigating the advantages of a convex formulation.

Local non-rigid matching. In a similar spirit, local re-

finement techniques also rely on a good matching initialisa-

tion. Such methods include [48, 47] and [26], where a given

initial matching is gradually refined. While [48] relies on a

QAP formulation, in [26] a spectral method based on FM is

used for a hierarchical upsampling. In Sec. 4.3 we show that

our method can be used as initialisation for such methods.

In [42] the authors propose a non-rigid deformation

model based on per-triangle affine transformations. Within

this framework they also pose a correspondence problem,

which, however, requires a good initial alignment between

both shapes in order to make the optimisation problem well-

posed. Moreover, since the problem is non-convex, in gen-

eral one only finds local optima. In our work we leverage a

similar deformation model, but (i) we phrase the problem in

a well-posed way without requiring an initial shape align-

ment, and (ii) we perform a global optimisation.

Learning-based matching. Shape matching has also

been tackled with machine learning techniques, e.g. with

random forests [36], supervised deep functional maps [23],

deep functional maps trained in self- or unsupervised set-

tings [17, 37], or using PointNet [31] for learning point

cloud correspondences [16]. Undeniably, machine learn-

ing has the potential to address many open challenges in

shape matching, e.g. for learning appropriate shape rep-

resentations. In the past it was demonstrated that com-

binatorial shape matching benefits from learned deep fea-

tures [4], and reversely, that embedding combinatorial opti-

misation solvers into neural networks (“differentiable pro-

gramming”) opens up new possibilities for tackling a range

of interesting matching problems [27]. We believe that

in the future our method may also be amenable to utilise

such synergies, and therefore consider it to be orthogonal to

learning-based methods.

Convex mixed-integer programming. Mixed-integer

programming refers to optimisation problems that involve

both continuous and discrete variables. Their advantage is

that they are extremely flexible and allow to model a wide

range of complex problems. For example, they can be used

to discretise difficult non-convex problems, such as formu-

lations that impose rotation matrix constraints, or for phras-

ing matching problems with binary variables. However, the

downside is that MIP problems have a search space that has

exponential size in the number of discrete variables, so that

in general it is very hard to solve large problems to global

optimality. Convex mixed-integer programming refers to a

subclass of MIP problems that are convex for fixed inte-

ger variables. A major advantage is that for this class of

problems there exist efficient branch and bound solvers that

globally optimise such problems. Albeit the fact that these

solvers have a worst-case runtime that is exponential in the

number of integer variables, in this work we demonstrate

that solving non-rigid shape matching using a convex MIP

reformulation is tractable in (most) practical scenarios.

3. Non-Rigid Shape Matching

First, we summarise our notation. For an integer i ∈ N

we define [i] := {1, . . . , n}. For a matrix X ∈ R
p×q and

the index set I ⊆ [p] we use XI ∈ R
|I|×q to denote the

|I| rows of X selected by I. 1n and In denote the n-

dimensional vector of all ones and the n-dimensional iden-

tity matrix, ‖·‖ denotes the Frobenius norm, and matrix and

vector inequalities are understood element-wise.

Let X and Y be triangular surface meshes that are dis-

cretisations of Riemannian 2-manifolds embedded in 3D

space. Note that later in Sec. 4.4 we will also address the

case when Y is a point cloud. Our aim is to find a non-

rigid deformation τ that transforms shape X to τ(X ), so

that it aligns well with shape Y , cf. Problem (1). For no-

tational convenience we use X ∈ R
nX×3 and Y ∈ R

nY×3

to refer to the matrices containing the nX and nY 3D ver-

tex positions of shapes X and Y , respectively. Moreover,

let FX ∈ [nX ]fX×3 be a matrix that encodes the triangular

faces of X , where fX is the number of triangles.

3.1. NonRigid Deformation Model

We model the non-rigid deformation of X by applying an

affine transformation to each triangle. In conjunction with

suitable mesh consistency constraints, the individual per-

triangle affine deformations globally constitute a non-rigid

deformation. Although related deformation models have

been introduced before [41, 42, 4, 43], they have not been

used for a global optimisation of non-rigid shape matching.

Affine per-triangle transformations. For the i-th ver-

tex Xi we define the non-rigid deformation τp in terms of

its adjacent triangle p as

τp(Xi) := (Xi − cp)Qp + cp + tp , (2)

where cp ∈ R
1×3 is the centroid of the p-th triangle in the

undeformed shape X , Qp ∈ R
3×3 is a linear transforma-

tion, and tp ∈ R
1×3 is a translation. As such, we first cen-

tre a given vertex, apply a linear transformation, undo the

centring, and eventually translate it to its global position.

Mesh consistency constraints. In order to ensure a con-

sistent mesh deformation, we impose the constraints

τp(Xi) = τq(Xi) ∀ i ∈ [nX ], p ∈ Ni, q ∈ Ni , (3)
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Figure 3. Illustration of the deformation τ , where each triangle un-

dergoes an affine transformation. The consistency constraint im-

poses that the transformed Xi is the same, no matter whether it is

transformed by τp or τq for p ∈ Ni and q ∈ Ni.

where Ni ⊂ [fX ] is the set of all triangles in X that are adja-

cent to vertex i, cf. Fig. 3. The purpose of the constraints (3)

is to enforce that a given vertex Xi is transformed to the

same place, no matter which transformation of its adjacent

triangles is applied, and thereby ensuring that the triangle

topology is preserved by the deformation.

3.2. MixedInteger NonRigid Shape Alignment

Low-dimensional correspondence model. Our non-

rigid deformation τ is indirectly defined by a low-

dimensional discrete model. To this end, subsets of the

shape vertices are used as control points, which are repre-

sented by the matrices XI ∈ R
u×3 and YJ ∈ R

v×3. Here,

u := |I| and v := |J | denote the total number of control

points for each shape, and I ⊆ [nX ] and J ⊆ [nY ] denote

the index sets that select the control points from the original

shapes. A similar approach has been pursued in [43] for the

interactive manipulation of shapes, where, however it is as-

sumed that for each control point of XI the corresponding

control point of YJ is already known. In contrast, we are

interested in the much more difficult shape matching prob-

lem, where the correspondence between control points is

unknown, and, moreover, there may not even exist an exact

counterpart in YJ for each point in XI .

Convex polyhedral surface approximation. We pro-

pose to address the issue that there may not exist exact

counterparts between control points as follows: rather than

matching control points of XI directly to control points of

YJ , we match the points of XI to convex polyhedra that lo-

cally approximate the surface of Y , see Fig. 4. To this end,

we associate a convex polyhedron with each control point of

YJ , which we represent using the matrix Zj ∈ R
dj×3 for

j ∈ [v]. Here, each row of Zj contains one of the dj ∈ N

vertices (corner points) of the j-th polyhedron on Y . As

such, any point that lies inside the convex polyhedron can be

specified as a convex combination of rows of Zj , i.e. θTZj ,

where the dj-dimensional vector θ satisfies the convex com-

bination constraints θ ≥ 0dj
and θT1dj

= 1. We note that

this point-to-polyhedron matching is a strict generalisation

of point-to-point matching, since the latter is achieved for

dj=1. Using this formulation allows to find a matching be-

tween XI and YJ even when there exists only an approxi-

mate counterpart between the control points on both shapes.

X Y

Figure 4. Illustration of control points of X (left) that are matched

to convex polyhedra of Y (right). Colours indicate correspon-

dences between control points and convex polyhedra.

For details how we obtain the polyhedra see the Supp. Mat.

Correspondence term. We tackle the non-rigid shape

matching problem by establishing correspondences be-

tween the control points XI and the convex polyhedra of

Y , while at the same time ensuring that the resulting non-

rigid deformation τ is “regular”. For now, let us assume that

u ≤ v and that each control point of XI is matched to one

of the convex polyhedra of Y . Moreover, we also allow that

more than one control point of XI can be matched to the

same convex polyhedron of Y . We model these matching

constraints using the matrix P ∈ Puv , where we define

Puv := {P ∈ {0, 1}u×v : P1v = 1u} . (4)

An element Pij=1 means that the i-th control point of XI

is matched to the j-th convex polyhedron of Y . Later, in

Sec. 4.4, we will also present more general formulations

that allow to also match shapes when some control points

on X do not have a counterpart on Y .

Since there are u control points of XI , where each of

them is matched to one of the v convex polyhedra on Y ,

for each i∈[u], j∈[v] we introduce a convex combination

weight vector αij∈R
1×dj . Here, i is the index of the control

point of XI and j is the index of the convex polyhedron of

Y . By defining d:=
∑v

j=1 dj , Z:=[ZT
1 , . . . , Z

T
v ]

T ∈ R
d×3,

as well as the matrix of convex combination weights

α := [αij ]i∈[u],j∈[v] ∈ R
u×d , (5)

we model our correspondence term as

fcorr(τ, P ) := λc ‖τ(XI)−αZ‖ . (6)

In addition we impose α≥0, α1d=1u, and αij1dj
≤Pij for

i∈[u], j∈[v]. As such, we can effectively enforce the convex

combination and matching constraints using linear equali-

ties. With that, the (u×3)-dimensional matrix αZ contains

points that lie inside the convex polyhedra, where each of its

u rows correspond to the respective row of the transformed

control point matrix τ(XI) ∈ R
u×3.

Moreover, to avoid that multiple control points are as-

signed to the same vertex of a convex polyhedron, we im-

pose the “soft-injectivity” constraints 1
T
uα≤1

T
d . The soft-

injectivity constraint enforces that the sum of weights in
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each column of α is at most one. As such, if a (single) el-

ement in a column is exactly one, only this control point is

assigned to the respective vertex of the convex polyhedron.

If elements in a column of α are strictly smaller than one, all

respective control points are assigned to non-extreme points

of the polyhedron, thereby preventing that multiple control

points are matched to the same vertex of a polyhedron.

We use the notation (α, P ) ∈ Γ to refer to the four con-

straints introduced in this paragraph. In overall, the corre-

spondence term has the purpose to minimise the discrep-

ancy between the control points of the transformed shape

τ(XI) and their corresponding convex polyhedra of Y .

Deformation regularisers. For regularising the defor-

mation τ we decompose each linear transformation Qp

in (2) into the sum of a rotation matrix R ∈ SO(3) and

a (small) general linear part Tp ∈ R
3×3, so that τp in (2)

now becomes

τp(Xi) := (Xi − cp)(R+ Tp) + cp + tp . (7)

The purpose of using the additive factorisation Qp = R+Tp

(with ‖Tp‖ small) is to ensure that the global shape defor-

mation τ (approximately) preserves the morphology of X .

This has a similar effect as the as-rigid-as-possible (ARAP)

model [41], but requires only a single rotation matrix com-

pared to fX rotation matrices as used in ARAP. In order to

keep the linear part Tp small, we impose the rigidity loss as

frigid(τ) := λr

∥

∥ [T1, . . . , TfX ]
∥

∥ . (8)

Moreover, for achieving a locally smooth deformation,

we introduce the smoothness loss

fsmth(τ) := λs

∥

∥ [ω1∆1, . . . , ω|E|∆|E|]
∥

∥ , (9)

where E ⊂ [fX ]2 denotes the set of all neighbouring trian-

gle pairs in X , and ωe is a scalar weight. For e = (p, q) ∈ E ,

so that triangles p and q are neighbours, we define the e-th

smoothness residual as

∆e = τp(cq)− τq(cq) = τp(cq)− (cq + tq) . (10)

The purpose of the residual ∆e ∈ R
1×3 is to quantify the

difference between transforming the triangle centroid cq us-

ing the transformation τq of the same triangle, and using the

transformation τp defined for its neighbour triangle p.

Optimisation problem. Based on the introduced

terms and constraints our mixed-integer non-rigid align-

ment (MINA) formulation reads

argmin
P,α,R,{Tp},{tp}

fcorr(τ, P ) + frigid(τ) + fsmth(τ) (11)

s.t. τp(Xi) = τq(Xi) ,

P ∈ Puv ,

(α, P ) ∈ Γ ,

R ∈ SO(3) .
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Figure 5. Runtime, relative speed-up w.r.t. linear, and determi-

nants of R for linear and logarithmic encodings of the SO(3) dis-

cretisation.

We assume that all weights λ• ≥ 0. The mesh consistency

and the Γ constraints are affine in the variables P,R,α, Tp

and tp, and all objective function terms f• are compositions

of affine transformations with the Frobenius norm, so that

they are convex. However, due to the binary constraints im-

posed upon P , and the non-convex quadratic equality con-

straints R ∈ SO(3), the overall problem is non-convex.

Convex mixed-integer formulation. To transform

Problem (11) into a convex MIP problem, we use a piece-

wise linear approximation of the SO(3) constraint based on

binary variables, see the Supp. Mat. and [12]. To keep the

number of binary variables small, we use an efficient Gray

encoding for the piece-wise linear approximation, cf. [49],

so that the number of binary variables is logarithmic in the

number of discretisation bins b. The main idea here is to

utilise a more efficient representation that requires fewer bi-

nary variables and thus admits a more efficient optimisation.

In particular, this results in 6·⌈log2(b)⌉ binary variables, in

contrast to 6·b binary variables for a naive linear encoding.

In Fig. 5 we compare our used logarithmic encoding with

a linear one, where it can be seen that the logarithmic one

requires less computation time, and that the determinant of

the resulting matrix is already very close to 1 for b=4.

4. Experiments

In this section we present an experimental evaluation of

our proposed MINA approach. To this end, we compare it to

other sparse correspondence methods, we analyse the gaps

to global optimality, we demonstrate that MINA can be used

as initialisation for dense shape matching, and we showcase

its flexibility on several exemplary settings. We provide ad-

ditional implementation details in the Supp. Mat..

4.1. Sparse Shape Matching

In this section we compare our method with other ap-

proaches that perform a sparse matching between a pair

of shapes. In particular, we consider the convex matching

method PM-SDP [25] in a rigid setting, the sparse game-

theoretic approach by Rodola et al. [35], the coherent point

drift (CPD) algorithm [28] (randomly initialised), and the

convex relaxation by Chen & Koltun [10]. As such, we

cover a wide range of shape matching paradigms, including

convex relaxations for rigid (PM-SDP) and non-rigid (Chen

& Koltun) shape matching, a local non-rigid method (CPD),
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Figure 6. Correspondences obtained from our method for several shape matching instances from the TOSCA dataset [9]. Correspondences

between X in the top row and Y in the bottom row are indicated by dots with corresponding colours.
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Figure 7. Each plot summarises the percentage of correct match-

ings for different TOSCA shape classes. The horizontal axis shows

the geodesic error threshold, and the vertical axis shows the per-

centage of matches that are smaller than or equal to this error.

and a sparse method that considers a quadratic assignment

problem formulation (Rodola et al.). In this set of experi-

ments we use the sparse points from [19] for matching pairs

of shapes from the TOSCA dataset [9]. Hence, we directly

match control points on X to control points on Y when us-

ing our MINA method (i.e. dj=1 for j∈[v]).

In Fig. 6 we show correspondences obtained from our

method for various shape matching pairs. In Fig. 7 we

show quantitative results, where we summarise the percent-

age of correct matches (relative to the number of given con-

trol points) for each shape class in the TOSCA dataset. It

can be seen that our MINA method generally outperforms

the other sparse matching approaches. The lower scores for

smaller geodesic thresholds arise due to our sparse mod-

elling, since matchings can only be as accurate as the sparse

control points allow for. Since the method by Rodola et

al. [35] does not match all of the given points, the respec-

tive curves do not reach 100%. Moreover, the performance

of PM-SDP indicates that a rigid matching setting is too re-

strictive. Additional results can be found in the Supp. Mat.

4.2. Global Optimality Analysis

Here, we analyse the gaps to global optimality dependent

on the processing time t for the TOSCA shape matching

instances in Sec. 4.1. To this end, we define

g(t) =
1

N

∑

i:ti≤t

(1− σrel
i ) , (12)

where N is the total number of shape matching pairs

(N=71 for TOSCA), ti denotes the total solver time for the

i-th shape matching problem, and σrel
i is the relative gap of

the i-th problem that is defined as σrel
i =

|f−f |

max(δ,|f |)
(see [2]).

Here, f and f are the upper and lower bounds of the ob-

jective value of the MIP formulation of Problem (11), re-

spectively, and δ is a small number. In Fig. 8 (left) it can

be seen that after 1h (our time budget for the MIP solver)

the value of g reaches 0.98, i.e. on average the solutions are

close to being globally optimal (a value of 1 means that all

instances are solved to global optimality). After 1h, for 82%
of the cases we certify global optimality, see Fig. 8 (right).
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Figure 8. Optimality gaps (left) and proportion of instances solved

to global optimality (right) dependent on the solver runtime.

4.3. Dense Shape Matching

Next, we demonstrate that our method can be used to ob-

tain a suitable initialisation for dense correspondence meth-

ods. Since dense non-rigid matching approaches are highly

initialisation-dependent (even the convex approach [10] re-

quires a good initial alignment, cf. Sec. 2), it is crucial that

they are provided with a good initialisation.

For these experiments we use the product manifold fil-

ter (PMF) [48] for obtaining a dense matching from a given

sparse matching. To obtain the initial sparse matching, in

addition to our MINA approach, we consider a random
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Figure 9. Comparison of different sparse matchings (random, PM-SDP [25], Rodola et al. [35], MINA) that are used as initialisation

for PMF [48] to obtain a dense matching. The first row shows the reference shape and the other rows show the colour-coded dense

correspondences for the respective methods.

matching, a rigid alignment obtained via PM-SDP [25], and

the approach by Rodola et al. [35]. Unlike in the previ-

ous section, here we extract the sparse points that we want

to match based on geodesic farthest point sampling (FPS),

which obtains an (approximately) uniform sampling of con-

trol points on the shapes.

In Fig. 9 we show results for the PMF-based densifica-

tion for shapes from the TOSCA dataset [9] (cat, dog, wolf,

human), the SHREC watertight dataset [15] (glasses, teddy,

pigs), the FAUST dataset [8] (human) and the SCAPE

dataset [1] (human). Using a random initialisation (sec-

ond row) fails in all cases and therefore confirms the de-

pendence of PMF to its initialisation. Although PM-SDP

finds a global optimum (of a convex relaxation), the rigid

deformation model is too restricted and therefore does not

produce reliable dense correspondences for non-rigid shape

matching (third row). The method by Rodola et al. [35]

works well for several cases (fourth row), but due to its

initialisation-dependence and potential orientation flips it

also leads to several wrong matchings. We find that for vari-

ous types of matching problems, including strong non-rigid

deformations (cat in the first column), or inter-object match-

ing (wolf-dog in the second column), our MINA method

provides the most reliable initialisation (last row). Al-

though in many cases MINA is able to properly handle self-

symmetries, such symmetries form a particular difficulty for

all considered methods and therefore may lead to wrong

matchings (last two columns). Another difficulty are drastic

non-rigid deformations (dog in the fourth last column).

4.4. Flexibility of MINA Formulation

Next, we demonstrate the flexibility of our MINA model

by addressing several variants of shape matching formula-

tions in a proof-of-concept manner.

Outlier rejection. So far, we assumed that there exists

a corresponding convex polyhedron on Y for each control

point XI . In order to allow that some control points of XI

are not matched to a convex polyhedron on Y , we propose

to use an outlier rejection mechanism where up to nout of

the control points can remain unmatched. To this end, we

replace the correspondence term fcorr in (6) with

f̃corr := λc ‖τ(XI)−αZ + ǫ‖ , (13)

where ǫ ∈ R
u×3 is a sparse error variable with ‖ǫ‖0≤nout.
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no outlier rejection with outlier rejection

X Y X Y

Figure 10. Left: without outlier rejection the dog’s upper thigh is

matched to the wolf’s neck (red arrows). Right: our outlier rejec-

tion variant (13) effectively disregards this control point inconsis-

tency (the unmatched point on X is shown in black).

Here, we use ‖·‖0 to denote the row-wise ℓ0-norm that

counts the total number of non-zero rows. To model the

ℓ0-norm as MIP, we introduce the outlier indicator vari-

able δ∈{0, 1}u, where we impose 1
T
u δ≤nout. Moreover,

we make use of the fact that both shapes are spatially

bounded, which implies a bounded correspondence error.

With that, we can enforce sparsity of ǫ with the linear con-

straint −δiM1
T
3 ≤ǫi≤δiM1

T
3 for a sufficiently large (pos-

itive) number M . As such, whenever δi=1, the i-th con-

trol point does not contribute any error towards the term

f̃corr since ǫi will compensate for the discrepancy between

(τ(XI))i and (αZ)i. In Fig. 10 we compare our original

formulation with the outlier rejection mechanism, which

makes it possible to match pairs of shapes even when the

control points are inconsistent between both shapes.

Shape to point cloud matching. We used MINA for

matching a human body mesh (from [1]) to a real point

cloud that we acquired using a TreedyScan Full Body Scan-

ner. The raw point cloud was cropped using a manually

specified bounding box, downsampled to about 10k points,

and denoised. The control points where sampled using

geodesic FPS, where we used a nearest neighbour graph for

computing geodesics (and estimating normals) on the point

cloud. For this experiment we enforce that P is an injective

matching, i.e. we impose 1
T
uP ≤ 1

T
v . In Fig. 1 (middle

left) we show the resulting matching, which confirms that

our method works well in this setting.

Different topologies. We used MINA for matching

two human shapes with different topologies, as shown in

Fig. 1 (middle right), where the hands in X are not touch-

ing, whereas the hands in Y are touching, as indicated by

the geodesic paths between both hands shown as red lines.

Here, we used geodesic FPS to sample the control points.

Partial shape matching: We also match a partial shape

to a full shape, which we show in Fig. 1 (right). Here, we

used geodesic FPS to sample the control points and we en-

force that P is an injective matching, as above.

Bounded distortion matching. Our formulation also

allows to bound the maximum distortion of a matching.

This can be implemented by imposing linear constraints

Pst+Ppq ≤ 1 for those s, p∈u and t, q∈v where the

geodesic distance between points s, p on X and points t, q

on Y exceed the maximum allowed distortion. With that, at

most one of the matchings Pst or Ppq is allowed.

5. Discussion & Limitations

Although our proposed MINA method has a range of de-

sirable properties, including its high flexibility, its tractabil-

ity (in practice) due to a low-dimensional matching repre-

sentation, or its initialisation independence, there are also

open points that we aim to address in the future. In Sec. 4.4

we demonstrated that MINA enables matching a mesh to

real-world point cloud data. Considering severely cluttered

data, cf. [34], or matching shapes with other data represen-

tations (e.g. polygon soups) are interesting next steps. A

prominent strength of our formulation is that solely using

geometric properties already achieves good results. How-

ever, additionally incorporating feature descriptors, as com-

monly done for shape matching, is straightforward and may

be useful for further boosting the matching performance.

Scalability. Our MINA formulation allows to solve non-

rigid shape matching problems with u, v being of order 102.

Ideally one would be able to address matching problems

with a much denser sampling of control points, so that more

severe non-rigid deformations can be modelled accurately.

Although we gained a significant scalability improvement

compared to a QAP formulation, cf. Fig. 2, a further reduc-

tion of the computational time would be beneficial.

Multi matching. The presented MINA formulation is

phrased for matching pairs of shapes. We believe that

multi matching problems would also benefit from related

formulations. One potential way for achieving this is to

consider all pairwise matching problems (in a symmetric

fashion), and coupling these using cycle-consistency con-

straints, e.g. similarly as in [44, 6].

6. Conclusion

We have presented a convex MIP formulation for non-

rigid shape matching problems, and we have demonstrated

that finding the global optimum is tractable in (most) practi-

cal scenarios (see Fig. 8). In overall, our formulation comes

with a range of benefits: (i) it is more efficient to solve to

global optimality compared to the frequently used QAP for-

mulation (Fig. 2), (ii) it is initialisation independent, (iii)

it is able to obtain suitable initialisations for dense shape

matching methods (Sec. 4.3), and (iv) it is highly flexible in

the type of non-rigid shape matching problems it can han-

dle (Sec. 4.4). Although MIP formulations are oftentimes

evaded for matching problems in computer vision (due to

their high computational complexity), in this work we have

shown that a suitable problem-specific modelling indeed al-

lows to solve non-rigid shape matching problems as MIP.
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