
Learning a Neural Solver for Multiple Object Tracking

Guillem Brasó∗ Laura Leal-Taixé

Technical University of Munich

Abstract

Graphs offer a natural way to formulate Multiple Object

Tracking (MOT) within the tracking-by-detection paradigm.

However, they also introduce a major challenge for learn-

ing methods, as defining a model that can operate on

such structured domain is not trivial. As a consequence,

most learning-based work has been devoted to learning

better features for MOT, and then using these with well-

established optimization frameworks. In this work, we ex-

ploit the classical network flow formulation of MOT to

define a fully differentiable framework based on Message

Passing Networks (MPNs). By operating directly on the

graph domain, our method can reason globally over an en-

tire set of detections and predict final solutions. Hence, we

show that learning in MOT does not need to be restricted to

feature extraction, but it can also be applied to the data as-

sociation step. We show a significant improvement in both

MOTA and IDF1 on three publicly available benchmarks.

Our code is available at https://bit.ly/motsolv .

1. Introduction

Multiple object tracking (MOT) is the task of determin-

ing the trajectories of all object instances in a video. It is a

fundamental problem in computer vision, with applications

such as autonomous driving, biology, and surveillance. De-

spite its relevance, it remains a challenging task and a rela-

tively unexplored territory in the context of deep learning.

In recent years, tracking-by-detection has been the dom-

inant paradigm among state-of-the-art methods in MOT.

This two step approach consists in first obtaining frame-

by-frame object detections, and then linking them to form

trajectories. While the first task can be addressed with

learning-based detectors [53, 1], the latter, data associa-

tion, is generally formulated as a graph partitioning prob-

lem [65, 71, 73, 42, 8]. In this graph view of MOT, a node

represents an object detection, and an edge represents the

connection between two nodes. An active edge indicates

the two detections belong to the same trajectory. Solving the

∗Correspondence to: guillem.braso@tum.de.

graph partitioning task, i.e., finding the set of active edges or

trajectories, can also be decomposed into two stages. First,

a cost is assigned to each edge in the graph encoding the

likelihood of two detections belonging to the same trajec-

tory. After that, these costs are used within a graph opti-

mization framework to obtain the optimal graph partition.

Previous works on graph-based MOT broadly fall into

two categories: those that focus on the graph formulation,

and those that focus on learning better costs. In the first

group, numerous research has been devoted to establishing

complex graph optimization frameworks that combine sev-

eral sources of information, with the goal of encoding high-

order dependencies between detections [63, 31, 27, 28].

Such approaches often use costs that are handcrafted to

some extent. In the second group, several works adopt

a simpler and easier to optimize graph structure, and fo-

cus instead on improving edge cost definition by leveraging

deep learning techniques [39, 62, 60, 76, 68]. By exploiting

siamese convolutional neural networks (CNN), these ap-

proaches can encode reliable pairwise interactions among

objects, but fail to account for high-order information in the

scene. Overall, these two lines of work present a dilemma:

should MOT methods focus on improving the graph opti-

mization framework or the feature extraction?

We propose to combine both tasks into a unified

learning-based solver that can: (i) learn features for MOT,

and (ii) learn to provide a solution by reasoning over the

entire graph. To do so, we exploit the classical network

flow formulation of MOT [74] to define our model. Instead

of learning pairwise costs and then using these within an

available solver, our method learns to directly predict fi-

nal partitions of the graph into trajectories. Towards this

end, we perform learning directly in the natural MOT do-

main, i.e., in the graph domain, with a message passing

network (MPN). Our MPN learns to combine deep features

into high-order information across the graph. Hence, our

method is able to account for global interactions among de-

tections despite relying on a simple graph formulation. We

show that our framework yields substantial improvements

with respect to state of the art, without requiring heavily en-

gineered features and being up to one order of magnitude

faster than some traditional graph partitioning methods.

6247

To summarize, we make the following contributions:

• We propose a MOT solver based on message passing

networks, which can exploit the natural graph structure

of the problem to perform both feature learning as well

as final solution prediction.

• We propose a novel time-aware neural message pass-

ing update step inspired by classic graph formulations

of MOT.

• We show significantly improved state-of-the-art results

of our method in three public benchmarks.

2. Related work

Most state-of-the-art MOT works follow the tracking-

by-detection paradigm which divides the problem into two

steps: (i) detecting pedestrian locations independently in

each frame, for which neural networks are currently the

state-of-the-art [54, 1, 70], and (ii) linking corresponding

detections across time to form trajectories.

Tracking as a graph problem. Data association can be

done on a frame-by-frame basis for online applications

[10, 20, 51] or track-by-track [7]. For video analysis tasks

that can be done offline, batch methods are preferred since

they are more robust to occlusions. The standard way to

model data association is by using a graph, where each de-

tection is a node, and edges indicates possible link among

them. The data association can then be formulated as maxi-

mum flow [8] or, equivalently, minimum cost problem with

either fixed costs based on distance [29, 52, 73], includ-

ing motion models [42], or learned costs [40]. Both for-

mulations can be solved optimally and efficiently. Alterna-

tive formulations typically lead to more involved optimiza-

tion problems, including minimum cliques [72], general-

purpose solvers, e.g., multi-cuts [65]. A recent trend is

to design ever more complex models which include other

vision input such as reconstruction for multi-camera se-

quences [43, 67], activity recognition [15], segmentation

[49], keypoint trajectories [14] or joint detection [65].

Learning in tracking. It is no secret that neural networks

are now dominating the state-of-the-art in many vision tasks

since [36] showed their potential for image classification.

The trend has also arrived in the tracking community, where

learning has been used primarily to learn a mapping from

image to optimal costs for the aforementioned graph algo-

rithms. The authors of [37] use a siamese network to di-

rectly learn the costs between a pair of detections, while a

mixture of CNNs and recurrent neural networks (RNN) is

used for the same purpose in [57]. More evolved quadru-

plet networks [62] or attention networks [76] have lead to

improved results. In [56], authors showed the importance

of learned reID features for multi-object tracking. All afore-

mentioned methods learn the costs independently from the

optimization method that actually computes the final trajec-

tories. In contrast, [33, 66, 60] incorporate the optimization

solvers into learning. The main idea behind these methods

is that costs also need to be optimized for the solver in which

they will be used. [33, 66, 21] rely on structured learning

losses while [60] proposes a more general bi-level optimiza-

tion framework. These works can be seen as similar to ours

in spirit, given our common goal of incorporating the full

inference model into learning for MOT. However, we fol-

low a different approach towards this end: we propose to

directly learn a solver and treat data association as a clas-

sification task, while their goal is to adapt their methods to

perform well with closed form solvers. Moreover, all these

works are limited to learning either pairwise costs [21, 60]

or additional quadratic terms [66, 33] but cannot incorpo-

rate higher-order information as our method. Instead, we

propose to leverage the common graph formulation of MOT

as a domain in which to perform learning.

Deep Learning on graphs. Graph Neural Networks

(GNNs) were first introduced in [59] as a generalization of

neural networks that can operate on graph-structured do-

mains. Since then, several works have focused on fur-

ther developing and extending them by developing convo-

lutional variants [11, 18, 35]. More recently, most meth-

ods were encompassed within a more general framework

termed neural message passing [23] and further extended

in [5] as graph networks. Given a graph with some initial

features for nodes and optionally edges, the main idea be-

hind these models is to embed nodes (and edges) into rep-

resentations that take into account not only the node’s own

features but also those of its neighbors in the graph, as well

as the graph overall topology. These methods have shown

remarkable performance at a wide variety of areas, rang-

ing from chemistry [23] to combinatorial optimization [45].

Within vision, they have been successfully applied to prob-

lems such as human action recognition [24], visual question

answering [50] or single object tracking [22].

3. Tracking as a Graph Problem

Our method’s formulation is based on the classical min-

cost flow view of MOT [74]. In order to provide some back-

ground and formally introduce our approach, we start by

providing an overview of the network flow MOT formula-

tion. We then explain how to leverage this framework to

reformulate the data association task as a learning problem.

3.1. Problem statement

In tracking-by-detection, we are given as input a set of

object detections O = {o1, . . . , on}, where n is the total

number of objects for all frames of a video. Each detection

is represented by oi = (ai, pi, ti), where ai denotes the

raw pixels of the bounding box, pi contains its 2D image

coordinates and ti its timestamp. A trajectory is defined as a

6248

(a) Input (b) Graph Construction + Feature En-

coding

(c) Neural Message Passing (d) Edge Classification (e) Output

Figure 1: Overview of our method. (a) We receive as input a set of frames and detections. (b) We construct a graph in which

nodes represent detections, and all nodes at different frames are connected by an edge. (c) We initialize node embeddings in

the graph with a CNN, and edge embeddings with an MLP encoding geometry information (not shown in figure). (c) The

information contained in these embeddings is propagated across the graph for a fixed number of iterations through neural

message passing. (d) Once this process terminates, the embeddings resulting from neural message passing are used to classify

edges into active (colored with green) and non-active (colored with red). During training, we compute the cross-entropy loss

of our predictions w.r.t. ground truth labels and backpropagate gradients through our entire pipeline. (e) At inference, we

follow a simple rounding scheme to binarize our classification scores and obtain final trajectories.

set of time-ordered object detections Ti = {oi1 , . . . , oini
},

where ni is the number of detections that form trajectory

i. The goal of MOT is to find the set of trajectories T∗ =
{T1, . . . , Tm}, that best explains the observations O.

The problem can be modelled with an undirected graph

G = (V,E), where V := {1, . . . , n}, E ⊂ V ×V , and each

node i ∈ V represents a unique detection oi ∈ O. The set

of edges E is constructed so that every pair of detections,

i.e., nodes, in different frames is connected, hence allowing

to recover trajectories with missed detections. Now, the task

of dividing the set of original detections into trajectories can

be viewed as grouping nodes in this graph into disconnected

components. Thus, each trajectory Ti = {oi1 , . . . , oini
} in

the scene can be mapped into a group of nodes {i1, . . . , ini
}

in the graph and vice-versa.

3.2. Network Flow Formulation

In order to represent graph partitions, we introduce a bi-

nary variable for each edge in the graph. In the classical

minimum cost flow formulation1 [74], this label is defined

to be 1 between edges connecting nodes that (i) belong to

the same trajectory, and (ii) are temporally consecutive in-

1We present a simplified version of the minimum cost flow-based MOT

formulation [74]. Specifically, we omit both sink and source nodes (and

hence their corresponding edges) and we assume detection edges to be

constant and 1-valued. We provide further details on our simplification

and its relationship to the original problem in the supplementary material.

side a trajectory; and 0 for all remaining edges.

A trajectory Ti = {oi1 , . . . , oini
} is equivalently de-

noted by the set of edges {(i1, i2), . . . , (ini−1, ini
)} ⊂ E,

corresponding to its time-ordered path in the graph. We will

use this observation to formally define the edge labels. For

every pair of nodes in different timestamps, (i, j) ∈ E, we

define a binary variable y(i,j) as:

y(i,j) :=

{

1 ∃Tk ∈ T∗ s.t. (i, j) ∈ Tk

0 otherwise.

An edge (i, j) is said to be active whenever y(i,j) = 1. We

assume trajectories in T to be node-disjoint, i.e., a node

cannot belong to more than one trajectory. Therefore, ŷ

must satisfy a set of linear constraints. For each node i ∈ V :

∑

(j,i)∈E s.t. ti>tj

y(j,i) ≤ 1 (1)

∑

(i,k)∈E s.t. ti<tk

y(i,k) ≤ 1 (2)

These inequalities are a simplified version of the flow

conservation constraints [2]. In our setting, they enforce

that every node gets linked via an active edge to, at most,

one node in past frames and one node in upcoming frames.

6249

3.3. From Learning Costs to Predicting Solutions

In order to obtain a graph partition with the framework

we have described, the standard approach is to first associate

a cost c(i,j) to each binary variable y(i,j). This cost encodes

the likelihood of the edge being active [38, 37, 60]. The

final partition is found by optimizing:

miny
∑

(i,j)∈E

c(i,j)y(i,j)

Subject to: Equation (1)
Equation (2)
y(i,j) ∈ {0, 1}, (i, j) ∈ E

which can be solved with available solvers in polynomial

time [6, 3].

We propose to, instead, directly learn to predict which

edges in the graph will be active, i.e., predict the final value

of the binary variable y. To do so, we treat the task as a

classification problem over edges, where our labels are the

binary variables y. Overall, we exploit the classical network

flow formulation we have just presented to treat the MOT

problem as a fully learnable task.

4. Learning to Track with Message Passing

Networks

Our main contribution is a differentiable framework to

train multi-object trackers as edge classifiers, based on the

graph formulation we described in the previous section.

Given a set of input detections, our model is trained to pre-

dict the values of the binary flow variables y for every edge

in the graph. Our method is based on a novel message pass-

ing network (MPN) able to capture the graph structure of

the MOT problem. Within our proposed MPN framework,

appearance and geometry cues are propagated across the en-

tire set of detections, allowing our model to reason globally

about the entire graph.

Our pipeline is composed of four main stages:

1. Graph construction: Given a set of object detections

in a video, we construct a graph where nodes correspond

to detections and edges correspond to connections between

nodes (Section 3.2).

2. Feature encoding: We initialize the node appearance

feature embeddings from a convolutional neural network

(CNN) applied on the bounding box image. For each edge,

i.e., for every pair of detections in different frames, we com-

pute a vector with features encoding their bounding box rel-

ative size, position and time distance. We then feed it to a

multi-layer perceptron (MLP) that returns a geometry em-

bedding (Section 4.3).

3. Neural message passing: We perform a series of mes-

sage passing steps over the graph. Intuitively, for each

round of message passing, nodes share appearance informa-

tion with their connecting edges, and edges share geometric

information with their incident nodes. This yields updated

embeddings for node and edges containing higher-order in-

formation that depends on the overall graph structure (Sec-

tion 4.1 and 4.2).

4. Training: We use the final edge embeddings to perform

binary classification into active/non-active edges, and train

our entire model using the cross-entropy loss (Section 4.4).

At test time, we use our model’s prediction per edge as

a continuous approximation (between 0 and 1) of the target

flow variables. We then follow a simple scheme to round

them, and obtain the final trajectories.

For a visual overview of our pipeline, see Figure 1.

4.1. Message Passing Networks

In this section, we provide a brief introduction to MPNs

based on the work presented in [23, 34, 4, 5]. Let G =

(V,E) be a graph. Let h
(0)
i be a node embedding for every

i ∈ V , and h
(0)
(i,j) an edge embedding for every (i, j) ∈

E. The goal of MPNs is to learn a function to propagate

the information contained in nodes and edge feature vectors

across G.

The propagation procedure is organized in embedding

updates for edges and nodes, which are known as message

passing steps [23]. In [5, 34, 4], each message passing step

is divided, in turn, into two updates: one from from nodes

to edges (v → e), and one from edges to nodes (e → v).
The updates are performed sequentially for a fixed number

of iterations L. For each l ∈ {1, . . . , L}, the general form

of the updates is the following [5]:

(v → e) h
(l)
(i,j) = Ne

(

[h
(l−1)
i , h

(l−1)
j , h

(l−1)
(i,j)]

)

(3)

(e → v) m
(l)
(i,j) = Nv

(

[h
(l−1)
i , h

(l)
(i,j)]

)

(4)

h
(l)
i = Φ

(

{

m
(l)
(i,j)

}

j∈Ni

)

(5)

Where Ne and Nv represent learnable functions, e.g.,

MLPs, that are shared across the entire graph. [.] denotes

concatenation, Ni ⊂ V is the set of adjacent nodes to i,

and Φ denotes an order-invariant operation, e.g., a summa-

tion, maximum or an average. Note, after L iterations, each

node contains information of all other nodes at distance L

in the graph. Hence, L plays an analogous role to the recep-

tive field of CNNs, allowing embeddings to capture context

information.

4.2. TimeAware Message Passing

The previous message passing framework was designed

to work on arbitrary graphs. However, MOT graphs have a

very specific structure that we propose to exploit. Our goal

is to encode a MOT-specific inductive bias in our network,

specifically, in the node update step.

6250

(a) Initial Setting (b) Vanilla node update (c) Time-aware node update

Figure 2: Visualization of node updates during message passing. Arrow directions in edges show time direction. Note the

time division in t − 1, t, and t + 1. In this case, we have N
past
3 = {1, 2} and N

fut
3 = {4, 5}. 2a shows the starting point

after an edge update has been performed (equation 3), and the intermediate node update embeddings (equation 4) have been

computed. 2b shows the standard node update in vanilla MPNs, in which all neighbors’ embeddings are aggregated jointly. 2c

shows our proposed update, in which embeddings from past and future frames are aggregated separately, then concatenated

and fed into an MLP to obtain the new node embedding.

Recall the node update depicted in Equations 4 and 5,

which allows each node to be compared with its neighbors

and aggregate information from all of them to update its

embedding with further context. Recall also the structure

of our flow conservation constraints (Equations 1 and 2),

which imply that each node can be connected to, at most,

one node in future frames and another one in past frames.

Arguably, aggregating all neighboring embeddings at once

makes it difficult for the updated node embedding to cap-

ture whether these constraints are being violated or not (see

Section 5.2 for constraint satisfaction analysis).

More generally, explicitly encoding the temporal struc-

ture of MOT graphs into our MPN formulation can be a

useful prior for our learning task. Towards this goal, we

modify Equations 4 and 5 into time-aware update rules by

dissecting the aggregation into two parts: one over nodes

in the past, and another over nodes in the future. Formally,

let us denote the neighboring nodes of i in future and past

frames by N
fut
i and N

past
i , respectively. Let us also de-

fine two different MLPs, namely, N fut
v and N past

v . At each

message passing step l and for every node i ∈ V , we start

by computing past and future edge-to-node embeddings for

all of its neighbors j ∈ Ni as:

m
(l)
(i,j) =

N past
v

(

[h
(l−1)
i , h

(l)
(i,j), h

(0)
(i)]

)

if j ∈ N
past
i

N fut
v

(

[h
(l−1)
i , h

(l)
(i,j), h

(0)
(i)]

)

if j ∈ N
fut
i

(6)

Note, the initial embeddings h
(0)
(i) have been added to the

computation2. After that, we aggregate these embeddings

separately, depending on whether they were in future or past

positions with respect to i:

h
(l)
i,past =

∑

j∈N
past
i

m
(l)
(i,j) (7)

h
(l)
i,fut =

∑

j∈N
fut
i

m
(l)
(i,j) (8)

Now, these operations yield past and future embeddings

h
(l)
i,past and h

(l)
i,fut, respectively. We compute the final up-

dated node embedding by concatenating them and feeding

the result to one last MLP, denoted as Nv:

h
(l)
i = Nv([h

(l)
i,past, h

(l)
i,fut]) (9)

We summarize our time-aware update in Figure 2(c). As

we demonstrate experimentally (see 5.2), this simple ar-

chitectural design results in a significant performance im-

provement with respect to the vanilla node update of MPNs,

shown in Figure 2(b).

4.3. Feature encoding

The initial embeddings that our MPN receives as input

are produced by other backpropagatable networks.

2This skip connection ensures that our model does not forget its initial

features during message passing, and we apply it analogously with initial

edge features in Equation 3.

6251

Appearance embedding. We rely on a convolutional neu-

ral network (CNN), denoted as N enc
v , to learn to extract a

feature embeddings directly from RGB data. For every de-

tection oi ∈ O, and its corresponding image patch ai, we

obtain oi’s corresponding node embedding by computing

h
(0)
i := N enc

v (ai).
Geometry embedding. We seek to obtain a representation

that encodes, for each pair of detections in different frames,

their relative position size, as well as distance in time. For

every pair of detections oi and oj with timestamps ti 6= tj ,

we consider their bounding box coordinates parameterized

by top left corner image coordinates, height and width, i.e.,

(xi, yi, hi, wi) and (xj , yj , hj , wj). We compute their rela-

tive distance and size as:

(

2(xj − xi)

hi + hj

,
2(yj − yi)

hi + hj

, log
hi

hj

, log
wi

wj

)

We then concatenate this coordinate-based feature vec-

tor with the time difference tj − ti and relative appearance

‖N enc
v (aj) − N enc

v (ai)‖2 and feed it to a neural network

N enc
e in order to obtain the initial edge embedding h

(0)
(i,j).

4.4. Training and inference

Training loss. To classify edges, we use an MLP with

a sigmoid-valued single output unit, that we denote as

N class
e . For every edge (i, j) ∈ E, we compute our predic-

tion ŷ
(l)
(i,j) by feeding the output embeddings of our MPN

at a given message passing step l, namely h
(l)
(i,j), to N class

e .

For training, we use the binary cross-entropy of our pre-

dictions over the embeddings produced in the last message

passing steps, with respect to the target flow variables y:

L =
−1

|E|

l=L∑

l=l0

∑

(i,j)∈E

w · y(i,j) log(ŷ
(l)
(i,j)

) + (1− y(i,j)) log(1− ŷ
(l)
(i,j)

)

(10)

where l0 ∈ {1, . . . , L} is the first message passing step at

which predictions are computed, and w denotes a positive

scalar used to weight 1-valued labels to account for the high

imbalance between active and inactive edges.

Inference. During inference, we interpret the set of output

values obtained from our model at the last message passing

step as the solution to our MOT problem, i.e., the final value

for the indicator variables y. Since these predictions are the

output of a sigmoid unit, their values are between 0 and 1.

An easy way to obtain hard 0 or 1 decisions is to binarize the

output by thresholding. However, this procedure does not

generally guarantee that the flow conservation constraints in

Equations 1 and 2 are preserved. In practice, thanks to the

proposed time-aware update step, our method will satisfy

over 98% of the constraints on average when thresholding at

0.5. After that, a simple greedy rounding scheme suffices to

obtain a feasible binary output. The exact optimal rounding

solution can also be obtained efficiently with a simple linear

program (see supplementary material).

5. Experiments

In this section, we first present an ablation study to better

understand the behavior of our model. We then compare to

published methods on three datasets, and show state-of-the-

art results. All experiments are done on the MOTChallenge

pedestrian benchmark.

Datasets and evaluation metrics. The multiple ob-

ject tracking benchmark MOTChallenge 3 consists of sev-

eral challenging pedestrian tracking sequences, with fre-

quent occlusions and crowded scenes. The challenge in-

cludes three separate tracking benchmarks, namely 2D

MOT 2015 [41], MOT16 [48] and MOT17 [48]. They con-

tain sequences with varying viewing angle, size and num-

ber of objects, camera motion and frame rate. For all chal-

lenges, we use the detections provided by MOTChallenge

to ensure a fair comparison with other methods. The bench-

mark provides several evaluation metrics. The Multiple

Object Tracking Accuracy (MOTA) [30] and ID F1 Score

(IDF1) [55] are the most important ones, as they quantify

two of the main aspects of multiple object tracking, namely,

object coverage and identity preservation.

5.1. Implementation details

Network models. For the network N enc
v used to en-

code detections appearances (see section 4.3), we employ

a ResNet50[25] architecture pretrained on ImageNet [19],

followed by global average pooling and two fully-connected

layers to obtain embeddings of dimension 256.

We train the network for the task of ReIdentifica-

tion (ReID) jointly on three publicly available datasets:

Market1501[75], CUHK03[44] and DukeMTMC[55]. Note

that using external ReID datasets is a common practice

among MOT methods [63, 32, 47]. Once trained, three new

fully connected layers are added after the convolutional lay-

ers to reduce the embedding size of N enc
v to 32. The rest of

the encoder and classifier networks are MLPs and their ex-

act architectures are detailed in the supplementary material.

Data Augmentation. To train our network, we sample

batches of 8 graphs. Each graph corresponds to small clips

of 15 frames sampled at 6 frames per second for static se-

quences, and 9 frames per second for those with a moving

camera. We do data augmentation by randomly removing

nodes from the graph, hence simulating missed detections,

and randomly shifting bounding boxes.

Training. We have empirically observed that additional

training of the ResNet blocks provides no significant in-

crease in performance, but carries a significantly larger

3The official MOTChallenge web page is available at https://

motchallenge.net.

6252

computational overhead. Hence, during training, we freeze

all convolutional layers and train jointly all of the remain-

ing model components. We train for 15000 iterations with a

learning rate 3·10−4, weight decay term 10−4 and an Adam

Optimizer with β1 and β2 set to 0.9 and 0.999, respectively.

Batch Processing. We process videos offline in batches of

15 frames, with 14 overlapping frames between batches to

ensure that the maximum time distance between two con-

nected nodes in the graph remains stable along the whole

graph. We prune graphs by connecting two nodes only if

both are among the top-K mutual nearest neighbors (with

K = 50) according to the ResNet features. Each batch is

solved independently by our network, and for overlapping

edges between batches, we average the predictions coming

from the all graph solutions before the rounding step. To fill

gaps in our trajectories, we perform simple bilinear interpo-

lation along missing frames.

Baseline. Recently, [9] has shown the potential of detec-

tors for simple data association, establishing a new base-

line for MOT. To exploit it, we preprocess all sequences by

first running [9] on public detections, which allows us to be

fully comparable to all methods on MOTChallenge. One

key drawback of [9] is its inability to fill in gaps, nor prop-

erly recover identities through occlusions. As we will show,

this is exactly where out method excels. In the supplemen-

tary material, we show additional results without [9].

Runtime. We build our graph on the output of [9]. Hence,

we take also its runtime into account. Our method, on its

own, runs at 35fps, while [9] without the added re-ID head

runs at 8fps, which gives the reported average of 6.5fps.

5.2. Ablation study

In this section, we aim to answer three main questions

towards understanding our model. Firstly, we compare the

performance of our time-aware neural message passing up-

dates with respect to the time-agnostic vanilla node update

described in 4.1. Secondly, we assess the impact of the

number of message passing steps in network training to the

overall tracking performance. Thirdly, we investigate how

different information sources, namely, appearance embed-

dings from our CNN and relative position information, af-

fect different evaluation metrics.

Experimental Setup. We conduct all of our experi-

ments with the training sequences of MOT15 and MOT17

datasets. To evaluate our models, we split MOT17 se-

quences into three sets, and use these to test our models

with 3-fold cross-validation. We then report the best overall

MOT17 metrics obtained during validation (see supplemen-

tary material for details). In order to provide a fair com-

parison with our baselines that show poor constraint satis-

faction, we use exact rounding via a linear program in all

experiments (see section 4.4).

Time-Aware Message Passing. We investigate how our

Arch. MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Constr. ↑

Vanilla 63.0 67.3 586 372 41281 119542 1022 82.1

T. aware 64.0 70.0 648 362 6169 114509 602 98.8

Table 1: We investigate how our proposed update improves

tracking performance with respect to a vanilla MPN. Vanilla

stands for a basic MPN, T. aware denotes our proposed

time-aware update. The metric Constr refers to the per-

centage of flow conservation constraints satisfied on aver-

age over entire validation sequences.

proposed time-aware node update affects performance. For

a fair comparison, we perform hyperparameter search for

our baseline. Still, we observe a significant improvement

in almost all metrics, including close to 3 points in IDF1.

As we expected, our model is particularly powerful at link-

ing detections, since it exploits neighboring information

and graph structure, making the decisions more robust, and

hence producing significantly less identity switches. We

also report the percentage of constraints that are satisfied

when directly binarizing by thresholding our model’s output

values. Remarkably, our method with time-aware node up-

dates is able to produce almost completely feasible results

automatically, i.e., 98.8% constraint satisfaction, while the

baseline has only 82.1% satisfaction. This demonstrates its

ability to capture the MOT problem structure.

Number of Message Passing Steps. Intuitively, increas-

ing the number of message passing steps L allows each

node and edge embedding to encode further context, and

gives edge predictions the ability to be iteratively refined.

Hence, one would expect higher values to yield better per-

forming networks. We test this hypothesis in Figure 3 by

training networks with a fixed number of message passing

steps, from 0 to 18. We use the case L = 0 as a base-

line in which we train a binary classifier on top of our ini-

tial edge embeddings, and hence, no contextual information

is used. As expected, we see a clear upward tendency for

both IDF-1 and MOTA. Moreover, we observe a steep in-

crease in both metrics from zero to two message passing

steps, which demonstrates that the biggest improvement is

obtained when switching from pairwise to high-order fea-

tures in the graph. We also note that the upwards tendency

stagnates around six message passing steps, and shows no

improvement after twelve message passing steps. Hence,

we use L = 12 in our final configuration.

Effect of the features. Our model receives two main

streams of information: (i) appearance information from a

CNN, and (ii) geometry features from an MLP encoding

relative position between detections. We test their useful-

ness by experimenting with combinations of three groups

of features for edges: time difference, relative position and

the euclidean distance in CNN embeddings between the two

bounding boxes. Results are summarized in Table 2. We

6253

Edge Feats. MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓

Time 58.8 52.6 529 372 13127 122800 2962

Time+Pos 63.6 68.7 631 365 6308 115506 895

Time+Pos+CNN 64.0 70.0 648 362 6169 114509 602

Table 2: We explore combinations of three sources of infor-

mation for edge features: time difference in seconds (Time),

relative position features (Pos) and the Euclidean distance

between CNN embeddings of the two detections (CNN).

Figure 3: We report the evolution of IDF-1 and MOTA

when training networks with an increasing number of mes-

sage passing steps.

highlight the fact that relative position seems to be a key

component to overall performance since its addition yields

the larges the largest relative performance increase. Nev-

ertheless, CNN features are powerful to reduce the number

of false positives and identity switches and hence, we use

them in our final configuration.

5.3. Benchmark evaluation

We report the metrics obtained by our model on the

MOT15, MOT16 and MOT17 datasets in Table 3. It is

worth noting the big performance difference when compar-

ing our method with graph partitioning methods (shown as

(G) in Table 3). Due to space constraints, we show a de-

tailed comparison of our method compared to graph meth-

ods in the supplementary material. Our method obtains

state-of-the-art results on all challenges, improving espe-

cially the IDF1 measure by 9.4, 4.6, and 4.4 percentage

points, respectively, which demonstrates its strong perfor-

mance in identity preservation. We attribute this perfor-

mance increase to the ability of our message passing archi-

tecture to collect higher-order information. Taking into con-

sideration neighbors’ information when linking trajectories

allows our method to make globally informed predictions,

which leads inevitably to less identity switches. Moreover,

we also achieve more trajectory coverage, represented by a

Method MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Hz ↑

2D MOT 2015 [41]

Ours 51.5 58.6 31.2 25.9 7620 21780 375 6.5

Tracktor [9] 46.6 47.6 18.2 27.9 4624 26896 1290 1.8

KCF [16] (G) 38.9 44.5 16.6 31.5 7321 29501 720 0.3

AP HWDPL p [13] (G) 38.5 47.1 8.7 37.4 4005 33203 586 6.7

STRN [69] 38.1 46.6 11.5 33.4 5451 31571 1033 13.8

AMIR15 [58] 37.6 46.0 15.8 26.8 7933 29397 1026 1.9

JointMC [31] (G) 35.6 45.1 23.2 39.3 10580 28508 457 0.6

DeepFlow[60] (G) 26.8 – – – – – –

MOT16 [48]

Ours 58.6 61.7 27.3 34.0 4949 70252 354 6.5

Tracktor [9] 56.2 54.9 20.7 35.8 2394 76844 617 1.8

NOTA [12] (G) 49.8 55.3 17.9 37.7 7428 83614 614 –

HCC [47] (G) 49.3 50.7 17.8 39.9 5333 86795 391 0.8

LMP [64] (G) 48.8 51.3 18.2 40.1 6654 86245 481 0.5

KCF [16] (G) 48.8 47.2 15.8 38.1 5875 86567 906 0.1

GCRA [46] 48.2 48.6 12.9 41.1 5104 88586 821 2.8

FWT [26] (G) 47.8 44.3 19.1 38.2 8886 85487 852 0.6

MOT17 [48]

Ours 58.8 61.7 28.8 33.5 17413 213594 1185 6.5

Tracktor[9] 56.3 55.1 21.1 35.3 8866 235449 1987 1.8

JBNOT [9] (G) 52.6 50.8 19.7 35.8 31572 232659 3050 5.4

FAMNet [17] 52.0 48.7 19.1 33.4 14138 253616 3072 –

eHAF[61] (G) 51.8 54.7 23.4 37.9 33212 236772 1834 0.7

NOTA [12] (G) 51.3 54.7 17.1 35.4 20,148 252,531 2,285 –

FWT [26] (G) 51.3 47.6 21.4 35.2 24101 247921 2648 0.2

jCC [31] (G) 51.2 54.5 20.9 37.0 25937 247822 1802 1.8

Table 3: Comparison of our method with state-of-the art.

We set new state-of-the art results by a significant margin

in terms of MOTA and especially IDF1. Our learned solver

is more accurate while being significantly faster than most

graph partitioning methods, indicated with (G).

significant increase in Mostly Tracked (MT) trajectories, an

increase of up to 9 percentage points. It is worth noting that

while surpassing previous approaches, we are significantly

faster, up to one order of magnitude faster when compared

to, e.g., expensive graph partitioning methods [31].

6. Conclusions

We have demonstrated how to exploit the network flow

formulation of MOT to treat the entire tracking problem

as a learning task. We have proposed a fully differentiable

pipeline in which both feature extraction and data associa-

tion can be jointly learned. At the core of our algorithm lies

a message passing network with a novel time-aware update

step that can capture the problem’s graph structure. In our

experiments, we have shown a clear performance improve-

ment of our method with respect to previous state of the art.

We expect our approach to open the door for future work to

go beyond feature extraction for MOT, and focus, instead,

on integrating learning into the overall data association task.

Acknowledgements. This research was partially funded by

the Humboldt Foundation through the Sofja Kovalevskaja

Award.

6254

References

[1] J. R. ad A. Farhadi. Yolo9000: Better, faster, stronger.

CVPR, 2017. 1, 2

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network flows: Theory,

algorithms and applications. Prentice Hall, 1993. 3

[3] R. Ahuja, T. Magnanti, and J. Orlin. Network flows: Theory,

algorithms and applications. Prentice Hall, Upper Saddle

River, NJ, USA, 1993. 4

[4] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, and

k. kavukcuoglu. Interaction networks for learning about ob-

jects, relations and physics. In D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances

in Neural Information Processing Systems 29, pages 4502–

4510. Curran Associates, Inc., 2016. 4

[5] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-

Gonzalez, V. F. Zambaldi, M. Malinowski, A. Tacchetti,

D. Raposo, A. Santoro, R. Faulkner, Ç. Gülçehre, F. Song,

A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. Allen,

C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra,

P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu.

Relational inductive biases, deep learning, and graph net-

works. CoRR, abs/1806.01261, 2018. 2, 4

[6] J. Berclaz, F. Fleuret, and P. Fua. Robust people tracking

with global trajectory optimization. 4

[7] J. Berclaz, F. Fleuret, and P. Fua. Robust people track-

ing with global trajectory optimization. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

744–750, 2006. 2

[8] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua. Multiple

object tracking using k-shortest paths optimization. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 33(9):1806–1819, 2011. 1, 2

[9] P. Bergmann, T. Meinhardt, and L. Leal-Taixé. Tracking

without bells and whistles. The International Conference on

Computer Vision(ICCV), abs/1903.05625, 2019. 7, 8

[10] M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and

L. van Gool. Robust tracking-by-detection using a detector

confidence particle filter. IEEE International Conference on

Computer Vision (ICCV), pages 1515–1522, 2009. 2

[11] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. CoRR,

abs/1312.6203, 2013. 2

[12] L. Chen, H. Ai, R. Chen, and Z. Zhuang. Aggregate tracklet

appearance features for multi-object tracking. IEEE Signal

Processing Letters, 26(11):1613–1617, Nov 2019. 8

[13] L. Chen, H. Ai, C. Shang, Z. Zhuang, and B. Bai. Online

multi-object tracking with convolutional neural networks.

pages 645–649, Sept 2017. 8

[14] W. Choi. Near-online multi-target tracking with aggregated

local flow descriptor. ICCV, 2015. 2

[15] W. Choi and S. Savarese. A unified framework for multi-

target tracking and collective activity recognition. European

Conference on Computer Vision (ECCV), pages 215–230,

2012. 2

[16] P. Chu, H. Fan, C. C. Tan, and H. Ling. Online multi-object

tracking with instance-aware tracker and dynamic model re-

freshment. WACV, abs/1902.08231, 2019. 8

[17] P. Chu and H. Ling. Famnet: Joint learning of feature, affin-

ity and multi-dimensional assignment for online multiple ob-

ject tracking. July 2019. 8

[18] M. Defferrard, X. Bresson, and P. Vandergheynst. Convo-

lutional neural networks on graphs with fast localized spec-

tral filtering. In D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems 29, pages 3844–3852. Curran

Associates, Inc., 2016. 2

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009. 6

[20] A. Ess, B. Leibe, K. Schindler, and L. van Gool. A mobile vi-

sion system for robust multi-person tracking. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 1–8, 2008. 2

[21] D. Frossard and R. Urtasun. End-to-end learning of multi-

sensor 3d tracking by detection. CoRR, abs/1806.11534,

2018. 2

[22] J. Gao, T. Zhang, and C. Xu. Graph convolutional tracking.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019. 2

[23] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.

Dahl. Neural message passing for quantum chemistry. In

ICML, 2017. 2, 4

[24] M. Guo, E. Chou, D.-A. Huang, S. Song, S. Yeung, and

L. Fei-Fei. Neural graph matching networks for fewshot 3d

action recognition. In The European Conference on Com-

puter Vision (ECCV), September 2018. 2

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–

778, 2016. 6

[26] R. Henschel, L. Leal-Taixé, D. Cremers, and B. Rosenhahn.

Improvements to frank-wolfe optimization for multi-detector

multi-object tracking. CVPR, abs/1705.08314, 2017. 8

[27] R. Henschel, L. Leal-Taixé, B. Rosenhahn, and K. Schindler.

Tracking with multi-level features. Submitted to IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 2016.

1

[28] R. Henschel, Y. Zou, and B. Rosenhahn. Multiple people

tracking using body and joint detections. In The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR)

Workshops, June 2019. 1

[29] H. Jiang, S. Fels, and J. Little. A linear programming ap-

proach for multiple object tracking. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1–

8, 2007. 2

[30] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar,

J. Garofolo, M. Boonstra, V. Korzhova, and J. Zhang. Frame-

work for performance evaluation for face, text and vehicle

detection and tracking in video: data, metrics, and protocol.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (TPAMI), 31(2):319–336, 2009. 6

[31] M. Keuper, S. Tang, B. Andres, T. Brox, and B. Schiele. Mo-

tion segmentation & multiple object tracking by correlation

co-clustering. PAMI, pages 1–1, 2018. 1, 8

6255

[32] C. Kim, F. Li, and J. M. Rehg. Multi-object tracking with

neural gating using bilinear lstm. In The European Confer-

ence on Computer Vision (ECCV), September 2018. 6

[33] S. Kim, S. Kwak, J. Feyereisl, and B. Han. Online multi-

target tracking by large margin structured learning. pages

98–111, 2013. 2

[34] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel.

Neural relational inference for interacting systems. In J. Dy

and A. Krause, editors, Proceedings of the 35th International

Conference on Machine Learning, volume 80 of Proceedings

of Machine Learning Research, pages 2688–2697, Stock-

holmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

4

[35] T. N. Kipf and M. Welling. Semi-supervised classifica-

tion with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016. 2

[36] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet clas-

sification with deep convolutional neural networks. ANIPS,

2012. 2

[37] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler. Learn-

ing by tracking: siamese cnn for robust target association.

IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops (CVPR). DeepVision: Deep Learning for

Computer Vision., 2016. 2, 4

[38] L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and

S. Savarese. Learning an image-based motion context for

multiple people tracking. 4

[39] L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and

S. Savarese. Baseline used in: Learning and image-based

motion context for multiple people tracking. 2014. 1

[40] L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and

S. Savarese. Learning an image-based motion context for

multiple people tracking. IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2014. 2

[41] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler.

Motchallenge 2015: Towards a benchmark for multi-target

tracking. arXiv:1504.01942, 2015. 6, 8

[42] L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn. Everybody

needs somebody: Modeling social and grouping behavior on

a linear programming multiple people tracker. IEEE Interna-

tional Conference on Computer Vision (ICCV) Workshops.

1st Workshop on Modeling, Simulation and Visual Analysis

of Large Crowds, 2011. 1, 2

[43] L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn. Branch-

and-price global optimization for multi-view multi-target

tracking. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2012. 2

[44] W. Li, R. Zhao, T. Xiao, and X. Wang. Deepreid: Deep filter

pairing neural network for person re-identification. In CVPR,

2014. 6

[45] Z. Li, Q. Chen, and V. Koltun. Combinatorial optimization

with graph convolutional networks and guided tree search. In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-

Bianchi, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems 31, pages 539–548. Curran As-

sociates, Inc., 2018. 2

[46] C. Ma, C. Yang, F. Yang, Y. Zhuang, Z. Zhang, H. Jia,

and X. Xie. Trajectory factory: Tracklet cleaving and re-

connection by deep siamese bi-gru for multiple object track-

ing. ICME, abs/1804.04555, 2018. 8

[47] L. Ma, S. Tang, M. Blakc, and L. van Gool. Customized

multi-person tracker. 2019. 6, 8

[48] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler.

Mot16: A benchmark for multi-object tracking.

arXiv:1603.00831, 2016. 6, 8

[49] A. Milan, L. Leal-Taixé, K. Schindler, and I. Reid. Joint

tracking and segmentation of multiple targets. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2015. 2

[50] M. Narasimhan, S. Lazebnik, and A. G. Schwing. Out of

the box: Reasoning with graph convolution nets for factual

visual question answering. CoRR, abs/1811.00538, 2018. 2

[51] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. You’ll

never walk alone: modeling social behavior for multi-target

tracking. IEEE International Conference on Computer Vi-

sion (ICCV), pages 261–268, 2009. 2

[52] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Globally-

optimal greedy algorithms for tracking a variable number of

objects. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1201–1208, 2011. 2

[53] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Proceedings of the 28th International Conference on Neural

Information Processing Systems - Volume 1, NIPS’15, pages

91–99, Cambridge, MA, USA, 2015. MIT Press. 1

[54] S. Ren, R. G. K. He, and J. Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. Neural

Information Processing Systems (NIPS), 2015. 2

[55] E. Ristani, F. Solera, R. S. Zou, R. Cucchiara, and C. Tomasi.

Performance measures and a data set for multi-target, multi-

camera tracking. ECCV Workshops, 2016. 6

[56] E. Ristani and C. Tommasi. Features for multi-target multi-

camera tracking and re-identification. CVPR, 2018. 2

[57] A. Sadeghian, A. Alahi, and S. Savarese. Tracking the un-

trackable: Learning to track multiple cues with long-term

dependencies. ICCV, Oct 2017. 2

[58] A. Sadeghian, A. Alahi, and S. Savarese. Tracking the un-

trackable: Learning to track multiple cues with long-term

dependencies. ICCV, abs/1701.01909, 2017. 8

[59] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and

G. Monfardini. The graph neural network model. Trans.

Neur. Netw., 20(1):61–80, Jan. 2009. 2

[60] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker. Deep

network flow for multi-object tracking. CVPR, 2017. 1, 2, 4,

8

[61] H. Sheng, Y. Zhang, J. Chen, Z. Xiong, and J. Zhang. Het-

erogeneous association graph fusion for target association in

multiple object tracking. IEEE Transactions on Circuits and

Systems for Video Technology, 2018. 8

[62] J. Son, M. Baek, M. Cho, and B. Han. Multi-object tracking

with quadruplet convolutional neural networks. July 2017.

1, 2

6256

[63] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Mul-

tiple people tracking by lifted multicut and person re-

identification. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3701–3710, Wash-

ington, DC, USA, July 2017. IEEE Computer Society. 1,

6

[64] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Mul-

tiple people tracking by lifted multicut and person re-

identification. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3701–3710, July

2017. 8

[65] S. Tang, M. Andriluka, and B. Schiele. Multi people track-

ing with lifted multicut and person re-identification. CVPR,

2017. 1, 2

[66] S. Wang and C. Fowlkes. Learning optimal parameters for

multi-target tracking. BMVC, 2015. 2

[67] Z. Wu, T. Kunz, and M. Betke. Efficient track linking meth-

ods for track graphs using network-flow and set-cover tech-

niques. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1185–1192, 2011. 2

[68] J. Xu, Y. Cao, Z. Zhang, and H. Hu. Spatial-temporal relation

networks for multi-object tracking. ICCV, abs/1904.11489,

2019. 1

[69] J. Xu, Y. Cao, Z. Zhang, and H. Hu. Spatial-temporal relation

networks for multi-object tracking. ICCV, abs/1904.11489,

2019. 8

[70] F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and

accurate cnn object detector with scale dependent pooling

and cascaded rejection classifiers. CVPR, 2016. 2

[71] Q. Yu, G. Medioni, and I. Cohen. Multiple target tracking

using spatio-temporal markov chain monte carlo data asso-

ciation. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1–8, 2007. 1

[72] A. Zamir, A. Dehghan, and M. Shah. Gmcp-tracker: Global

multi-object tracking using generalized minimum clique

graphs. ECCV, 2012. 2

[73] L. Zhang, Y. Li, and R. Nevatia. Global data association for

multi-object tracking using network flows. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

1–8, 2008. 1, 2

[74] L. Zhang, Y. Li, and R. Nevatia. Global data association for

multi-object tracking using network flows. CVPR, 2008. 1,

2, 3

[75] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.

Scalable person re-identification: A benchmark. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, 2015. 6

[76] J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, and M.-H.

Yang. Online multi-object tracking with dual matching at-

tention networks. September 2018. 1, 2

6257

