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Abstract

Although the performance of hand segmentation in ego-

centric videos has been significantly improved by using

CNNs, it still remains a challenging issue to generalize the

trained models to new domains, e.g., unseen environments.

In this work, we solve the hand segmentation generaliza-

tion problem without requiring segmentation labels in the

target domain. To this end, we propose a Bayesian CNN-

based model adaptation framework for hand segmentation,

which introduces and considers two key factors: 1) predic-

tion uncertainty when the model is applied in a new do-

main and 2) common information about hand shapes shared

across domains. Consequently, we propose an iterative self-

training method for hand segmentation in the new domain,

which is guided by the model uncertainty estimated by a

Bayesian CNN. We further use an adversarial component

in our framework to utilize shared information about hand

shapes to constrain the model adaptation process. Exper-

iments on multiple egocentric datasets show that the pro-

posed method significantly improves the generalization per-

formance of hand segmentation.

1. Introduction

The popularity of wearable cameras in recent years is

accompanied by a large amount of first-person view (ego-

centric) videos recording persons’ daily interactions with

their surrounding environments [27, 5, 46]. Since hands are

among the most common objects in a user’s field of view,

hand segmentation is critically important for various objec-

tives of egocentric video analysis [10, 12, 14]. Hand seg-

mentation in egocentric videos is challenging due to rapidly

changing imaging conditions and the lack of body cues [30].

Although recent researches have shown significant perfor-

mance improvement by using various CNN-based models
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Figure 1. Illustration of the proposed model adaptation framework

for hand segmentation in a new domain.

[43], how to generalize such models to new domains, e.g.,

egocentric videos taken in unseen environments, remains a

challenging issue.

This work aims to generalize hand segmentation in ego-

centric videos in an unsupervised manner. The task can be

viewed as unsupervised domain adaptation for hand seg-

mentation and is challenging since the lack of annotated

data in the new domain prohibits conventional approaches

of fine-tuning models. Furthermore, the unique character-

istics of egocentric videos (e.g., rapidly changing illumina-

tion and background, lack of contextual information from

body part) make it difficult to adapt model parameters to the

new domain. As shown in Figure 1, the images in the tar-

get domain have different hand appearance and background

compared with the images in the source domain. Conse-

quently, a hand segmentation model trained in the source

domain would have poor performance by directly applying

to the target domain.

Based on such observation, we identify two major fac-

tors that are important for improving generalization perfor-

mance of hand segmentation. The first factor is model un-

certainty which measures how confident a model is with its

prediction. The model uncertainty provides a good mea-
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surement of the gap between data of the source and target

domains. Commonly speaking, more similar an image (or

image region) is from the training data, more confident a

model becomes with its prediction and vice versa. There-

fore, model uncertainty can be used to guide model adapta-

tion in the target domain. The second factor is hand shape

prior. Although egocentric videos may be captured with

varying illumination and backgrounds leading to large vari-

ation on hand appearance, the shape of a hand tends to be

consistent from the user’s first-person point of view. There-

fore, a common hand shape learned from the training data

is expected to provide good prior information for promoting

the model adaptation in the new domain.

In this paper, we propose a novel model adaptation

framework for generalizing a hand segmentation model

trained with source domain data to an unseen target domain

without additional hand labels. Specifically, we formulate

the CNN-based hand segmentation model in a Bayesian

framework (Bayesian CNN) which is robust to overfitting

and can provide more reliable estimation of model uncer-

tainty than conventional deterministic CNN models. The

core component of the framework is uncertainty-guided

model adaptation which conducts self-training in the target

domain iteratively by constructing reliable pseudo-labels

based on the model uncertainty estimated with the Bayesian

CNN. Furthermore, we compose prior information of hand

shapes for model adaptation by enforcing the shape of a pre-

dicted hand region in the target domain to become similar

to hand shapes in the source domain.

The main contributions of this work include:

• We propose a new Bayesian CNN-based model adap-

tation framework for generalizing hand segmentation

in egocentric videos. To the best of our knowledge,

this is the first effort to generalize hand segmentation

with unsupervised model adaptation.

• We demonstrate the effectiveness of using uncertainty

prior and hand shape prior to assist generalization of a

hand segmentation model for egocentric videos.

• We demonstrate via thorough experiments that the

proposed method improves the generalization perfor-

mance of hand segmentation significantly compared

with state-of-the-art CNN-based methods.

2. Related works

2.1. Hand segmentation in egocentric videos

Detecting or segmenting hands in egocentric videos with

changing illumination and backgrounds is challenging for

traditional color statistics-based methods such as [26], and

many attempts have been made in recent year to overcome

the challenge [39, 16, 30, 31, 47, 2, 4, 43, 32]. Ren and Gu

[39] posed the task of hand segmentation as a figure-ground

segmentation problem based on the assumption that motion

patterns of hands are different from that of a background.

Li and Kitani [30, 31] proposed a scene-adaptive method by

training multiple hand detectors for different groups of im-

ages and choosing suitable hand detectors for different test

images. Bambach et al. [2] proposed a two-stage hand seg-

mentation method by first detecting hand bounding boxes

with a convolutional neural network and then segmenting a

hand region through Grabcut [40] in each detected bound-

ing box. Recently, Urooj and Borji [43] used fully con-

volutional networks (RefineNet-ResNet101 [35] originally

proposed for semantic segmentation) for hand segmenta-

tion and achieved state-of-the-art performance. However,

existing methods have poor performance when applied to

unseen datasets that are quite different from the dataset on

which they are trained.

2.2. Unsupervised domain adaptation

Unsupervised domain adaptation [15] is a well studied

topic which aims to reduce the domain gap for visual tasks

and has attracted much research attention for semantic seg-

mentation. Traditional approaches of unsupervised domain

adaption try to learn feature representations that can min-

imize the discrepancy between source and target domains

[19, 36]. Recently, the idea of adversarial learning was

employed to learn general feature representations between

source and target domains through an adversarial objective

[24, 8, 25, 41, 44, 34]. In [23], a two-stage approach was

proposed for domain adaptation which consists of an image-

to-image translation network and a segmentation adaptation

network. Li et al. extended the approach further with a bi-

directional learning between the two stages [34].

Another line of work for unsupervised domain adapta-

tion is based on the idea of self-training where predictions

from a previously trained model are exploited as pseudo-

labels for training a model of focus [49, 48]. In [49], a self-

training based approach is proposed for adapting semantic

segmentation models to new domains with class balancing

and spatial prior. In this work, we adopt the idea of self-

training and propose an uncertain-guided model adaptation

framework based on a Bayesian CNN. Besides, we incor-

porate the hand shape prior for hand segmentation and for-

mulate it in our model adaptation framework.

2.3. Bayesian deep learning

Bayesian inference has a long history in machine learn-

ing [6]. It provides uncertainty estimates with a posterior

distribution. To overcome the difficulty of Bayesian infer-

ence in large models such as neural networks, early works

explored a variety of methods such as Markov Chain Monte

Carlo (MCMC) [37] and variational inference [22, 3]. Many

other works have also been proposed to enable scalable vari-

ational inference in large Bayesian deep learning problems

[18, 21, 29, 1]. Recently, approaches have been seen to ex-
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Figure 2. Comparison of different uncertainty maps: (a) input im-

age (b) prediction probability (softmax output) from a standard

CNN and ground-truth hand region (in red boundary) (c) uncer-

tainty map obtained based on softmax output (d) uncertainty map

obtained with a Bayesian CNN. The darker means less certain.

ploit uncertainty estimated from Bayesian deep learning for

unsupervised domain adaptation [20, 45]. In [45], Bayesian

uncertainty is matched to approximately reduce the domain-

shift of a classifier.

In this work, we utilize Bayesian uncertainty to guide

the adaptation of a pre-trained hand segmentation model to

unseen environments.

3. Model uncertainty in hand segmentation

Before explaining the proposed method of uncertainty-

guided model adaptation in Section 4, we briefly describe

model uncertainty in hand segmentation.

3.1. Model uncertainty

Model uncertainty measures the confidence of a model

with its prediction and is indispensable for many practical

deep learning applications [42]. For example, if a model re-

turns a classification result with high uncertainty, we might

better be careful when using the result. In this work, we

rely on model uncertainty to guide the adaptation of a pre-

trained hand segmentation model to new domains. Briefly

speaking, if a model is confident with its predictions from a

part of the data in the target domain, such predictions then

can be used as pseudo-labels for adapting model parameters

to the target domain. The details of uncertain-guided model

adaptation is described in Section 4. Here we first describe

how to estimate model uncertainty for hand segmentation.

Standard CNN models do not capture model uncertainty.

Alternatively, a prediction probability, e.g., softmax output

of the last layer of the model in the case of classification, is

often erroneously used to interpret model uncertainty. In-

deed, it is known that a model might be uncertain with its

prediction even with a high prediction probability [17]. A

Bayesian CNN provides a probabilistic interpretation of a

CNN model by considering a distribution over model pa-

rameters and therefore provides a more reliable way of es-

timating model uncertainty. As shown in Figure 2, the un-

certainty map obtained through a prediction probability is

over-confident with the region of the right hand as we can

see the region having very low values in the map. On the

contrary, the uncertainty map obtained through a Bayesian

CNN correctly identifies the region of the right hand be-

ing uncertain. In this work, we propose to use a Bayesian

CNN for estimating model uncertainty for hand segmenta-

tion, and the details of uncertainty estimation are given in

the following section.

3.2. Uncertainty estimates with Bayesian CNN

In a Bayesian CNN, model parameters are considered as

random variables. Given training data D = {X ,Y} with

inputs X and corresponding outputs Y , the posterior distri-

bution of the model parameters w is defined by invoking the

Bayes’ theorem:

p(w|D) =
p(Y|X , w)p(w)

p(Y|X )
(1)

Computing the posterior distribution p(w|D) is often in-

tractable, and approximate inference is needed. As an ac-

tive area of research in Bayesian deep learning, variational

inference [7] approximates the complex posterior distribu-

tion p(w|D) with an approximating variational distribution

q(w) by minimizing the Kullback-Leibler (KL) divergence

between the two distributions. During the testing phase, the

predictive distribution of output y given a new input x could

be obtained through multiple stochastic forward passes with

network parameters sampled from q(w):

p(y|x) =

∫

p(y|x,w)q(w) dw

≈
1

T

T
∑

i=1

p(y|x,wi), wi ∼ q(w)

(2)

where T is the number of stochastic forward passes, wi de-

notes one realization of model parameters sampled from

q(w). In practice, we follow the Bayesian approximation

method in [18] which approximates the sampling of model

parameters with dropout that has been widely used as a reg-

ularization tool in deep learning. Such approximation has

the benefit that existing CNN models trained with dropout

can be cast as Bayesian models without changing the origi-

nal models.

Here we describe how to perform Bayesian inference and

estimate model uncertainty for hand segmentation. Suppose

we have trained a hand segmentation model H(I, w) which

outputs a hand probability (softmax output) map P given an

input image I. The mean probability map P̄ and uncertainty

map U are computed as:

P̄ =
1

T

T
∑

i=1

H(I, wi), wi ∼ dropout(w)

U =
1

T

T
∑

i=1

P
2
i − P̄

2

(3)

14394



Images

Labels

Bayesian CNN

Probability map  𝑷Uncertainty map 𝑼
Images

Source domain Target domain

Hand shape 

discriminator

Model adaptation

ℒ𝑢𝑠𝑒𝑔( 𝑷,  𝑴,𝑼)
Predictions

Pseudo-hand mask  𝑴

+𝜆𝑎𝑑𝑣ℒ𝑎𝑑𝑣(𝐷ℎ𝑠( 𝑷), 1)
Iterative self-training

update

Figure 3. Overview of the proposed uncertainty-guided model adaptation.

where Pi = H(I, wi) denotes a hand probability map ob-

tained after one stochastic forward pass, and the square op-

erators in Equation 3 are element-wise. It is noted that P̄

and U have the same spatial size with the input image, and

the estimation of U essentially equals calculating the vari-

ance of a hand probability at each pixel. By thresholding P̄,

we obtain a predicted hand segmentation mask M̂.

4. Proposed method

4.1. Task definition

Suppose we have a baseline hand segmentation model

H(I, θs) with parameters θs learned by using training data

from the source domain Ds = {Ii,Mi}
ns

i=1, in which Ii

denotes a RGB image and Mi denotes a binary hand seg-

mentation mask. While the pre-trained baseline model can

perform well as long as test data have a similar distribution

as the training data Ds, it may not generalize to data with

a different distribution. Our task is to adapt the pre-trained

model to a new target domain Dt = {Ii}
nt

i=1 without newly

annotated hand segmentation masks.

4.2. Uncertaintyguided model adaptation

We adopt the idea of self-training from semi-supervised

learning [13] for model adaptation. Although no hand seg-

mentation label is given for the target domain, by exploiting

pseudo-labels from confident model predictions, the model

could be updated and adapted to the target domain. As dis-

cussed in Section 3.1, a prediction probability from a de-

terministic CNN model cannot provide reliable uncertainty

estimates. Different from previous approaches which con-

struct pseudo-labels based on such prediction probabilities,

we utilize uncertainty estimated based on Bayesian deep

learning to construct more reliable pseudo-labels.

The model adaptation is formulated as an iterative self-

training procedure in which the hand probability maps and

uncertainty maps obtained from the model at the previous

iteration are used for training current model. The loss func-

tion to learn H(I, θt) for the target domain is defined as:

L
H

(k)
t

= Luseg

(

P̄
(k)
t , M̂

(k−1)
t , U

(k−1)
t

)

(4)

where k denotes the iteration index, P̄t = {P̄i}
nt

i=1 and

Ut = {Ui}
nt

i=1 denote the mean hand probability maps

and uncertainty maps of the target domain obtained through

Equation 3, M̂t = {M̂i}
nt

i=1 denotes the predicted hand

segmentation masks that are obtained by thresholding P̄t

with 0.5. Luseg denotes the uncertainty-guided hand seg-

mentation loss and is defined as:

Luseg

(

P̄, M̂,U
)

= −
1

M

M
∑

m=1

(1−Um)
(

M̂m log P̄m

+ (1− M̂m) log(1− P̄m)
)

(5)

where the iteration index and sample index are omitted for

simplicity, and m denotes the pixel index of P̄, M̂,U. It is

noted that, instead of selecting pixels of low uncertainty as

pseudo-labels with a manually specified threshold, we use

uncertainty as a soft weight on the whole predictions. In

other words, pixels with high confidence contribute more

to model adaptation and vice verse. U is normalized to a

range of [0,1] before being used.

The model uncertainty is also used to determine when

the iterative adaptation procedure is terminated to avoid

overfitting. Specifically, we terminate the iteration when the

reduction of the average uncertainty score is smaller than

10%. The overall iterative adaptation procedure is summ-

rized in Algorithm 1.

4.3. Hand shape constraint

To improve generalization performance of hand segmen-

tation, it is also important to explore common information

of human hands shared between the source and target do-

mains. In this work, we propose to exploit hand shapes as

such common information to help promote the adaptation of

hand segmentation models to the target domain. Although

imaging conditions and backgrounds can be very different
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Figure 4. Image samples of six datasets. Large variation on illumination and background could be observed across different datasets.

Algorithm 1: Procedure of model adaptation

Input: Dt and Hs trained on Ds

Output: Ht

1 Initialize: M̂(0), U
(0)
t ← Hs(Dt) with Equation 3

2 for k ← 1 to K do

3 Train H
(k)
t with Equation 4 or 8

4 M̂(k), U
(k)
t ← H

(k)
t (Dt) with Equation 3

5 if |Ū
(k)
t − Ū

(k−1)
t | < 1

10 Ū
(k−1)
t then

6 Stop iteration

across different egocentric datasets, there is consistency in

the shape of hands from user’s first-person point of view.

Therefore, the information of hand shape learned from the

source domain could be used as useful prior information for

model adaptation in the target domain.

To be more concrete, the hand shape prior is learned by

adding a hand shape discriminator Dhs in the training of

hand segmentation in the source domain, and the loss func-

tion is formulated as:

LHs
= Lseg

(

Ps,Ms

)

+ Ladv

(

Dhs(Ps), 1
)

(6)

LDhs
= Ladv

(

Dhs(Ms), 1
)

+ Ladv

(

Dhs(Ps), 0
)

(7)

where Lseg denotes standard hand segmentation loss and

Ladv denotes image-level binary cross-entropy loss. After

the above adversarial learning, information of hand shapes

is encoded in Dhs and can be used for model adaptation.

During adaptation, the loss function to learn H(I, θt)
with the obtained prior of hand shapes is modified as:

L
H

(k)
t

= Luseg

(

P̄
(k)
t , M̂

(k−1)
t , U

(k−1)
t

)

+ λadvLadv

(

Dhs(P̄
(k)
t ), 1

)

(8)

where the second term with weighting factor λadv is used

to enforce the shape of a predicted hand segmentation to be

similar to that learned from the source domain.

4.4. Network architecture and training details

Network architecture. We adopt RefineNet [35] as our

baseline hand segmentation network considering the state-

of-the-art performance achieved by it in recent work [43]. It

is noted that the segmentation network itself is not our con-

tribution and our proposed model adaptation method could

be applied to any segmentation networks with dropout. To

formulate a Bayesian CNN, we simply train the hand seg-

mentation network in the source domain with one dropout

layer (dropout probability p = 0.5) added after each resid-

ual convolutional unit of RefineNet, and the dropout layers

are also applied during testing. The hand shape discrimina-

tor Dhs has the same architecture as the one used in [38].

Training details. We employ PyTorch for implementa-

tions1. All experiments are run on a single NVIDIA 2080TI

GPU. We use Adam optimizer [28] with learning rate 10−5

to train the hand segmentation network and hand shape dis-

criminator in the source domain for 20 epochs. For iter-

ative uncertainty-guided model adaptation, we use RMS-

Prop with learning rate 10−5, and within each iteration the

network is trained for one epoch with pseudo-labels. To es-

timate model uncertainty with Bayesian CNN, we conduct

T = 10 times of stochastic forward passes. The weighting

factor for adversarial loss is set as λadv = 0.1.

5. Experiments

5.1. Datasets

EGTEA dataset [33]. The Extended GeorgiaTech Ego-

centric Activity (EGTEA) dataset contains 29 hours of ego-

centric videos with a resolution of 1280×960. These videos

record meal preparation tasks performed by 32 subjects in a

naturalistic kitchen environment. Within the dataset, 13847

images are labeled with hand masks. We use this dataset to

train the initial hand segmentation network.

GTEA dataset [16]. This dataset consists of 28 egocen-

tric videos with a resolution of 720× 405 recording 7 daily

activities performed by 4 subjects. 663 images are anno-

tated with hand masks. We follow the data split as in [43]

that images from subject 1, 3, 4 are used as a training set

and the rest as a test set.

EDSH dataset [30]. This dataset contains 3 egocentric

videos (EDSH1, EDSH2 and EDSH-Kitchen) with a reso-

lution of 1280 × 720 recorded in both indoor and outdoor

1Code available at https://github.com/cai-mj/UMA.
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Table 1. Cross-dataset hand segmentation performance of different model components. EGTEA dataset is used as source domain. Mean

Intersection over Union (mIoU) and mean F1 score (mF1) are used as evaluation metric.

Method
GTEA EDSH-2 EDSH-K UTG YHG Egohands

mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1

CNN 0.8845 0.9257 0.6936 0.8030 0.7205 0.8078 0.5481 0.6859 0.2831 0.3870 0.4019 0.5357

CNN+uma 0.8766 0.9127 0.7141 0.8170 0.7723 0.8472 0.6089 0.7284 0.3159 0.4257 0.4252 0.5632

Bayesian CNN 0.8896 0.9362 0.7632 0.8553 0.7576 0.8356 0.5832 0.7174 0.3619 0.4987 0.4235 0.5619

Bayesian CNN+uma 0.8945 0.9391 0.7965 0.8819 0.7812 0.8599 0.6762 0.7892 0.5223 0.6608 0.4665 0.6134

Bayesian CNN+uma+hs 0.8990 0.9417 0.8025 0.8856 0.7951 0.8674 0.6827 0.7922 0.5596 0.7048 0.4660 0.6123

environments. We adopt the same data split as in [30]. 442

labeled images from EDSH1 are used as a training set. 104

labeled images from EDSH2 and 197 labeled images from

EDSH-Kitchen are used as two separate test sets.

UTG dataset [11]. The University of Tokyo Grasping

(UTG) dataset consists of 50 egocentric videos with a res-

olution of 1920 × 1080. This dataset captures 17 different

types of hand grasps performed by 5 subjects. To facilitate

our study, we mannually annnotated hand masks on 872 im-

ages and randomly split them into training and test set with

the ratio of 75% and 25% respectively.

YHG dataset [9]. The Yale Human Grasping (YHG)

dataset provides daily observation of human grasping be-

havior in unstructured environments. It consists of 27.7

hours of egocentric videos with a resolution of 640 × 480
recorded by two machinists and two house keepers during

their daily work. We manually annotated hand masks on

488 images and randomly split them into training and test

set with the ratio of 75% and 25% respectively.

Egohands dataset [2]. This dataset consists of 48 ego-

centric videos with a resolution of 1280×720 which records

social interactions between two persons in both indoor and

outdoor environments. 4800 randomly sampled images are

labeled with hand masks. Following [2] and [43], we split

the data into training, validation and test set with the ratio

of 75%, 8% and 17%.

Image samples of these datasets are shown in Figure 4.

It is noted that we only use hand mask labels in the training

set of EGTEA dataset for training our hand segmentation

network, and the labels in other datasets are only used for

performance evaluation.

5.2. Performance analysis

5.2.1 Ablation study of the proposed method

We first conduct an ablation study on the effectiveness of

different components of the proposed method as follows:

• CNN: a standard CNN-based hand segmentation

model using architecture of RefineNet [35].

• CNN+uma: uncertainty-guided model adaptation in

which the model uncertainty is estimated based on a

standard CNN.

• Bayesian CNN: a Bayesian version of a CNN-based

hand segmentation model.

• Bayesian CNN+uma: uncertainty-guided model adap-

tation in which the model uncertainty is estimated

based on Bayesian CNN.

• Bayesian CNN+uma+hs: Bayesian CNN+uma with

the hand shape constraint for model adaptation.

The cross-dataset hand segmentation performance of dif-

ferent models is shown in Table 1. We first analyze the re-

sults based on IoU. It can be seen that the Bayesian CNN

has better generalization ability than the standard CNN.

With Bayesian CNN, the uncertain-guided model adapta-

tion (Bayesian CNN+uma) improves the segmentation per-

formance for all the datasets. In particular, the improve-

ment is significant for datasets of UTG and YHG which

have very different imaging conditions from the source do-

main dataset. Besides, the effectiveness of uncertain-guided

model adaptation with Bayesian CNN is much better than

that with standard CNN, indicating that Bayesian CNN pro-

vides a better way of estimating model uncertainty than

standard CNN. Adding hand shape constraint (Bayesian

CNN+uma+hs) further improves the segmentation perfor-

mance, verifying our hypothesis that hand shape is consis-

tent in egocentric videos and could be used to promote seg-

mentation adaptation. It is noted that the generalization per-

formance in Egohands is limited even with model adapta-

tion. The reason is that the hands in Egohands are recorded

in a mixture of first (egocentric) and second-person views

and the segmentation model (as well as the hand shape

prior) learned in first-person view could not adapt well to

the second-person view. This indicates that to adapt hand

segmentation across different views, new labels might be

needed. Similar results are seen with the mean F1 score.

5.2.2 Evaluation of iterative adaptation

Here we evaluate how the segmentation performance varies

during the iteration procedure of our model adaptation

method. In Figure 5, we demonstrate the performance vari-

ation of two versions of our method: Bayesian CNN+uma

and Bayesian CNN+uma+hs. Since the iteration terminates

(illustrated by the vertical dashed line) before five iterations

based on our stop criterion for all datasets, we only demon-

strate results of five iterations. It can be seen from the figure

that with iterative adaptation the segmentation performance

tends to improve and then degrades after a certain number
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Figure 5. Performance variation of the iterative model adaptation. The horizontal axis shows the number of iterations, with “0” denoting

the initial prediction before model adaptation. The vertical axis shows the segmentation performance (IoU).

of iterations. The reason is probably that as model adap-

tation iterates the model becomes more confident (possibly

over-confident) with the data of the target domain and might

overfit to its false predictions. This indicates that a proper

stop criterion is needed to prevent overfitting. The results

show that based on our stop criterion, the adaptation proce-

dure could terminate before performance degradation.

Qualitative results of our method on YHG dataset are

shown in Figure 6. It can be seen that at the beginning,

the segmentation performance with initial model is rather

poor and correspondingly the area of uncertain region is

relatively large. With uncertainty-guided model adaptation,

segmentation performance improves and the area of uncer-

tain region decreases progressively. More qualitative results

on other datasets are given in the supplementary material.

5.2.3 Evaluation of stochastic forward passes

In previous sections, we have shown that the proposed

uncertain-guided model adaptation improved the general-

ization performance of hand segmentation significantly. In

particular, by sampling model parameters through multiple

stochastic forward passes, the Bayesian CNN works better

for both inference and uncertainty estimation of hand seg-

mentation compared with standard CNN. In this part, we

study how the number of stochastic forward passes affects

the final performance. Figure 7 shows the segmentation per-

formance of Bayesian CNN+uma with different numbers of

stochastic forward passes. The performance improves at

the beginning (before 15), and then fluctuates around IoU

of 0.525 when the number of stochastic forward passes in-

creases. The reason of performance fluctuation shown in the

Iter-0 Iter-1 Iter-2

(a)

(b)

(c)

Figure 6. Qualitative results with iterations of uncertainty-guided

model adaptation. The left column shows original images and

hand masks of three samples from YHG dataset. The other part of

the figure shows hand segmentation results and estimated model

uncertainty at different iterations.

figure might be that current dropout-based sampling could

not well approximate the posterior distribution of model pa-

rameters without enough number of sampling. This indi-
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posed method on YHG dataset.
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Figure 8. Simulation of online hand segmentation performance

with the proposed method on YHG dataset.

cates that more thorough study on the impact of different

sampling strategies is needed in the future work.

5.2.4 Simulation of online hand segmentation

Suppose we need a hand segmentation system which could

be practically usable for different real-world environments.

The proposed method could serve as an online model adap-

tation tool for such a system since it could adapt a pre-

trained hand segmentation model to unseen environments

without labels. To simulate our method’s ability for on-

line hand segmentation, we gradually sample more raw im-

ages (without labels) from the training set of YHG dataset

for model adaptation and evaluate the segmentation perfor-

mance on the testing set of the same dataset. Figure 8 shows

the segmentation performance as a function of number of

samples. The results indicate that with only a few unlabeled

data (20 raw images), the model could be well adapted to

the target domain, and the performance could keep improv-

ing as we collect more data.

5.3. Comparison with stateoftheart models

We compare the cross-dataset performance with state-

of-the-art methods on hand segmentation and unsupervised

domain adaptation for semantic segmentation.

• RefineNet [43]: a state-of-the-art hand segmentation

model using RefineNet [35] as the network architec-

ture. It is also used as a baseline model in the ablation

study (Section 5.2.1).

• CBST [49]: a self-training method for semantic seg-

mentation. It generates pseudo-labels for model adap-

tation based on softmax output and further improves

the performance with spatial prior information.

• BDL [34]: a state-of-the-art unsupervised domain

adaptation method for semantic segmentation. It com-

bines self-training in [49] with adversarial learning to

decrease the domain gap.

CBST [49] and BDL [34] were originally proposed for se-

mantic segmentation and are compared here to show how

state-of-the-art domain adaptation methods could help im-

prove the generalization performance of hand segmentation.

We adapt their methods to solve the hand segmentation task.

To give a better comparison, we replace their original seg-

mentation networks with RefineNet.

Table 2. Cross-dataset hand segmentation performance of different

methods. EGTEA dataset is used as source domain. Intersection

over Union (IoU) is used as evaluation metric.

Method GTEA EDSH-2 EDSH-K UTG YHG Egohands

RefineNet [43] 0.8845 0.6936 0.7205 0.5481 0.2831 0.4019

CBST [49] 0.8766 0.7353 0.7207 0.5627 0.3539 0.4293

BDL [34] 0.8609 0.7240 0.7360 0.6210 0.4170 0.4390

Ours 0.8990 0.8025 0.7951 0.6827 0.5596 0.4660

Quantitative results of different methods are shown in

Table 2. Our method achieves the best performance on all

the target datasets and significantly outperforms the state-

of-the-art hand segmentation method [43] without domain

adaptation. The superior performance of our method over

CBST [49] and BDL [34] verifies the effectiveness of the

proposed method for generalizing hand segmentation.

6. Conclusion

We proposed a novel method to generalize hand seg-

mentation across different environments. With model un-

certainty estimated from a Bayesian CNN, the proposed

method could adapt a pre-trained hand segmentation model

to a new environment without labels. Thorough experi-

ments show significant improvements on the generalization

performance of hand segmentation compared with existing

CNN-based methods and enables flexible online adaptation

of hand segmentation to new environments. As for our fu-

ture work, we would like to study the effectiveness of dif-

ferent quantitative measurement of model uncertainty based

on Bayesian CNN. In addition, as current experiments show

fluctuating performance with different number of stochastic

forward passes, we would like to study more deeply on the

impact of different sampling strategies.
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