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Abstract

Region sampling or weighting is significantly important

to the success of modern region-based object detectors.

Unlike some previous works, which only focus on “hard”

samples when optimizing the objective function, we argue

that sample weighting should be data-dependent and task-

dependent. The importance of a sample for the objec-

tive function optimization is determined by its uncertain-

ties to both object classification and bounding box regres-

sion tasks. To this end, we devise a general loss func-

tion to cover most region-based object detectors with var-

ious sampling strategies, and then based on it we propose

a unified sample weighting network to predict a sample’s

task weights. Our framework is simple yet effective. It

leverages the samples’ uncertainty distributions on classi-

fication loss, regression loss, IoU, and probability score,

to predict sample weights. Our approach has several ad-

vantages: (i). It jointly learns sample weights for both

classification and regression tasks, which differentiates it

from most previous work. (ii). It is a data-driven pro-

cess, so it avoids some manual parameter tuning. (iii). It

can be effortlessly plugged into most object detectors and

achieves noticeable performance improvements without af-

fecting their inference time. Our approach has been thor-

oughly evaluated with recent object detection frameworks

and it can consistently boost the detection accuracy. Code

has been made available at https://github.com/

caiqi/sample-weighting-network.

1. Introduction

Modern region-based object detection is a multi-task

learning problem, which consists of object classification

and localization. It involves region sampling (sliding win-

dow or region proposal), region classification and regres-

sion, and non-maximum suppression. Leveraging region

sampling, it converts object detection into a classification

∗This work was performed at JD AI Research.
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Figure 1: Samples from our training process. (a) The samples

having large classification loss but small weight. (b) The samples

having small classification loss but large weight. (c) The samples

exhibiting inconsistency between classification score and IoU.

task, where a vast number of regions are classified and re-

gressed. According to the way of region search, these de-

tectors can be categorized into one-stage detectors [28, 30,

34, 45] and two-stage detectors [2, 15, 16, 17, 27, 36].

In general, the object detectors of the highest accuracy

are based on the two-stage framework such as Faster R-

CNN [36], which rapidly narrows down regions (most of

them are from the background) during the region proposal

stage. In contrast, the one-stage detectors, such as SSD

[30] and YOLO [34], achieve faster detection speed but

lower accuracy. It is because of the class imbalance problem

(i.e., the imbalance between foreground and background re-

gions), which is a classic challenge for object detection.

The two-stage detectors deal with class imbalance by

a region-proposal mechanism followed by various efficient

sample strategies, such as sampling with a fixed foreground-

to-background ratio and hard example mining [13, 37, 40].

Although the similar hard example mining can be applied

to one-stage detectors, it is inefficient due to a large num-

ber of easy negative examples [28]. Unlike the Online

Hard Example Mining (OHEM) [37] which explicitly se-

lects samples with high classification losses into the train-

ing loop, Focal-Loss [28] proposes a soft weighting strat-

egy, which reshapes the classification loss to automatically

down-weight the contributions of easy samples and thus fo-

cuses the training on hard samples. As a result, the manu-

ally tuned Focal-Loss can significantly improve the perfor-

mance of one-stage detectors.
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The aforementioned “hard” samples generally refer to

those with large classification loss. However, a “hard” sam-

ple is not necessarily important. As Figure 1 (a) (All sam-

ples are selected from our training process.) illustrates, the

samples have high classification losses but small weights

(“hard” but not important). Conversely, an “easy” sample

can be significant if it captures the gist of the object class

as shown in Figure 1 (b). In addition, the assumption that

the bounding box regression is accurate when the classi-

fication score is high, does not always hold as examples

shown in Figure 1 (c). There may be a misalignment be-

tween classification and regression sometimes [21]. Hence,

an IoU-Net is proposed in [21] to predict a location confi-

dence. Furthermore, there are ambiguities in bounding box

annotations due to occlusion, inaccurate labeling, and am-

biguous object boundary. In other words, the training data

has uncertainties. Accordingly, [19] proposes a KL-Loss

to learn bounding box regression and location uncertainties

simultaneously. The samples with high uncertainty (high

regression loss) are down-weighted during training.

Sample weighting is a very complicated and dynamic

process. There are various uncertainties, which exist in

individual samples when applying to a loss function of a

multi-task problem. Inspired by [23], we argue that sample

weighting should be data-dependent and task-dependent.

On the one hand, unlike previous work, the importance of a

sample should be determined by its intrinsic property com-

pared to the ground truth and its response to the loss func-

tion. On the other hand, object detection is a multi-task

problem. A sample’s weights should balance among differ-

ent tasks. If the detector trades its capacity for accurate clas-

sification and generates poor localization results, the mis-

localized detection will harm average precision especially

under high IoU criterion and vice versa.

Following the above idea, we propose a unified dynamic

sample weighting network for object detection. It is a sim-

ple yet effective approach to learn sample-wise weights,

which also balances between the tasks of classification and

regression. Specifically, beyond the base detection network,

we devise a sample weighting network to predict a sample’s

classification and regression weights. The network takes

classification loss, regression loss, IoU and score as inputs.

It serves as a function to transform a sample’s current con-

textual feature into sample weight. Our sample weighting

network has been thoroughly evaluated on MS COCO [29]

and Pascal VOC [11] datasets with various one-stage and

two-stage detectors. Significant performance gains up to

1.8% have been consistently achieved by ResNet-50 [18] as

well as a strong ResNeXt-101-32x4d [43] backbone. The

ablation studies and analysis further verify the effectiveness

of our network and unveil its internal process.

In summary, we propose a general loss function for ob-

ject detection, which covers most region-based object de-

tectors and their sampling strategies, and based on it we

devise a unified sample weighting network. Compared to

previous sample weighting approaches [3, 16, 19, 28], our

approach has the following advantages: (i). It jointly learns

sample weights for both classification task and regression

task. (ii). It is data-dependent, which enables to learn soft

weights for each individual sample from the training data.

(iii). It can be plugged into most object detectors effort-

lessly and achieves noticeable performance gains without

affecting the inference time.

2. Related Work

Region-based object detection can be mainly catego-

rized into two-stage and one-stage approaches. The two-

stage approaches, e.g., R-CNN [16], Fast R-CNN [15] and

Faster R-CNN [36], consist of region proposal stage and

region classification stage. Various region proposal tech-

niques have been devised, such as selective search [39]

and Region Proposal Network [36]. In the second stage,

regions are classified into object categories and bounding

box regression is performed simultaneously. Significant im-

provements have been made by new designed backbones

[7, 9, 27], architectures [2, 4, 8], and individual building

blocks [10, 20, 21, 31, 41]. Inspired by domain adaptation

for recognition [33, 44], another line of research [1, 6, 24]

focuses on learning robust and domain-invariant detectors

based on two-stage approaches. In contrast, one-stage ap-

proaches including SSD [30] and YOLO [34] remove the

region proposal stage and directly predict object categories

and bounding box offsets. This simplicity gains faster speed

at the cost of degradation of accuracy.

Our sample weighting network (SWN) is devised to

boost general region-based object detectors. It can be easily

plugged into the aforementioned object detectors without

adding much training cost. In fact, it does not affect the

inference at all, which makes our approach very practical.

Region sampling or weighting strategy plays an im-

portant role in the training of object detection models. Ran-

dom sampling along with a fixed foreground-background

ratio is the most popular sampling strategy for early object

detection [15, 36]. However, not every sample plays equal

importance to optimization. Actually, the majority of neg-

ative samples are easy to be classified. As a result, various

hard example mining strategies have been proposed, includ-

ing hard negative examples mining [16, 30], Online Hard

Example Mining (OHEM) [37], and IoU guided sampling

[2, 28]. Instead of making hard selection, Focal-Loss [28]

proposes to assign soft-weights to samples, such that it re-

shapes the classification loss to down-weight “easy” sam-

ples and focus training on “hard” ones. However, some

recent works [3, 42] notice “easy” samples may be also

important. Prime sampling [3] and IoU-balanced loss [42]

have been advanced to make “easy” samples more impor-
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tant for loss function optimization.

Beyond various sample weighting approaches, we de-

vise a general loss function formulation which represents

most region-based object detectors with their various sam-

pling strategies. Based on this formulation, we design a

unified sample weighting network to adaptively learn indi-

vidual sample weights. Rather than manually crafted based

on certain heuristics [3, 28], our sample weighting network

is directly learned from the training data. In addition, unlike

most existing methods [19, 28] designed for classification

or regression, our approach is able to balance the weights

between the classification and regression tasks.

Multi-task sample weighting has two typical directions

of function design. One capitalizes on a monotonically in-

creasing function w.r.t. the loss value, such as AdaBoost

[14] and hard example mining [32]. The other designs

monotonically decreasing function w.r.t. the loss value,

especially when the training data is noisy. For example,

Generalized Cross-Entropy [46] and SPL [26] propose to

focus more on easy samples. Recently, some learning-

based approaches are proposed to adaptively learn weight-

ing schemes from data, which eases the difficulty of man-

ually tuning the weighting function [12, 22, 35, 38]. In

the regime of multi-task learning, [23] proposes using ho-

moscedastic task uncertainty to balance the weighting be-

tween several tasks optimally where the tasks with higher

uncertainties are down-weighted during training.

3. A Unified Sample Weighting Network

3.1. Review of Sampling Strategies

In this section, we briefly review the training objec-

tives and sampling strategies for object detection. Re-

cent research on object detection including one-stage and

two-stage object detectors follows a similar region-based

paradigm. Given a group of anchors ai ∈ A, i.e., prior

boxes, which are regularly placed on an image to densely

cover spatial positions, scales and aspect ratios, we can

summarize the multi-task training objective as follows:

L =
1

N1

∑

{i:ai∈Acls}

Lcls
i +

1

N2

∑

{i:ai∈Areg}

Lreg
i , (1)

where Lcls
i (Lreg

i ) is the classification loss (regression loss),

and Acls (Areg) denotes the sampled anchors for classifi-

cation (regression). N1 and N2 are the number of train-

ing samples and foreground samples. The relation Areg ⊂
Acls ⊂ A holds for most object detectors. Now, let sclsi

and sregi be sample ai’s weights for the classification and

regression losses respectively, we formulate a generalized

loss function for both two-stage and one-stage detectors

with various sampling strategies, by converting Eq. 1 to:

L =
1

N1

∑

{i:ai∈A}

sclsi Lcls
i +

1

N2

∑

{i:ai∈A}

sregi Lreg
i , (2)
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Figure 2: Training samples of Faster R-CNN after the first epoch.

The dashed white box denotes the ground truth. A,B,C are three

positive samples with different predicted scores and IoUs.

where sclsi = I[ai ∈ Acls] and sregi = I[ai ∈ Areg]. I[·]
is the indicator function which outputs one when condi-

tion satisfied, otherwise zero. As a result, we can employ

Scls = {sclsi } and Sreg = {sregi } to represent various exist-

ing sample strategies. Here, we reinterpret region sampling

as a special case of sample weighting, which allows for soft

sampling. In the following paragraph, we will briefly ex-

plain most popular sampling or weighting approaches under

our general loss formulation.

3.2. Problems in Existing Sampling Approaches

RPN, Random Sampling and OHEM Region Proposal

Network (RPN) classifies each sample into class-agnostic

foreground or background class. Taking RPN as a data-

driven sampling strategy, the classification weight for ai
is defined as: sclsi = I[p(ai) > ρ] ∗ I[ai ∈ ANMS ]
where ρ is the threshold to filter out samples with low

foreground scores, and ANMS is the anchor set after ap-

plying Non-Maximum-Suppression (NMS). Random Sam-

pling uniformly selects np samples from AP (positive) and

nn samples from AN (negative), where np and nn repre-

sent the required number of positive and negative samples,

respectively. The classification weights for selected sam-

ples are assigned to be 1, while the rest to be 0. Instead

of randomly sampling with equal probability, OHEM first

ranks positive and negative samples separately in a mono-

tonically decreasing order based on their loss values. Then

the classification weights of top-np positive and top-nn neg-

ative samples are assigned to be 1, and the rest to be 0. For

all sampling, their samples’ regression weights can be de-

fined as sregi = I[sclsi = 1] ∗ I[ai ∈ AP ].
Focal-Loss and KL-Loss Focal-Loss reshapes the loss

function to down-weight easy samples and focus the train-

ing on hard ones. It can be regarded as assigning soft clas-

sification weight to each sample: sclsi = (1−p(ai))
γ where

γ > 0. And the regression loss are computed on all posi-

tive samples, sregi = I[ai ∈ AP ]. KL-Loss re-weights the
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regression loss depending on the estimated uncertainty σ2

i :

sregi = 1/σ2

i . The classification weights are the same as

that of Random Sampling and OHEM.

Given a set of anchors A = AP ∪AN , the goal of sample

weighting is to find a weighting assignments Scls and Sreg

for better detection performance. Now, let us have a close

inspection of two important components, i.e., NMS and

mAP, to understand their particular roles in sample weight-

ing. In general, the NMS filters cluttered bounding boxes

by removing the boxes having relatively low scores. Tak-

ing the three boxes A, B, C in Figure 2 for example, C is

suppressed during the inference due to its relatively lower

score compared with A and B. In contrast, when OHEM is

applied, C will be selected for training due to its higher loss

(lower score). Putting too much attention to “hard” exam-

ples like “C” may not be always helpful, because during the

inference we also pursue a good ranking. Focal-Loss also

faces a similar problem as it assigns the same classification

weight to box A and B. But, given that the IoU of A with

regard to the ground truth is higher than that of B, aiming

at improving the score of A would potentially be more ben-

eficial. This is because the mAP is computed at various IoU

thresholds, which favors more precisely localized detection

results. KL-Loss, on the other hand, assigns different sam-

ple weights for regression loss based on bounding box un-

certainty, while it ignores re-weighting classification loss.

Given these drawbacks of existing methods, we propose

to learn sample weights jointly for both classification and

regression from a data-driven perspective. Briefly speaking,

previous methods concentrate on re-weighting classification

(e.g., OHEM & Focal-Loss) or regression loss (e.g., KL-

Loss). But our approach jointly re-weights classification

and regression loss. In addition, being different from min-

ing “hard” examples in OHEM & Focal-Loss approaches,

which have higher classification loss, our approach focuses

on important samples, which could be “easy” ones as well.

3.3. Joint Learning for Sample Weighting

Inspired by a recent work on uncertainty prediction for

multi-task learning [23], we reformulate the sample weight-

ing problem in a probabilistic format, and measure the

sample importance via the reflection of uncertainties. We

demonstrate that our proposed method enables the sam-

ple weighting procedure to be flexible and learnable via

deep learning. Note that our work differentiates from [23],

because our probabilistic modeling addresses not only the

sample wise weighting, but also the balance between clas-

sification and localization tasks. Yet, the work [23] only

considers the multi-task setting where all training samples

share the same weights.

The object detection objective can be decomposed into

regression and classification tasks. Given the ith sample,

we start by modeling the regression task as a Gaussian like-

lihood, with the predicted location offsets as mean and a

standard deviation σreg
i :

p(gti|a
∗
i ) = N (a∗i , σ

reg
i

2
), (3)

where vector gti represents the ground truth bounding box

coordinates, and a∗i is the estimated bounding box coordi-

nates. In order to optimize the regression network, we max-

imize the log probability of likelihood:

log p(gti|a
∗
i ) ∝ −

1

σreg
i

2
||gti − a∗i ||

2

2
− log σreg

i , (4)

By defining Lreg
i = ||gti−a∗i ||

2

2
, multiplying Eq. 4 with −1

and ignoring the constant, we obtain the regression loss:

Lreg∗
i =

1

σreg
i

2
Lreg
i + λ2 log σ

reg
i , (5)

where λ2 is a constant value absorbing the global loss scale

in detection objective. By writing 1/σreg
i

2
as sregi , Eq. 5

can be roughly viewed as a weighted regression loss with a

regularization term preventing the loss from reaching trivial

solutions. As the deviation increases, the weight on Lreg
i

decreases. Intuitively, such weighting strategy places more

weights on confident samples and penalizes more on mis-

takes made by these samples during training. For classifica-

tion, the likelihood is formulated as a softmax function:

p(yi|a
∗
i ) = softmax(yi,

1

ti
p(a∗i )), (6)

where the temperature ti controls the flatness of the distri-

bution. p(a∗i ) and yi are the unnormed predicted logits and

ground truth label of a∗i , respectively. The distribution of

p(yi|a
∗
i ) is in fact a Boltzmann distribution. To make its

form consistent with that of the regression task, we define

ti = 1/σcls
i

2
. Let Lcls

i = − log softmax(yi, p(a
∗
i )), the

classification loss is approximated by:

Lcls∗
i =

1

σcls
i

2
Lcls
i + λ1 log σ

cls
i , (7)

Combining weighted classification loss Eq. 7 and weighted

regression loss Eq. 5 yields the overall loss:

Li =Lcls∗
i + Lreg∗

i

=
1

σcls
i

2
Lcls
i +

1

σreg
i

2
Lreg
i + λ1 log σ

cls
i + λ2 log σ

reg
i ,

(8)

Note that directly predicting σ·
i
2 brings implementation dif-

ficulties since σ·
i
2 is expected to be positive and putting

σ·
i
2 in the denominator position has the potential danger

of division by zeros. Following [23], we instead predict

mi
· := log(σ·

i), which makes the optimization more numer-

ically stable and allows for unconstrained prediction output.

Eventually, the overall loss function becomes:

Li =exp(−2 ∗mcls
i )Lcls

i + λ1m
cls
i

+exp(−2 ∗mreg
i )Lreg

i + λ2m
reg
i ,

(9)

Theoretic analysis. There exist two opposite sample

weighting strategies for object detector training. On the one
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Figure 3: The framework for our Sample Weighting Network (SWN). (a) The general framework for a two-stage detector (it can be

replaced with one-stage detector). In the forward pass, each sample is compared with its ground truth. The classification and regression

losses are computed. In the backward pass, the loss of all samples are averaged to optimize the model parameters. (b) The break down

of loss function which supervises the base detection network and SWN. The gradient can be backpropagated to the detection network and

sample weighting network. (c) depicts the SWN design. It absorbs Lcls
i , L

reg
i ,Probi,IoUi as input and generates weights for each sample.

hand, some prefer “hard” samples, which can effectively ac-

celerate the training procedure via a more significant mag-

nitude of loss and gradient. On the other hand, some believe

that “easy” examples need more attention when ranking is

more important for evaluation metric and the class imbal-

ance problem is superficial. However, it is usually not real-

istic to manually judge how hard or noisy a training sample

is. Therefore, involving sample level variance as in Eq. 5

introduces more flexibility, as it allows adapting the sam-

ple weights automatically based on the effectiveness of each

sample feature.

Taking derivatives of Eq. 5 with respect to the variance

σreg
i , equating to zero and solving (assuming λ2 = 1) ,

the optimal variance value satisfies σreg,∗
i

2
= Lreg

i . Plug-

ging this value back into Eq. 5 and ignoring constants, the

overall regression objective reduces to logLreg
i . This func-

tion is a concave non-decreasing function that heavily fa-

vors Lreg
i = ||gti − a∗i ||

2

2
→ 0, while it applies only soft

penalization for large Lreg
i values. This makes the algo-

rithm robust to outliers and noisy samples having large gra-

dients that potentially degrade the performance. This also

prevents the algorithm focusing too much on hard samples

where Lreg
i is drastically large. In this way, the regression

function Eq. 5 favors a selection of samples having large

IoUs as this encourages a faster speed that drives the loss

towards minus infinity. This, in turn, creates an incentive

for the feature learning procedure to weigh more on these

samples, while samples having relatively smaller IoUs still

maintain a modest gradient during the training.

Note that we have different weights (exp(−2∗mcls
i ) and

(exp(−2 ∗ mreg
i ) tailored for each sample. This is critical

for our algorithm as it allows to adjust the multi-task bal-

ance weight at a sample level. In the next section, we de-

scribe how the loss function effectively drives the network

to learn useful sample weights via our network design.

3.4. Unified Sample Weighting Network Design

Figure 3 shows the framework of our Sample Weight-

ing Network (SWN). As we can see, the SWN is a sub-

network of the detector supervised by detection objective,

which takes some input features to predict weights for each

sample. Our network is very simple, which consists of

two levels of Multiple Layer Perception (MLP) networks

as shown in Figure 3 (c). Instead of directly using the sam-

ple’s visual feature, which actually misses the information

from the corresponding ground truth, we design four dis-

criminative features from the detector itself. It leverages

the interaction between the estimation and the ground truth

i.e., the IoU and classification score, because both classifi-

cation and regression losses inherently reflect the prediction

uncertainty to some extent.

More specifically, it adopts the following four features:

the classification loss Lcls
i , the regression loss Lreg

i , IoUi

and Probi, respectively, as an input. For negative samples,

the IoUi and Probi are set to 0. Next, we introduce four

functions F , G, H and K to transform the inputs into dense

features for a more comprehensive representation. These

functions are all implemented by the MLP neural networks,

which are able to map each one dimension value into a

higher dimensional feature. We encapsulate those features

into a sample-level feature di:

di = concat(F (Lcls
i );G(Lreg

i );H(IoUi);K(Probi)),
(10)

In the upcoming step, the adaptive sample weight mcls
i

for classification loss and mreg
i for regression loss are

learned from the sample feature di, as follows:

mcls
i = Wcls(di) and mreg

i = Wreg(di), (11)

where Wcls and Wreg represent two separate MLP net-

works for classification and regression weight prediction.

As shown in Figure 3, our SWN has no assumption

on the basic object detectors, which means it can work

with most region-based object detectors, including Faster

R-CNN, RetinaNet, and Mask R-CNN. To demonstrate the

generalization of our method, we make minimal modifica-

tions to the original frameworks. Faster R-CNN consists of

region proposal network (RPN) and Fast R-CNN network.

We leave the RPN unchanged and plug the sample weight-

ing network into the Fast R-CNN branch. For each sample,
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we firstly compute Lcls
i , Lreg

i , IoU i, and Probi as the in-

puts to the SWN. The predicted weights exp(−2 ∗ mcls
i )

and exp(−2 ∗ mreg
i ) are then inserted into Eq. 9 and the

gradient is backpropagated to the base detection network

and sample weighting network. For RetinaNet, we follow a

similar process to generate the classification and regression

weights for each sample. As Mask R-CNN has an addi-

tional mask branch, we include another branch into sample

weighting network to generate adaptive weights for mask

loss, where the classification, bounding box regression and

mask prediction are jointly estimated. In order to match the

additional mask weights, we also add the mask loss as an

input to the sample weighting network.

In our experiments, we find that the predicted classifi-

cation weights are not stable since the uncertainties among

negative samples and positive samples are much more di-

verse than that of regression. Consequently, we average

the classification weights of positive samples and negative

samples separately in each batch, which can be viewed as a

smooth version of weight prediction for classification loss.

4. Experiments

We conducted thorough experiments on the challenging

MS COCO [29] and Pascal VOC [11] datasets and evaluated

our method with both one-stage and two-stage detectors.

4.1. Datasets and Evaluation Metrics

MS COCO [29] contains 80 common object categories

in everyday scenes. Following the common practice, we

used the train2017 split for training. It has 115k images and

860k annotated objects. We tested our approach as well as

other compared methods on COCO test-dev subset. Since

the labels of test-dev are not publicly available, we submit-

ted all results to the evaluation server for evaluation. Yet

all ablation experiments are evaluated on the val2017 sub-

set which contains 5k images. Pascal VOC [11] covers 20

common categories in everyday life. We merged the VOC07

trainval and VOC12 trainval split for training and evaluated

on VOC07 test split. Our evaluation metric is the standard

COCO-style mean Average Precision (mAP) under differ-

ent IoU thresholds, ranging from 0.5 to 0.95 with an inter-

val of 0.05. It reflects detection performance under various

criteria and favors high precisely localized detection results.

4.2. Implementation Details

We implemented our methods based on the publicly

available mmdetection toolbox[5]. In our experiments, all

models were trained end-to-end with 4 Tesla P40 GPUs

(each GPU holds 4 images) for 12 epochs, which is com-

monly referred as 1x training schedule. The base detec-

tion networks excluding the SWN is trained with stochas-

tic gradient descent (SGD). The initial learning rate was

set to 0.02 and decreased by 0.1 after epoch 8 and 11. For

the sample weighting network, we adopted Adam [25] with

0.001 learning rate and followed the same learning rate de-

cay schedule as base detection network. The weight de-

cay of 0.0001 was used for both optimizers. Other hyper-

parameters closely follow the settings in mmdetection un-

less otherwise specified. We initialized the weights of FC

layers in the SWN with Gaussian distribution. The stan-

dard deviation and mean were set to 0.0001 and 0, and thus

the predicted weights are nearly uniform across samples at

the beginning of training. We also enforced the predicted

weights to fall into the range of [−2, 2] by clipping the val-

ues out of bounds, which stabilizes the training in practice.

Faster R-CNN, Mask R-CNN and RetinaNet are chosen as

the representative two-stage and one-stage detectors. Two

classical networks, ResNet-50 and ResNext-101-32x4d are

adopted as backbones and FPN is used by default. Please

note that our method is fairly general and thus not limited

to the aforementioned detectors and backbones. In fact, it

is applicable to any two-stage and one-stage detectors and

is transparent to the choice of backbone networks.

4.3. Results

As discussed, our sample weighting network (SWN) can

be applied to any region-based object detector. To ver-

ify the effectiveness of our method for performance boost-

ing, we evaluated it thoroughly on Faster R-CNN, Mask R-

CNN and RetinaNet (one of the latest one-stage detectors

performing better than SSD) with two backbones ResNet-

50 and ResNeXt-101-32x4d. Table 1 shows the results on

COCO test-dev in terms of Average Precision (AP). Thanks

to the proposed SWN, all detectors have achieved consis-

tent performance gains up to 1.8%. Especially, the boost to

RetinaNet is very impressive because it already has a strong

sample weighting strategy. All improvements indicate that

our SWN is complementary to the detectors’ internal sam-

ple weighting strategies. In addition, from column APS ,

APM and APL (AP results for small, medium and large

objects respectively) , we notice that our weighting strategy

works better for “large” objects. Furthermore, we can infer

from the results that the AP boosts are larger at higher IoU.

It is worth mentioning that SWN only affects the detec-

tor training with minimal extra cost. As an example, adding

SWN to “Faster R-CNN + ResNet-50” detector only in-

creased the training time from 1.009s to 1.024s per iteration

and parameters from 418.1M to 418.4M. More importantly,

since the inference is exactly the same, our approach does

not add any additional cost to the test, which makes our

sampling strategy more practical.

We also conducted similar evaluations on the PASCAL

VOC 2007 dataset. The experimental reports are summa-

rized in Table 2. In terms of AP, our approach further

demonstrates its effectiveness on performance improve-

ments. According to the gains on both popular benchmark
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Table 1: Results of different detectors on COCO test-dev.

Method Backbone AP AP50 AP75 APS APM APL

Two-stage detectors

Faster R-CNN ResNet-50 36.7 58.8 39.6 21.6 39.8 44.9

Faster R-CNN ResNeXt-101 40.3 62.7 44.0 24.4 43.7 49.8

Mask R-CNN ResNet-50 37.5 59.4 40.7 22.1 40.6 46.2

Mask R-CNN ResNeXt-101 41.4 63.4 45.2 24.5 44.9 51.8

Faster R-CNN w/ SWN ResNet-50 38.5↑1.8 58.7 42.1 22.0 41.3 48.2

Faster R-CNN w/ SWN ResNeXt-101 41.4↑1.1 61.9 45.3 24.1 44.7 52.0

Mask R-CNN w/ SWN ResNet-50 39.0↑1.5 58.9 42.7 21.9 42.1 49.2

Mask R-CNN w/ SWN ResNeXt-101 42.5↑1.1 64.1 46.6 24.8 46.0 53.5

Single-stage detectors

RetinaNet ResNet-50 35.9 56.0 38.3 19.8 38.9 45.0

RetinaNet ResNeXt-101 39.0 59.7 41.9 22.3 42.5 48.9

RetinaNet w/ SWN ResNet-50 37.2↑1.3 55.8 39.8 20.6 40.1 46.2

RetinaNet w/ SWN ResNeXt-101 40.8↑1.8 60.1 43.8 23.2 44.0 51.1

Table 2: Results of different detectors on VOC2007 test.

Method Backbone AP

Two-stage detectors

Faster R-CNN ResNet-50 51.0

Faster R-CNN ResNeXt-101 54.2

Faster R-CNN w/ SWN ResNet-50 52.5↑1.5

Faster R-CNN w/ SWN ResNeXt-101 56.0↑1.8

Single-stage detectors

RetinaNet ResNet-50 52.0

RetinaNet ResNeXt-101 55.3

RetinaNet w/ SWN ResNet-50 53.4↑1.4

RetinaNet w/ SWN ResNeXt-101 56.8↑1.5

datasets, we can believe our SWN can consistently boost

the performance of region-based object detectors.

Figure 4 demonstrates some qualitative performance

comparisons between RetinaNet and RetinaNet+SWN on

COCO dataset. Following a common threshold of 0.5 used

for visualizing detected objects, we only illustrate a detec-

tion when its score is higher than the threshold. As we can

see, some so-called “easy” objects such as a child , a coach,

a hot dog and so on, which are missed by RetinaNet, have

been successfully detected by the boosted RetinaNet with

SWN. We conjecture that original RetinaNet may concen-

trate too much on “hard” samples. As a result, the “easy”

samples get less attention and make less contributions to

the model training. The scores for these “easy” examples

have been depressed, which results in the missing detec-

tions. The purpose of Figure 4 is not to show the “bad”

of RetinaNet in score calibration, because the “easy” ones

can be detected anyway when decreasing the threshold.

Figure 4 actually illustrates that unlike RetinaNet, SWN

doesn’t weigh less on “easy” examples.

There is another line of research, which aims to improve

bounding box regression. In other words, they attempt to

optimize the regression loss by learning with IoU as the su-

Table 3: Performance comparisons with IoU-based approaches.

AP AP50 AP75 APS APM APL

Baseline 36.4 58.4 39.1 21.6 40.1 46.6

IoU-Net [21] 37.0 58.3 - - - -

IoU-Net+NMS [21] 37.6 56.2 - - - -

SWN 38.2 58.1 41.6 21.3 41.7 50.2

SWN + Soft-NMS 39.2 58.6 43.3 22.3 42.6 51.1

Table 4: Effectiveness of each component.

CLS REG AP AP50 AP75 APS APM APL

36.4 58.4 39.1 21.6 40.1 46.6

X 36.7↑0.3 58.7 39.5 21.2 40.2 47.9

X 37.0↑0.6 56.6 40.1 21.2 40.4 47.9

X X 38.2↑1.8 58.1 41.6 21.3 41.7 50.2

pervision or its combination with NMS. Based on the Faster

R-CNN + ResNet-50 + FPN framework, we make a com-

parison on COCO val2017 as shown in Table 3. The per-

formance comparison shows that both our SWN and its ex-

tension SWN+Soft-NMS outperform the IoU-Net and IoU-

Net+NMS. It further confirms the advantages of learning

sample weights for both classification and regression.

4.4. Ablation Study and Analysis

For a better understanding to our SWN, we further con-

ducted a series of ablation studies on COCO val2017 using

Faster R-CNN + ResNet-50 as our baseline.

The first group of experiments we did is to verify how

well our approach works for each individual task, i.e., object

classification (CLS) and regression (REG). Table 4 shows

the detailed results. If a component is selected, it means our

weighting strategy has been applied to it. The results clearly

demonstrate that when the sample weighting is applied to

only one task, the performance boost is trivial. Nonethe-

less, jointly applying it to both tasks can achieve a signifi-

cant performance improvement of 1.8%. This observation

is consistent with the goal of our SWN design.
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Figure 4: Examples of detection results of RetinaNet (first row) and RetinaNet w/SWN (second row). RetinaNet missed detecting some

“easy” objects such as a child, a coach, a hot dog, and etc., which have been successfully detected by the boosted RetinaNet with SWN.

Table 5: Performance comparisons by varying λ.

λ 0.1 0.3 0.5 0.7 1.0

AP 29.3 37.4 38.2 37.9 37.2

There are two regularization hyperparameters (i.e., λ1

and λ2) in our loss function. In this set of experiments, we

assigned various values to these parameters to check how

sensitive our approach is to different regularization magni-

tudes. In our implementation, two parameters always share

the same value. Table 5 illustrates the comparisons. It

shows the results are relatively stable when λ lies in the

range of 0.3 and 0.7, and achieves best performance at 0.5.

To understand the learning process, we draw the distri-

bution of classification loss over samples at different IoUs

as shown in Figure 5. We picked up the data from two train-

ing epochs to derive the distributions for both Baseline and

SWN. The x-axis represents samples at a certain IoU with

ground truth. Samples with higher IoUs shall have less un-

certainties and thus higher weights to be considered by the

loss optimization. There are two observations from the dis-

tributions. First, during the optimization process, the clas-

sification loss will draw more attentions to “easy” samples

(i.e., the ones with high IoU values). Second, our approach

generally put more weights to samples with high IoU values

when computing the loss. All observations are consistent

with our previous analysis of SWN.

5. Conclusion

We have demonstrated that the problem of sample

weighting for region-based object detection is both data-

dependent and task-dependent. The importance of a sample

Figure 5: Classification loss distribution of positive samples with

different IoUs. Higher IoUs mean easier samples. Y-axis denotes

the percentage of weighted loss. For example, percentage=20%

at IoU=0.85 with SWN-Epoch12 means the the losses of samples

whose IoUs fall between 0.8 and 0.9 take up 42% of total loss.

to detection optimization is also determined by its uncer-

tainties shown in two correlated classification and regres-

sion losses. We derive a general principled loss function

which can automatically learn sample-wise task weights

from the training data. It is implemented with a simple yet

effective neural network, which can be easily plugged into

most region-based detectors without additional cost to infer-

ence. The proposed approach has been thoroughly tested on

different datasets, and consistent performance gains up to

1.8% have been observed. Some qualitative results clearly

illustrate that our approach can detect some “easy” objects

which are missed by other detectors. In future work, we will

work on a complete explanation of this phenomenon. In ad-

dition, we can continue to improve our approach such that

it can deal with “hard” and “easy” samples more smartly at

different optimization phrases.
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