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Abstract

Six degree-of-freedom pose estimation of a known object

in a single image is a long-standing computer vision objec-

tive. It is classically posed as a correspondence problem

between a known geometric model, such as a CAD model,

and image locations. If a CAD model is not available, it is

possible to use multi-view visual reconstruction methods to

create a geometric model, and use this in the same manner.

Instead, we propose a learning-based method whose input

is a collection of images of a target object, and whose output

is the pose of the object in a novel view. At inference time,

our method maps from the RoI features of the input image

to a dense collection of object-centric 3D coordinates, one

per pixel. This dense 2D-3D mapping is then used to de-

termine 6dof pose using standard PnP plus RANSAC. The

model that maps 2D to object 3D coordinates is established

at training time by automatically discovering and matching

image landmarks that are consistent across multiple views.

We show that this method eliminates the requirement for a

3D CAD model (needed by classical geometry-based meth-

ods and state-of-the-art learning based methods alike) but

still achieves performance on a par with the prior art.

1. Introduction

In computer vision, the pose of an object describes the

geometric relation of the object instance with respect to the

capturing camera. It is mathematically encoded by the Eu-

clidean transformation between the representations of the

object structure in two coordinate spaces: object-centric and

camera-centric frame. The task we are interested in is to es-

timate the accurate six-degree-of-freedom (6dof) pose of a

previously-seen rigid object instance from an RGB image.

Standard methods to solve this problem make use of a

CAD model of the object. This predefined structural in-

formation contributes variously to the classical geometry

methods[10, 57, 31, 25, 39] and recent machine learning

based methods[41, 22, 48, 54, 27, 47, 20, 40, 52, 55, 7]. For
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Figure 1. The inference of our approach. Although our model

is trained with a pair of two-view images, it requires only a single

image to infer the object pose. For a novel image, the detection

head predicts a box and a mask for the object. Meanwhile the

object coordinate head outputs a 3D object point map for the box.

The object points on the background are removed according to the

mask. The remaining points are used for establishing the 2D-3D

correspondences within the box. The 6dof pose is then solved via

PnP plus RANSAC based on these correspondences along with the

scaled projection matrix derived from the box position. The pose

estimate is subsequently refined using the predicted object points.

The landmark head is turned off at inference time.

instance, in the classic family, such roles might be the refer-

ence for registration[57], base for templates generation[18]

and provider of texture for feature extraction. As for the

CNN-based approaches, this model acts such as the su-

pervision for network learning[2, 38, 4, 22], a source for

synthetic image generation[40, 27, 22, 9] and/or an agent

for post-process refinement[27, 41, 22] etc. However, fine-

grained and well-textured 3D structure does not exist for

every object in the wild. This limits the generalization of

these approaches. In this paper, we are therefore devoted to

answer this question: Is it possible to accomplish the object

pose estimation task, without using the 3D CAD model of

the object?

Reconstruction-based methods [51, 37, 36] have shown

the feasibility of this proposal. They firstly reconstruct

the 3D object from the multi-view RGB images to sub-

stitute missing CAD model, using Structure from Motion

(SfM[1]). Object pose is then solved using the Perspective-
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n-Point (PnP) algorithm, based on the correspondence of

the 2D visual cues of a new image and those affiliated to

the 3D reconstruction. Although the handcrafted feature

descriptors perform efficiently in detection and matching,

they cause the main limitations in the pipeline: (i) Their

main purpose is to generally detect the salient keypoints

with rich texture, rather than to describe the structure of the

object; (ii) For largely texture-less objects, a paucity of in-

terest points can often lead to a poor or unreliable interpo-

lated reconstruction.

Camera relocalization is a very closely related problem

(because its objective is also to find a 6dof pose), and this

has recently been tackled from the perspective of CNN

regression[24]. However direct regression has not proven

as accurate as standard geometric methods. More promis-

ing are the methods of [3, 5] which use the power of CNNs

to establish high quality dense correspondences and the sub-

sequent accuracy of geometric methods. Nevertheless there

are aspects of the camera relocalization problem that are not

directly analogous to object pose estimation. The main dif-

ference that prevents direct adoption of these methods for

object pose is that the object is only visible in part of the

scene, necessitating a need to distinguish the object from

the rest of the scene.

Hence, the problem we seek to solve is: given as in-

put a collection of images and their poses, learn a system

that can then detect and localize the object in any sub-

sequent view. Inspired by the success of the hybrid ap-

proach [2, 5, 6, 8], we introduce: Reconstruct Locally,

Localise Globally (RLLG), a learning and reconstruction-

based method to object pose estimation. Our solution dif-

fers from SfM in that there is no explicit 3D model of

the target created. We implicitly encode the process of re-

construction within the weights of a neural network during

training. At inference stage, this network serves as a 2D-3D

correspondences establisher for the test image. Our method

then estimates the accurate 6dof pose of the object from the

these correspondences using PnP plus RANSAC[12].

In order to identify, detect and isolate the objects from

the background, and concurrently perform reconstruction,

we seamlessly build our model upon a region proposal

network, Mask R-CNN[16]. This framework comprises a

backbone network along with three special-purpose heads:

bounding box head, classification head and segmentation

head. We contribute a new head – the object coordinate

head – to the same backbone, whose output is the dense

3D coordinates of the object in object-centric frame. It effi-

ciently establishes dense correspondences between 2D po-

sitions and 3D points in inference, therefore provides plenti-

ful constrained samples for absolute object pose estimation.

Since the goal of RLLG is to disengage the ground truth

3D model from the pose estimation pipeline, how to learn

the object coordinate head without manual annotation is

a key issue. We propose to provide an alternative super-

visory signal derived from multi-view geometry. We de-

sign the head as a two-branched fully convolutional network

(FCN)[29]. One of the branches automatically recognizes

the viewpoint-independent 2D object landmarks, and the

other positions them in the 3D object-centric frame using

multi-view constraints. Since landmarks and object coordi-

nates are both intrinsic properties, they are invariant to the

change of the external factors (such as pose and illumina-

tion). The learning therefore aligns them in pairs of images

related by a warp and expects the detector and regressor to

be equivariant with the image deformations.

For 2D landmark learning, the warp is created for an

image-pair by applying in-plane transformations (e.g. in-

plane rotation, scaling and crop) to an image. Whereas

for 3D object coordinate learning, we propose to explic-

itly build the constraints based on images from two view-

points arise from an out-of-plane movement. The reason

we do not use single-view deformation to constrain object

coordinates is twofold: (i) from a geometric perspective, the

pixel-wise correspondences between an image-pair induced

by the in-plane operations do not constrain the location of

the object point in 3D space; (ii) the pose-invariance of the

object coordinates is insufficiently guaranteed by feeding

multiple single-view images from different viewpoints to

the network during iterative training.

We create a dataset to showcase the effectiveness our ob-

ject coordinate regression and subsequent pose estimation.

Our 3D model free pose estimation method is also tested on

the LINEMOD [18] and Occlusion LINEMOD [18] dataset

to prove its generalization and robustness to real world sce-

narios. It achieves the on-par performance with the state-of-

the-art methods that require the 3D object in different ways.

2. Related work

Feature-based Methods and Template-based Meth-

ods: It is necessary to review how the geometry-based

methods solve the 6dof pose estimation, since our method

is essentially a combination of learning and geometry. Tra-

ditionally, these methods [13, 30, 32, 21] consist of two

key components: feature detection plus matching, geomet-

ric pose solving plus refinement. The features, such as

ORB [44, 33], SIFT [30] and FAST [43], are descriptors of

the local appearance around the key-points. They are manu-

ally handcrafted to achieve invariance over viewpoint trans-

formation and descriptiveness for matching. From these

matched 2D-3D correspondences, the transformation be-

tween the camera and the object can be estimated by ge-

ometric algorithms such as [17, 56, 26, 53]. Robust fitting

like [12] is applied to find the optimal pose.

Some authors [51, 37, 36] target the case when the 3D

model is missing. The solution is to build an alternative
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model using reconstruction approaches such as [1] from the

matched 2D feature points. Given a query object image, the

same family of features are found and then matched with

the 3D database to solve the pose. Despite the efficiency

of the descriptors in detection and matching, they are not

handcrafted to encode the geometric structure of the object

instance. The sparsity of them also potentially cause unre-

liability in 3D reconstruction for texture-less object.

Template-based methods aim to estimate the pose of the

object without using the sparse features. [18, 14, 19] defines

templates for the whole object depending on the gradients

and features from the RGB images. They are matched for

the query image to infer the pose.

Learning-based Methods with CAD Model: Like de-

tection, segmentation and other recognition tasks, object

pose estimation also benefits from the recent development

of deep learning. Most of the learning-based methods inte-

grate the 3D object model in the process of learning and/or

inference. BB8[41], Oberweger[35], Tekin[48] and [20]

create a 3D bounding box around the object model, and

define the 8 (or 9 with center point in[48]) corners as the

3D key-points on the object. They then annotate their 2D

projections and train various networks to perform keypoint

detection on image, establishing a sparse 2D-3D correspon-

dences for pose estimation. PVNet[40] proposes a method

that automatically discovers a set of keypoints on the 3D ob-

ject surface based on the physical structure, to ensure that

their 2D projection are all within the silhouette.

The CAD model is also very handy when generating new

data for the training. [40, 42, 35] use the textured object

model and random poses to generate a large amount of syn-

thetic images to augment (or replace) the limited training

images, preventing the network from overfitting. The 3D

object model could also serve as the base for loss evaluation.

[52, 27, 54] compares the offsets between the object model

transformed by the predicted pose and the ground truth

pose. This error is used for back-propagation to train the

network, and successfully avoids the imbalanced weight-

ing between translation and rotation when a model builds

the losses using distances in the translational and rotational

spaces separately (such as [24] and [23]). Moreover, in

[55, 27, 41, 22], the 3D model is used for post-refinement to

improve the quality of the pose estimates. Having the output

pose from the network as the initialization, a iterative opti-

mization is designed to produce the optimal pose solution

by minimizing an objective related to the 3D model. Such

objective can be the consistence between the rendered color

image from the textured model and the input image[41], or

the distance between the transformed object points in cam-

era frame and those recovered from depth[22].

Similar to our work, Pix2Pose[38] and [2] also use ob-

ject coordinates as an intermediate representation to find the

object pose. However, in these methods, a 3D model of the

object provides the direct supervision for the model (such as

a random forest[2] or a neural work[38]) learning. In con-

trast, we aim to learn the coordinates without the 3D model

in a self-supervised way (by self-supervised, we mean that

the supervision that governs the learning of the object coor-

dinate does not come from the ground truth directly).

3. Reconstruct locally, Localize globally

Denote by Ii, i ∈ {1...n} an image of object Ol, where

l ∈ {1...L} is object label, and by Pi,l the visible 3D object

points in Ii. Their coordinates in object-centric frame O and

camera-centric frame C are PO
i,l and PC

i,l respectively. The

pose of this object Ti,l consists of two parts: rotation Ri,l ∈
R

3×3 and translation vector ti,l ∈ R
3. It is essentially the

transformation between two Euclidean spaces:

PC
i,l = Ri,lP

O
i,l + ti,l. (1)

Camera intrinsics K projects PC
i,l onto image and obtains

the 2D coordinates of the projections pi,l = [u,v] , where

s





u

v

1



 = KPC
i,l and K =





fx 0 cx
0 fy cy
0 0 1



 . (2)

s is a scale factor, fx and fy are the focal lengths and

(cx, cy) is the camera center.

The correspondences between 2D points pi,l = [u,v]
and 3D points PO

i,l preserve the geometric transformation of

the object to the camera, and therefore are used to estimate

the pose at inference time. We aim to build a network to

densely build these correspondences, by mapping from the

RGB image pixels to 3D coordinates in the object space.

Mask R-CNN: We start by recapping the Mask R-CNN de-

tector and segmenter [16] in brief. There are two stages in

Mask R-CNN. The first is carried out by a Region Proposal

Network (RPN), which proposes candidate object bounding

boxes (Regions of Interest, RoIs). The second stage then

extracts features using RoIAlign from each RoI, and sub-

sequently performs classification, bounding-box regression,

and instance segmentation. During training, the multi-task

loss on each sampled RoI is L = Lcls + Lbox + Lmask.

Please refer to [16] for loss definitions. RoIAlign layer per-

forms bilinear interpolation over the feature from the RPN,

and pools out a fixed-size RoI feature. In analogy to the

mask head, our proposed object coordinate head learns to

transfer from the RoI features to a coordinate map.

3.1. Object Coordinate Head

Fig. 2 shows the training of the proposed object coordi-

nate head. As mentioned in Section 1, this new head con-

sists of two branches: object coordinate branch and land-

mark branch. The object coordinate branch is introduced
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Figure 2. The training of object coordinate branch. The losses for detection heads and landmark head are omitted for simplicity.

first since it is directly related to the pose estimator. We

then show the reason why the landmark branch is needed

and how it benefits the learning of object coordinates.

Object Coordinate Branch: The spatial map of the ob-

ject coordinate relates to the 2D layout of the object in the

image. Therefore by nature we use convolutions to provide

the pixel-to-pixel correspondences between image and ob-

ject coordinates. We apply a FCN Φobj on each RoI fea-

tures. The output of Φobj is a m × m × 3 vector map

PO
i,l,(h,w) = Φobj(Ii), h ∈ {1 . . .m}, w ∈ {1 . . .m},

where each pixel is a 3D vector that represents a location

on the imaginary 3D model of the target object.

The training of Φobj is straightforward if the 3D object

model is accessible, which makes the learning fully super-

vised. Instead, we aim to present a model-free method and

therefore propose to explore alternative supervisions.

Due to the graceful alignment provided by FCN, the pre-

dicted object coordinate map maintains explicit per-pixel

spatial correspondence with RoIs. We first explore super-

vision according to these correspondences via projection.

Projection within RoIs: To perform projection inside the

RoIs, we need to adapt the projection matrix K to a proposal

box. For each proposal, the RPN estimates a 4D vector

(xmin, ymin, xmax, ymax) that parameterizes a box around

the target pixel. In term of spatial dimension, with this box,

the RoIAlign layer gathers and pools the RoI features from

the backbone and then up/down-samples to m ×m via the

FCN Φobj . Two operations change the spatial dimension

of our interest region and consequently reform the projec-

tion model: crop (by the RoIAlign) and resize (by up/down-

sampling). We therefore assume the m×m object point map

fully corresponds to a new m×m image Ii,s&c, which is a

resized crop of Ii. The intrinsics hence scales to

Kc&s =





swfx 0 sw(cx − xmin)
0 shfy sh(cy − ymin)
0 0 1



 , (3)

where sw = m/(xmax − xmin) and sh = m/(ymax −

ymin). As a result, the predicted re-projection on Ii,s&c

from ground truth object pose is

p
pred

i,l,(h,w) =
1

s
Kc&s(R

gt
i,lP

O
i,l,(h,w) + t

gt
i,l). (4)

The expected projection of an object coordinate simply is

the 2D pixel position where it lies in the output map, which

means p
gt

i,l,(h,w) = [h,w], h ∈ {1 . . .m}, w ∈ {1 . . .m}.

The learning objective is to minimize the reprojection er-

ror triggered by any difference that we assume arises from

an error in the predicted object coordinates. We therefore

define the single-view reprojection loss as

Lrepro =
1

m×m

∑

h,w

∥

∥

∥
p
pred

i,l,(h,w) − p
gt

i,l,(h,w)

∥

∥

∥

2
. (5)

Since loss (5) is evaluated for a single image, it potentially

has limitations. From a geometric perspective, loss (5) set-

tles to optimal for any point on the line that connects the

camera origin and the real 3D object point. Hence, theoret-

ically, minimizing loss (5) does not guarantee the network

to regress to the correct coordinates. The training however

happens iteratively in practice, which means that the net-

work sees images of the object in different viewpoints from

batch to batch. It is expected that the network learns to rec-

ognize the same object point with various visual appearance

(caused by viewpoint change) in different images and con-

sistently regress to a same coordinate. Such behavior would

be an implicit multi-view constraint for the learning and

contributes to discover the true geometry of the object. In

order to experimentally validate this hypothesis, we create a

synthetic dataset (the details is given in Section 4) and train

the object coordinate head with loss term (5). The trained

model is tested with an object image and its rotated vari-

ant (Fig. 3(a)). The predicted object points are shown in

Fig. 3(b) in red and blue respectively. The obvious incom-

patibility in two reconstructions suggests that single-view

loss-based training does not produce a consistent 3D coor-

dinate for the same object point in different views.
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(a) (b) (c)

Figure 3. Comparison between the 3D object points for an im-

age and its variant. (a): an object image and its rotated version.

(b): Reconstruction from single-view reprojection loss. (c): Re-

construction from multi-view consistence loss.

To overcome this limitation, we propose to make the

multi-view constraints explicit and provide strong geomet-

ric supervision for object coordinates learning. Based on

[15], images from multiple viewpoints can be used to con-

strain the coordinate for a 3D point using triangulation.

Such geometry is built upon the 2D-2D correspondences

between the objects in different images. To that end, we

propose to include an additional landmark branch, which

discovers characteristic points on the object. The learned

landmarks for multiple images are then matched during the

learning of object coordinates, establishing a dense collec-

tion of 2D-2D correspondences. The multi-view constraints

is explicitly built accordingly.

Landmark Branch: Landmark is defined as the charac-

teristic keypoint on the object that can be recognized and

correlated from different viewpoints. Its representation is a

d dimensional feature vector explored automatically by the

network for uniqueness and rich descriptiveness. It is in-

trinsic to the object, which means the change of viewpoint

or deformation should not cause any difference to the repre-

sentation of a unique landmark on the object. Such behavior

is defined as equivariance constraint [50]. We therefore ex-

ploit this property as the supervision for landmark learning

due to the lack of manual annotation.

The landmark branch is also a FCN due to the one-to-

one mapping from pixels to landmarks. It is learned in a

Siamese setting with two images – Ii and r(Ii) – correlated

by a known deformation r. Such deformation transforms

the point (h,w) of the source to (hr, wr) on the target. De-

note by Φlm the landmark branch. It takes Ii and r(Ii) as

input at the same time and outputs two m×m×d landmark

maps L = Φlm(Ii) and Lr = Φlm(r(Ii)) for each RoI.

The equivariance constraint is defined as L(h,w) = Lr
(hr,wr)

where h,w ∈ 1 . . .m. In order to prevent this constraint

from falling into a degenerated case, when all the pixels are

mapped to a singular object landmark, we follow [49] to

reformulate it to a distance-aware softmax loss.

The relative similarities between landmarks on two RoIs

are formulated by a softmax function on the cos similarities.

What is expected from the leaning is that the landmarks on

two images with short distance have large similarity, and

vice versa. Therefore the relative similarities are weighted

by the landmark distances in the loss term

Llm =
1

m4

m
∑

hs,ws

ht,wt

dist(s, t)
es((hs,ws),(ht,wt))

m
∑

h′

t
,w′

t

es((hs,ws),(h′

t
,w′

t
))

, (6)

where dist(s, t) = ‖(hs, ws)− (ht, wt)‖2, and

s((hs, ws), (ht, wt)) =
L(hs,ws) · L

r
(ht,wt)

∥

∥L(hs,ws)

∥

∥

2

∥

∥

∥
Lr
(ht,wt)

∥

∥

∥

2

(7)

is the cos similarity.

There are various of choices for deformation r to ben-

efit the discovery of landmarks. Nonetheless we consider

the in-plane rotation and scaling (to ensure a same dimen-

sion with the original image), which preserve the rigidness

of the object. Therefore we can re-use the object coordinate

branch to predict the 3D points for the transformed image

r(Ii), without non-trivial modification to the projection ma-

trix. The in-plane rotation changes the camera matrix to

Kr =





fx 0 cx
0 fy cy
0 0 1









cos(α) sin(α) 0
−sin(α) cos(α) 0

0 0 1



 , (8)

where α is the angle of the in-plane rotation. Using Eq. (8)

along with (3), the projection model for the RoIs after im-

age rotation is easily tractable. In such a way, deformation

r does not only provide constraint to learn the landmark

branch, but also can be considered as a way of augmenting

data for the learning of the object coordinate branch.

Thanks to the uniqueness of the learned landmarks, they

can be matched from two images. The following paragraphs

show our method of incorporating the matched 2D-2D cor-

respondences into a multi-view loss term.

Multi-View Loss: With the motivation of introducing

multi-view geometry into learning, we upgrade the object

coordinate branch to a Siamese configuration as well. Due

to the degenerated in-plane 6dof transformation, deforma-

tion r no longer suits for constraining consistence of object

coordinate. We hence use two images Is and target It –

from different viewpoints caused by an out-of-plane move-

ment – as the inputs for the Siamese network.

The proposed multi-view loss for the object coordinate

branch consists of two terms. Firstly, we focus on the cross-

projection between two viewpoints. Given Is and It as

the inputs for the object coordinate branch and landmark

branch, four outputs are obtained: object coordinate maps

Φobj(Is),Φobj(It) and landmark maps Φlm(Is),Φlm(It).
Pixel-wise matching is performed on these landmark maps.
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Denote by plm
t,l,(h,w) = M(Φlm(Is),Φlm(It)) the matched

position of Is’s pixel on It, where the M is a matching op-

eration. Given the ground truth pose of the target image

R
gt
t , tgtt and the scaled camera matrix Kt, the projection of

predicted source object points on the target RoI is

p
proj

t,l,(h,w) =
1

s
Kt(RtP

O
s,l,(h,w) + tt). (9)

p
proj

t,l,(h,w) and plm
t,l,(h,w) are the position of a same 3D ob-

ject point on the target RoI. The difference between them is

used for back-propagation to learn a 3D coordinate whose

projection agrees with the matched position. Thus the first

loss term is defined as the landmark alignment loss:

Llm align =
1

m×m

∑

h,w

∥

∥

∥
p
proj

t,l,(h,w) − plm
t,l,(h,w)

∥

∥

∥

2
. (10)

Secondly, we propose to encode the multi-view con-

straints as a photometric loss. Specifically, the projections

p
proj

t,l,(h,w) warp a reconstructed image Is←t from It. Any

difference that we assume arises from an error in the pre-

dicted object coordinates leads to an error in the normalized

RGB space. This behavior encodes a photometric loss:

Lrgb =
1

m×m

∑

h,w

‖Is←t − Is‖ . (11)

Our multi-view geometry-based loss ultimately is Lmulti =
Llm align + Lrgb. The first loss term Eq. (10) ensures that

similar landmarks regress to the similar object points and

the second loss Eq. (11) term ensures that an object point

has the same visual feature on different images. These

strong geometric supervisions improve the consistence for

the object coordinate regression. Reconstructed results in

Fig. 3(c) shows the improvement, in which two sets of ob-

ject points are well aligned for images from different views.

Inference: See Fig. 1.

3.2. Implementation Details

The backbone for RPN in our implementation is ResNet-

50 with Feature Pyramid Network (FPN) [28]. See the

details of the detection and segmentation head in [16].

The architecture of our object coordinate branch is shown

in Fig.4. We follow the structure of the SmallNet in [50, 49]

for the landmark branch. We train all the heads in our

model simultaneously in and end-to-end fashion with loss

L = Lcls + Lbox + Lmask + Lrepro + Lmulti + Llm. The

weights for these loss terms are not highly tuned, and are

set equally. The network is trained for 200k iterations on a

Nvidia Tesla V100 GPU with batch size 2. The schedule for

learning rate decay follows [16]. For RANSAC at the test

time, the threshold for inliers is set to 1px, and number of

hypotheses is 256. The refinement runs up to 100 times.
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Figure 4. Object Coordinate Head Architecture. The feature

extractor comprises 4 convolutional layers (conv) with kernel size

3× 3 and stride 1. The deconvolutional layer in object coordinate

regressor is 2×2 with stride 2. The last conv is 3×3 with stride 1.

The final output for object coordinate is d×(sigmoid(pobj)−0.5),
where d is the approximated diameter of the object and pobj is the

output pre-logits from the last conv.

Figure 5. The generation of the demo synthetic dataset. Train-

ing and test viewpoints are in red and blue, respectively.

4. Experiments

We first introduce the creation of the dataset we used in

previous section. We then conduct ablation studies to inves-

tigate the effect of each supervisory signal for the object co-

ordinate head. Thirdly, we compare the reconstruction from

our network and the classic reconstruction-based method.

At last, we run our methods on the two real world datasets:

LINEMOD [18] and Occlusion LINEMOD [18] and com-

pare with the state-of-the-art learning-based methods that

require the 3D model in their pipeline.

Expo Dataset: The synthetic dataset contains a square

rigid object expo. 200 and 2500+ viewpoints are sam-

pled from a sphere for training and test respectively. The

locations of the viewpoints are randomized to make sure

the object spread over the whole image frame, with various

scales. We render the synthetic images using the textured

CAD model from these poses. The black background is

then replaced with real world images from NYU-Depth V2

[34] dataset. See Fig. 5 for examples.

Metric: The metrics we use to assess the pose estimation

performance are ADD-10 and 5cm5deg. ADD is the av-

erage 3D distance of model points transformed by the pre-

dicted pose and ground truth pose. For symmetric objects,

ADD is relaxed to ADD-S, which is the distance between

the closest points in two transformed models. If the aver-

age (or closest) distance derived by a test pose is less than

10% of the object diameter, the pose estimate is considered

correct. As the for 5cm5deg, an estimate is correct when

the translation and rotation error is below (5cm, 5◦). The

numbers we report in Table 1, 2 and 3 are the proportion of

frames with correct pose estimates among all test images.
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(a) (b) (c) (d)

Figure 6. Visualization of the reconstruction from the object

coordinate head. (a) is a test image. (b) is the true reconstruc-

tion from this viewpoint. (c) is the output from the head trained

with reprojection loss. (d) is the output from the head trained with

multi-view loss in addition to reprojection loss.

Ablations: We train the network using three different super-

visions: (i) direct supervision from depths (as a reference);

(ii) single-view reprojection loss; (iii) single-view reprojec-

tion loss along with multi-view geometry losses. The quali-

tative meshed visualization of the predicted 3D points from

models trained with different losses is shown in Fig. 6. The

quantitative results for pose estimation are shown in Table 1.

Fig. 6(b) shows that the true shape of the object from the

test viewpoint comprises 3 perpendicular planes. With only

the single-view reprojection loss as supervision, the net-

work failed to discover the geometry of the object and pre-

dicts a set of points that lies on a plane (See Fig. 6(c)). What

is interesting is that these erroneous object coordinates sur-

prisingly result in highly (5cm5deg: 99% and ADD-10:

99.5%) accurate poses for the training set. It suggests that

optimizing the loss term (5) alone leads the network to a

degenerated case that only the ray of the 3D point lies on

is decided, rather than a full 3D coordinate. As a result,

the trained model produces an arbitrary shape, as long as

whose projections from the ground truth pose match the sil-

houette of the object on the image. Hence the correspon-

dences built by this shape and the 2D positions result in fine

pose estimates for training set (the performance on test set

is reported later). In contrast, the reconstruction from the

model trained with additional multi-view losses shows the

corner and the 3-face structure of the object in Fig. 6(d).

Quantitatively, the median chamfer distances (two-way, in

m, smaller is better) between single-view reconstruction

against the groundtruth shape are (0.152, 0.067), and for

multi-view reconstruction they are (0.094, 0.048).

The failure caused by using reprojection loss as the only

supervision also presents in the quantitative results for the

test images. In Table 1(repro), the 5cm5deg and ADD-10

accuracy for the model trained with reprojection loss are

only 14.3% and 23.6%. This is because that the trained

model does not encode the true geometry and therefore gen-

eralizes poorly to the unseen images.

In column repro+lm, the model is trained with repro-

jection loss and landmark alignment loss. The accuracy in-

creases to 39.3% (5cm5deg) and 52.5% (ADD-10), which

is approximately 2.5 times of repro. Combining repro-

Figure 7. The reconstruction (middle) of the source (left) by

warping the target (right) using matched landmark positions.

depth repro
repro

+lm

repro

+rgb

repro

+lm+rgb

5cm5deg 61.3 14.3 39.3 40.1 53.1

ADD-10 57.1 23.6 52.5 51.3 58.5
Table 1. The pose estimation performance of different combi-

nations of the loss terms on test set of expo.

jection loss with photometric loss (column repro+rgb)

achieves similar results. The best performance comes from

the column rgb+lm+rgb. It is obtained by training

the model with reprojection loss and all multi-view losses

(Llmalign + Lrgb). It shows that with additional multi-view

constraints provided by the photometric loss, the object co-

ordinate achieves a better pose estimates, which is even

comparable with the model from direct supervision, whose

accuracy is 61.3% (5cm5deg) and 58.5% (ADD-10).

Landmark Matching: We show several examples of the

dense matching based on the learned object landmarks in

two views from LINEMOD in Fig. 7. The positions of the

matched landmarks in the source and target images are used

to reconstruct the source image. These middle warped im-

ages show that the learnt landmark successfully build 2D-

2D correspondences in two images which could be used to

triangulate the coordinates of the object points in 3D.

Comparison with SfM-based Method: We run SfM using

colmap [46, 45] from 200 training images in expo datasets

to build an explicit reconstruction from the sparse features.

Fig. 8 compares the reconstruction from SfM and our object

coordinate head. It shows that only five out of the six planes

of the object are successfully built by SfM. Apparently it is

caused by the lack of textures on the missing plane, where

the sparse feature detector struggles to recognize any salient

points. In contrast, our model manages to build every sur-

face despite its textureness. Our hypothetical explanation

is that the backbone explores both coarse and fine features

from multiple scales therefore it is more robust to the den-

sity of the visual features on the image. As a trade-off, our

method visually practice the accrual of reconstruction error

at 3D corners of objects (see Fig. 6(d)), where invariance

and equivariance constraints are most “stressed” by out-of-

plane motion (also may exhibit self-occlusion).

On LineMOD: Our method is performed on the

LINEMOD dataset to verify the generalization to the real

world images. LINEMOD contains 13 objects sequences
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w/ CAD model w/o CAD model

method
BB8

[41]

BB8

w/ r

SSD-6D

w/ r

[22]

Tekin

[48]

DeepIM

w/ r

[27]

Dense-

Fusion

[52]

Pix2-

Pose

[38]

PVNet

w/ r

[40]

SSD-6D

[22]

LieNet

[11]
Ours

ape 27.9 40.4 65 21.62 77.0 92 58.1 43.62 0.00 38.8 52.91

benchwise 62.0 91.8 80 81.80 97.5 93 91.0 99.90 0.18 71.2 96.51

cam 40.1 55.7 78 36.57 93.5 94 60.0 86.86 0.41 52.5 87.84

can 48.1 64.1 86 68.80 96.5 93 84.4 95.47 1.35 86.1 86.81

cat 45.2 62.6 70 41.82 82.1 97 65.0 79.34 0.51 66.2 67.30

driller 58.6 74.4 73 63.51 95.0 87 76.3 96.43 2.58 82.3 88.70

duck 32.8 44.3 66 27.23 77.7 92 43.8 52.58 0.00 32.5 54.74

eggbox* 40.0 57.8 100 69.58 97.1 100 96.8 99.15 8.90 79.4 94.74

glue* 27.0 41.2 100 80.02 99.4 100 79.4 95.66 0.00 63.7 91.98

holepuncher 42.4 67.2 49 42.63 52.8 92 74.8 81.92 0.30 56.4 75.41

iron 67.0 84.7 78 74.97 98.3 97 83.4 98.88 8.86 65.1 94.59

lamp 39.9 76.5 73 71.11 97.5 95 82.0 99.33 8.20 89.4 96.64

phone 35.2 54.0 79 47.74 87.7 93 45.0 92.41 0.18 65.0 89.24

average 43.6 62.7 79 55.95 88.6 94 72.4 86.27 2.42 65.2 82.88
Table 2. LineMOD: Percentages of correct pose estimates in ADD-10. * denotes that the object is symmetric and is evaluated in ADD-S.

w/r means the pose is refined with 3D model.

Figure 8. Comparison between the reconstructions from SfM and our method. Left: images from two example viewpoints; Middle:

meshed reconstructions from SfM; Right: meshed reconstructions from our model.

with annotated bounding box and pose for the interest ob-

ject. We train our network strictly following the training/test

split in [48]. No additional synthetic data is required, as

well as the 3D CAD model in our method. We report the

performance in Table 2. Our method outperforms more than

half of the learning-based methods and achieves compara-

ble result with the state-of-the-art method, which use a large

amount of synthetic training images from new viewpoints

[40] and/or 3D model for refinement [52, 27].

On Occlusion LINEMOD: We also test our approach on

a more challenging dataset: Occlusion LINEMOD, a se-

quence with annotations for occluded objects. ADD-10 re-

sults are shown in Table 3 following the test scheme of [40].

It shows the robustness of our method to occlusion.

5. Conclusion

We have proposed an method that performs accurate

6dof object pose estimation from a single RGB image. Our

learning-based method implicitly encodes the object recon-

struction into a network by regressing object pixel to 3D ob-

ject coordinate. It then carries out 2D-3D correspondences

for geometric pose solving at inference time. The learning

of the network explicitly enforces the multi-view geometric

constraints for the object coordinates. The additional land-

mark branch provides consistence for objects across mul-

Tekin

[48]

Pose-

CNN

[54]

Ober-

weger

[35]

PV-

Net

[40]

Pix2-

Pose

[38]

Ours

ape 2.48 9.6 17.6 15.8 22.0 7.1

can 17.48 45.2 59.3 63.3 44.7 40.6

cat 0.67 0.93 3.31 16.7 22.7 15.6

driller 7.66 41.4 62.4 25.2 44.7 43.9

duck 1.14 19.6 19.2 65.7 15.0 12.9

ebox* - 22.0 25.9 50.1 25.2 46.4

glue* 10.08 38.5 39.6 49.6 32.4 51.7

holp. 5.54 22.1 21.3 39.7 49.5 24.5

avg. 6.42 24.9 30.4 40.8 32.0 30.3
Table 3. Results on Occlusion LINEMOD. Note that all the

methods requires the 3D model in the pipeline except ours.

tiple views. We explore self-supervision for learning from

image deformation and eliminates the need of 3D model in

the system. Our 3D model free method reduced the perfor-

mance gap between approaches with and without 3D model.
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