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Abstract

Quantization is a promising approach for reducing the

inference time and memory footprint of neural networks.

However, most existing quantization methods require ac-

cess to the original training dataset for retraining during

quantization. This is often not possible for applications

with sensitive or proprietary data, e.g., due to privacy and

security concerns. Existing zero-shot quantization meth-

ods use different heuristics to address this, but they result

in poor performance, especially when quantizing to ultra-

low precision. Here, we propose ZEROQ, a novel zero-

shot quantization framework to address this. ZEROQ en-

ables mixed-precision quantization without any access to

the training or validation data. This is achieved by optimiz-

ing for a Distilled Dataset, which is engineered to match

the statistics of batch normalization across different layers

of the network. ZEROQ supports both uniform and mixed-

precision quantization. For the latter, we introduce a novel

Pareto frontier based method to automatically determine

the mixed-precision bit setting for all layers, with no manual

search involved. We extensively test our proposed method

on a diverse set of models, including ResNet18/50/152, Mo-

bileNetV2, ShuffleNet, SqueezeNext, and InceptionV3 on

ImageNet, as well as RetinaNet-ResNet50 on the Microsoft

COCO dataset. In particular, we show that ZEROQ can

achieve 1.71% higher accuracy on MobileNetV2, as com-

pared to the recently proposed DFQ [32] method. Impor-

tantly, ZEROQ has a very low computational overhead, and

it can finish the entire quantization process in less than 30s

(0.5% of one epoch training time of ResNet50 on ImageNet).

We have open-sourced the ZEROQ framework1.

1. Introduction

Despite the great success of deep Neural Network (NN)

models in various domains, the deployment of modern NN

models at the edge has been challenging due to their pro-

Equal contribution.
1https://github.com/amirgholami/ZeroQ

hibitive memory footprint, inference time, and/or energy

consumption. With the current hardware support for low-

precision computations, quantization has become a popu-

lar procedure to address these challenges. By quantizing

the floating point values of weights and/or activations in a

NN to integers, the model size can be shrunk significantly,

without any modification to the architecture. This also al-

lows one to use reduced-precision Arithmetic Logic Units

(ALUs) which are faster and more power-efficient, as com-

pared to floating point ALUs. More importantly, quantiza-

tion reduces memory traffic volume, which is a significant

source of energy consumption [15].

However, quantizing a model from single precision to

low-precision often results in significant accuracy degrada-

tion. One way to alleviate this is to perform the so-called

quantization-aware fine-tuning [46, 34, 5, 42, 45, 18] to re-

duce the performance gap between the original model and

the quantized model. Basically, this is a retraining proce-

dure that is performed for a few epochs to adjust the NN pa-

rameters to reduce accuracy drop. However, quantization-

aware fine-tuning can be computationally expensive and

time-consuming. For example, in online learning situations,

where a model needs to be constantly updated on new data

and deployed every few hours, there may not be enough

time for the fine-tuning procedure to finish. More impor-

tantly, in many real-world scenarios, the training dataset is

sensitive or proprietary, meaning that it is not possible to ac-

cess the dataset that was used to train the model. Good ex-

amples are medical data, bio-metric data, or user data used

in recommendation systems.

To address this, recent work has proposed post-training

quantization [19, 32, 44, 3], which directly quantizes NN

models without fine-tuning. However, as mentioned above,

these methods result in non-trivial performance degrada-

tion, especially for low-precision quantization. Further-

more, previous post-training quantization methods usually

require limited (unlabeled) data to assist the post-training

quantization. However, for cases such as MLaaS (e.g.,

Amazon AWS and Google Cloud), it may not be possible

to access any of the training data from users. An exam-

ple application case is health care information which can-
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Figure 1: Illustration of sensitivity computation for ResNet18 on ImageNet. The figure shows how we compute the sensitivity

of the 8-th layer when quantized to 4-bit (Ω8(4)) according to Eq. 2. We feed Distilled Data into the full-precision ResNet18

(top), and the same model except quantizing the 8-th layer to 4-bit (bottom) receptively. The sensitivity of the 8-th layer

when quantized to 4-bit Ω8(4) is defined as the KL-divergence between the output of these two models. For simplicity, we

omit the residual connections here, although the same analysis is applied to the residual connections in ZEROQ.

not be uploaded to the cloud due to various privacy issues

and/or regulatory constraints. Another shortcoming is that

often post-quantization methods [30, 44, 3] only focus on

standard NNs such as ResNet [13] and InceptionV3 [38]

for image classification, and they do not consider more de-

manding tasks such as object detection.

In this work, we propose ZEROQ, a novel zero-shot

quantization scheme to overcome the issues mentioned

above. In particular, ZEROQ allows quantization of NN

models, without any access to any training/validation data.

It uses a novel approach to automatically compute a mixed-

precision configuration without any expensive search. In

particular, our contributions are as follows.

• We propose an optimization formulation to generate Dis-

tilled Data, i.e., synthetic data engineered to match the

statistics of batch normalization layers. This reconstruc-

tion has a small computational overhead. For example, it

only takes 3s (0.05% of one epoch training time) to gen-

erate 32 images for ResNet50 on ImageNet on an 8-V100

system.

• We use the above reconstruction framework to perform

sensitivity analysis between the quantized and the orig-

inal model. We show that the Distilled Data matches

the sensitivity of the original training data (see Figure 1

and Table 7 for details). We then use the Distilled Data,

instead of original/real data, to perform post-training

quantization. The entire sensitivity computation here

only costs 12s (0.2% of one epoch training time) in to-

tal for ResNet50. Importantly, we never use any train-

ing/validation data for the entire process.

• Our framework supports both uniform and mixed-

precision quantization. For the latter, we propose a novel

automatic precision selection method based on a Pareto

frontier optimization (see Figure 4 for illustration). This

is achieved by computing the quantization sensitivity

based on the Distilled Data with small computational

overhead. For example, we are able to determine au-

tomatically the mixed-precision setting in under 14s for

ResNet50.

We extensively test our proposed ZEROQ framework on a

wide range of NNs for image classification and object de-

tection tasks, achieving state-of-the-art quantization results

in all tests. In particular, we present quantization results

for both standard models (e.g., ResNet18/50/152 and Incep-

tionV3) and efficient/compact models (e.g., MobileNetV2,

ShuffleNet, and SqueezeNext) for image classification task.

Importantly, we also test ZEROQ for object detection on

Microsoft COCO dataset [28] with RetinaNet [27]. Among

other things, we show that ZEROQ achieves 1.71% higher

accuracy on MobileNetV2 as compared to the recently pro-

posed DFQ [32] method.

2. Related work

Here we provide a brief (and by no means extensive) re-

view of the related work in literature. There is a wide range

of methods besides quantization which have been proposed
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Figure 2: (Left) Sensitivity of each layer in ResNet50 when quantized to 4-bit weights, measured with different kinds of data

(red for Gaussian, blue for Distilled Data, and black for training data). (Right) Sensitivity of ResNet50 when quantized to

2/4/8-bit weight precision (measured with Distilled Data).

to address the prohibitive memory footprint and inference

latency/power of modern NN architectures. These meth-

ods are typically orthogonal to quantization, and they in-

clude efficient neural architecture design [17, 9, 16, 36, 43],

knowledge distillation [14, 35], model pruning [11, 29, 24],

and hardware and NN co-design [9, 21]. Here we focus on

quantization [2, 6, 34, 41, 23, 48, 45, 46, 5, 8, 42], which

compresses the model by reducing the bit precision used

to represent parameters and/or activations. An important

challenge with quantization is that it can lead to signifi-

cant performance degradation, especially in ultra-low bit

precision settings. To address this, existing methods pro-

pose quantization-aware fine-tuning to recover lost perfor-

mance [20, 18, 4]. Importantly, this requires access to the

full dataset that was used to train the original model. Not

only can this be very time-consuming, but often access to

training data is not possible.

To address this, several papers focused on developing

post-training quantization methods (also referred to as post-

quantization), without any fine-tuning/training. In partic-

ular, [19] proposes the OMSE method to optimize the L2

distance between the quantized tensor and the original ten-

sor. Moreover, [3] proposed the so-called ACIQ method

to analytically compute the clipping range, as well as the

per-channel bit allocation for NNs, and it achieves rela-

tively good testing performance. However, they use per-

channel quantization for activations, which is difficult for

efficient hardware implementation in practice. In addition,

[44] proposes an outlier channel splitting (OCS) method to

solve the outlier channel problem. However, these meth-

ods require access to limited data to reduce the performance

drop [19, 3, 44, 30, 22].

The recent work of [32] proposed Data Free Quanti-

zation (DFQ). It further pushes post-quantization to zero-

shot scenarios, where neither training nor testing data are

accessible during quantization. The work of [32] uses

a weight equalization scheme [30] to remove outliers in

both weights and activations, and they achieve similar re-

sults with layer-wise quantization, as compared to pre-

vious post-quantization work with channel-wise quantiza-

tion [20]. However, [32] their performance significantly de-

grades when NNs are quantized to 6-bit or lower.

A recent concurrent paper to ours independently pro-

posed to use Batch Normalization statistics to reconstruct

input data [12]. They propose a knowledge-distillation

based method to boost the accuracy further, by generating

input data that is similar to the original training dataset,

using the so-called Inceptionism [31]. However, it is not

clear how the latter approach can be used for tasks such

as object detection or image segmentation. Furthermore,

this knowledge-distillation process adds to the computa-

tional time required for zero-shot quantization. As we will

show in our work, it is possible to use batch norm statis-

tics combined with mixed-precision quantization to achieve

state-of-the-art accuracy, and importantly this approach is

not limited to image classification task. In particular, we

will present results on object detection using RetinaNet-

ResNet50, besides testing ZEROQ on a wide range of mod-

els for image classification (using ResNet18/50/152, Mo-

bileNetV2, ShuffleNet, SqueezeNext, and InceptionV3),

We show that for all of these cases ZEROQ exceeds state-

of-the-art quantization performance. Importantly, our ap-

proach has a very small computational overhead. For ex-

ample, we can finish ResNet50 quantization in under 30

seconds on an 8 V-100 system (corresponding to 0.5% of

one epoch training time of ResNet50 on ImageNet).

Directly quantizing all NN layers to low precision can

lead to significant accuracy degradation. A promising ap-
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proach to address this is to perform mixed-precision quanti-

zation [8, 7, 40, 47, 39], where different bit-precision is used

for different layers. The key idea behind mixed-precision

quantization is that not all layers of a convolutional network

are equally “sensitive” to quantization. A naı̈ve mixed-

precision quantization method can be computationally ex-

pensive, as the search space for determining the precision of

each layer is exponential in the number of layers. To address

this, [39] uses NAS/RL-based search algorithm to explore

the configuration space. However, these searching meth-

ods can be expensive and are often sensitive to the hyper-

parameters and the initialization of the RL based algorithm.

Alternatively, the recent work of [8, 37, 7] introduces a Hes-

sian based method, where the bit precision setting is based

on the second-order sensitivity of each layer. However, this

approach does require access to the original training set, a

limitation which we address in ZEROQ.

3. Methodology

For a typical supervised computer vision task, we seek
to minimize the empirical risk loss, i.e.,

min
θ

L(θ) =
1

N

NX

i=1

f(M(θ;xi), yi), (1)

where θ ∈ R
n is the learnable parameter, f(·, ·) is the loss

function (typically cross-entropy loss), (xi, yi) is the train-

ing input/label pair, M is the NN model with L layers, and

N is the total number of training data points. Here, we as-

sume that the input data goes through standard preprocess-

ing normalization of zero mean (µ0 = 0) and unit variance

(σ0 = 1). Moreover, we assume that the model has L BN

layers denoted as BN1, BN2, ..., BNL. We denote the ac-

tivations before the i-th BN layer with zi (in other words zi
is the output of the i-th convolutional layer). During infer-

ence, zi is normalized by the running mean (µi) and vari-

ance (σ2

i ) of parameters in the i-th BN layer (BNi), which

is pre-computed during the training process. Typically BN

layers also include scaling and bias correction, which we

denote as γi and βi, respectively.

We assume that before quantization, all the NN param-

eters and activations are stored in 32-bit precision and that

we have no access to the training/validation datasets. To

quantize a tensor (either weights or activations), we clip

the parameters to a range of [a, b] (a, b ∈ R), and we uni-

formly discretize the space to 2k − 1 even intervals using

asymmetric quantization. That is, the length of each in-

terval will be ∆ = b−a
2k−1

. As a result, the original 32-

bit single-precision values are mapped to unsigned integers

within the range of [0, 2k − 1]. Some work has proposed

non-uniform quantization schemes which can capture finer

details of weight/activation distribution [33, 10, 42]. How-

ever, we only use asymmetric uniform quantization, as the

non-uniform methods are typically not suitable for efficient

hardware execution.

The ZEROQ framework supports both fixed-precision
and mixed-precision quantization. In the latter scheme, dif-
ferent layers of the model could have different bit precisions
(different k). The main idea behind mixed-precision quan-
tization is to keep more sensitive layers at higher precision,
and more aggressively quantize less sensitive layers, with-
out increasing overall model size. As we will show later,
this mixed-precision quantization is key to achieving high
accuracy for ultra-low precision settings such as 4-bit quan-
tization. Typical choices for k for each layer are {2, 4, 8}
bit. Note that this mixed-precision quantization leads to ex-
ponentially large search space, as every layer could have
one of these bit precision settings. It is possible to avoid this
prohibitive search space if we could measure the sensitivity
of the model to the quantization of each layer [8, 37, 7].
For the case of post-training quantization (i.e. without fine-
tuning), a good sensitivity metric is to use Kullback–Leibler
(KL) divergence between the original model and the quan-
tized model, defined as:

Ωi(k) =
1

N

NdistX

j=1

KL(M(θ;xj),M(θ̃i(k-bit);xj)). (2)

where Ωi(k) measures how sensitive the i-th layer is when

quantized to k-bit, and θ̃i(k-bit) refers to quantized model

parameters in the i-th layer with k-bit precision. If Ωi(k)
is small, the output of the quantized model will not signifi-

cantly deviate from the output of the full precision model

when quantizing the i-th layer to k-bits, and thus the i-

th layer is relatively insensitive to k-bit quantization, and

vice versa. This process is schematically shown in Figure 1

for ResNet18. However, an important problem is that for

zero-shot quantization we do not have access to the original

training dataset xj in Eq. 2. We address this by “distilling”

a synthetic input data to match the statistics of the original

training dataset, which we refer to as Distilled Data. We ob-

tain the Distilled Data by solely analyzing the trained model

itself, as described below.

3.1. Distilled Data

For zero-shot quantization, we do not have access to any

of the training/validation data. This poses two challenges.

First, we need to know the range of values for activations

of each layer so that we can clip the range for quantization

(the [a, b] range mentioned above). However, we cannot

determine this range without access to the training dataset.

This is a problem for both uniform and mixed-precision

quantization. Second, another challenge is that for mixed-

precision quantization, we need to compute Ωi in Eq. 2, but

we do not have access to training data xj . A very naı̈ve

method to address these challenges is to create a random in-

put data drawn from a Gaussian distribution with zero mean

and unit variance and feed it into the model. However, this

approach cannot capture the correct statistics of the activa-

tion data corresponding to the original training dataset. This

is illustrated in Figure 2 (left), where we plot the sensitiv-
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ity of each layer of ResNet50 on ImageNet measured with

the original training dataset (shown in black) and Gaussian

based input data (shown in red). As one can see, the Gaus-

sian data clearly does not capture the correct sensitivity of

the model. For instance, for the first three layers, the sen-

sitivity order of the red line is actually the opposite of the

original training data.

Figure 3: Visualization of Gaussian data (left) and Distilled

Data (right). More local structure can be seen in our Dis-

tilled Data that is generated according to Algorithm 1.

To address this problem, we propose a novel method to

“distill” input data from the NN model itself, i.e., to gener-

ate synthetic data carefully engineered based on the prop-

erties of the NN. In particular, we solve a distillation opti-

mization problem, in order to learn an input data distribu-

tion that best matches the statistics encoded in the BN layer

of the model. In more detail, we solve the following opti-

mization problem:

min
xr

LX

i=0

kµ̃r
i � µik

2

2 + kσ̃r
i � σik

2

2, (3)

where xr is the reconstructed (distilled) input data, and

µr
i /σr

i are the mean/standard deviation of the Distilled

Data’s distribution at layer i, and µi/σi are the correspond-

ing mean/standard deviation parameters stored in the BN

layer at layer i. In other words, after solving this opti-

mization problem, we can distill an input data which, when

fed into the network, can have a statistical distribution that

closely matches the original model. Please see Algorithm 1

for a description. This Distilled Data can then be used

to address the two challenges described earlier. First, we

can use the Distilled Data’s activation range to determine

quantization clipping parameters (the [a, b] range mentioned

above). Note that some prior work [3, 22, 44] address this

by using limited (unlabeled) data to determine the activa-

tion range. However, this contradicts the assumptions of

zero-shot quantization, and may not be applicable for cer-

tain applications. Second, we can use the Distilled Data

and feed it in Eq. 2 to determine the quantization sensitiv-

ity (Ωi). The latter is plotted for ResNet50 in Figure 2 (left)

shown in solid blue color. As one can see, the Distilled Data

Algorithm 1: Generation of Distilled Data

Input: Model: M with L Batch Normalization

layers

Output: A batch of distilled data: xr

Generate random data from Gaussian: xr

Get µi,σi from Batch Normalization layers of M,

i ∈ 0, 1, . . . , L // Note that µ0 = 0, σ0 = 1

for j = 1, 2, . . . do
Forward propagate M(xr) and gather

intermediate activations

Get µ̃i and σ̃i from intermediate activations,

i ∈ 1, . . . , n

Compute µ̃0 and σ̃0 of xr

Compute the loss based on Eq. 3

Backward propagate and update xr

closely matches the sensitivity of the model as compared to

using Gaussian input data (shown in red). We show a visual-

ization of the random Gaussian data as well as the Distilled

Data for ResNet50 in Figure 3. We can see that the Distilled

Data can capture fine-grained local structures.

3.2. Pareto Frontier
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Figure 4: The Pareto frontier of ResNet50 on ImageNet.

Each point shows a mixed-precision bit setting. The x-axis

shows the resulting model size for each configuration, and

the y-axis shows the resulting sensitivity. In practice, a con-

straint for model size is set. Then the Pareto frontier method

chooses a bit-precision configuration that results in minimal

perturbation. We show two examples for 4 and 6-bit mixed

precision configuration shown in red and orange. The cor-

responding results are presented in Table 1a.

As mentioned before, the main challenge for mixed-
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precision quantization is to determine the exact bit precision

configuration for the entire NN. For an L-layer model with

m possible precision options, the mixed-precision search

space, denoted as S , has an exponential size of mL. For ex-

ample for ResNet50 with just three bit precision of {2, 4, 8}
(i.e., m = 3), the search space contains 7.2× 1023 configu-

rations. However, we can use the sensitivity metric in Eq. 2

to reduce this search space. The main idea is to use higher

bit precision for layers that are more sensitive, and lower

bit precision for layers that are less sensitive. This gives us

a relative ordering on the number of bits. To compute the

precise bit precision setting, we propose a Pareto frontier

approach similar to the method used in [7].
The Pareto frontier method works as follows. For a tar-

get quantized model size of Starget, we measure the overall
sensitivity of the model for each bit precision configuration
that results in the Starget model size. We choose the bit-
precision setting that corresponds to the minimum overall
sensitivity. In more detail, we solve the following optimiza-
tion problem:

min
{ki}

L

i=1

Ωsum =

LX

i=1

Ωi(ki) s.t.

LX

i=1

Pi ⇤ ki  Starget, (4)

where ki is the quantization precision of the i-th layer, and

Pi is the parameter size for the i-th layer. Note that here

we make the simplifying assumption that the sensitivity of

different layers are independent of the choice of bits for

other layers (hence Ωi only depends on the bit precision

for the i-th layer).2 Using a dynamic programming method

we can solve the best setting with different Starget together,

and then we plot the Pareto frontier. An example is shown

in Figure 4 for ResNet50 model, where the x-axis is the

model size for each bit precision configuration, and the y-

axis is the overall model perturbation/sensitivity. Each blue

dot in the figure represents a mixed-precision configuration.

In ZEROQ, we choose the bit precision setting that has the

smallest perturbation with a specific model size constraint.

Importantly, note that the computational overhead of

computing the Pareto frontier is O(mL). This is because we

compute the sensitivity of each layer separately from other

layers. That is, we compute sensitivity Ωi (i = 1, 2, ..., L)

with respect to all m different precision options, which

leads to the O(mL) computational complexity. We should

note that this Pareto Frontier approach (including the Dy-

namic Programming optimizer), is not theoretically guaran-

teed to result in the best possible configuration, out of all

possibilities in the exponentially large search space. How-

ever, our results show that the final mixed-precision con-

figuration achieves state-of-the-art accuracy with small per-

formance loss, as compared to the original model in single

precision.

2Please see Section A where we describe how we relax this assump-

tion without having to perform an exponentially large computation for the

sensitivity for each bit precision setting.

Table 1: Quantization results of ResNet50, MobileNetV2,

and ShuffleNet on ImageNet. We abbreviate quantization

bits used for weights as “W-bit” (for activations as “A-bit”),

top-1 test accuracy as “Top-1.” Here, “MP” refers to mixed-

precision quantization, “No D” means that none of the data

is used to assist quantization, and “No FT” stands for no

fine-tuning (re-training). Compared to post-quantization

methods OCS [44], OMSE [19], and DFQ [32], ZEROQ

achieves better accuracy. ZEROQ† means using percentile

for quantization.

(a) ResNet50

Method No D No FT W-bit A-bit Size (MB) Top-1

Baseline – – 32 32 97.49 77.72

OMSE [19] 3 3 4 32 12.28 70.06

OMSE [19] 7 3 4 32 12.28 74.98

PACT [5] 7 7 4 4 12.19 76.50

ZEROQ 3 3 MP 8 12.17 75.80

ZEROQ†
3 3 MP 8 12.17 76.08

OCS [44] 7 3 6 8 18.46 74.80

ZEROQ 3 3 MP 6 18.27 77.43

ZEROQ 3 3 8 8 24.37 77.67

(b) MobileNetV2

Method No D No FT W-bit A-bit Size (MB) Top-1

Baseline – – 32 32 13.37 73.03

ZEROQ 3 3 MP 8 1.67 68.83

ZEROQ†
3 3 MP 8 1.67 69.44

Integer-Only [18] 7 7 6 6 2.50 70.90

ZEROQ 3 3 MP 6 2.50 72.85

RVQuant [33] 7 7 8 8 3.34 70.29

DFQ [32] 3 3 8 8 3.34 71.20

ZEROQ 3 3 8 8 3.34 72.91

(c) ShuffleNet

Method No D No FT W-bit A-bit Size (MB) Top-1

Baseline – – 32 32 5.94 65.07

ZEROQ 3 3 MP 8 0.74 58.96

ZEROQ 3 3 MP 6 1.11 62.90

ZEROQ 3 3 8 8 1.49 64.94

4. Results

In this section, we extensively test ZEROQ on a wide

range of models and datasets. We first start by discussing

the zero-shot quantization of ResNet18/50, MobileNet-

V2, and ShuffleNet on ImageNet in Section 4.1. Addi-

tional results for quantizing ResNet152, InceptionV3, and
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SqueezeNext on ImageNet, as well as ResNet20 on Cifar10

are provided in Appendix C. We also present results for ob-

ject detection using RetinaNet tested on Microsoft COCO

dataset in Section 4.2. We emphasize that all of the results

achieved by ZEROQ are 100% zero-shot without any need

for fine-tuning.

We also emphasize that we used exactly the same hyper-

parameters (e.g., the number of iterations to generate Dis-

tilled Data) for all experiments, including the results on Mi-

crosoft COCO dataset.

4.1. ImageNet

We start by discussing the results on the ImageNet

dataset. For each model, after generating Distilled Data

based on Eq. 3, we compute the sensitivity of each layer us-

ing Eq. 2 for different bit precision. Next, we use Eq. 4 and

the Pareto frontier introduced in Section 3.2 to get the best

bit-precision configuration based on the overall sensitivity

for a given model size constraint. We denote the quantized

results as WwAh where w and h denote the bit precision

used for weights and activations of the NN model.

We present zero-shot quantization results for ResNet50

in Table 1a. As one can see, for W8A8 (i.e., 8-bit quanti-

zation for both weights and activations), ZEROQ results in

only 0.05% accuracy degradation. Further quantizing the

model to W6A6, ZEROQ achieves 77.43% accuracy, which

is 2.63% higher than OCS [44], even though our model

is slightly smaller (18.27MB as compared to 18.46MB for

OCS).3 We show that we can further quantize ResNet50

down to just 12.17MB with mixed precision quantization,

and we obtain 75.80% accuracy. Note that this is 0.82%

higher than OMSE [19] with access to training data and

5.74% higher than zero-shot version of OMSE. Importantly,

note that OMSE keeps activation bits at 32-bits, while for

this comparison our results use 8-bits for the activation (i.e.,

4× smaller activation memory footprint than OMSE). For

comparison, we include results for PACT [5], a standard

quantization method that requires access to training data

and also requires fine-tuning.

An important feature of the ZEROQ framework is that

it can perform the quantization with very low computa-

tional overhead. For example, the end-to-end quantization

of ResNet50 takes less than 30 seconds on an 8 Tesla V100

GPUs (one epoch training time on this system takes 100

minutes). In terms of timing breakdown, it takes 3s to gen-

erate the Distilled Data, 12s to compute the sensitivity for

all layers of ResNet50, and 14s to perform Pareto Frontier

optimization.

We also show ZEROQ results on MobileNetV2 and com-

pare it with both DFQ [32] and fine-tuning based meth-

3Importantly note that OCS requires access to the training data to do

activation quantization while requires no data for weight activation only.

ZEROQ does not use any training/validation data for both weight and acti-

vation quantization.

ods [33, 18], as shown in Table 1b. For W8A8, ZEROQ

has less than 0.12% accuracy drop as compared to baseline,

and it achieves 1.71% higher accuracy as compared to DFQ

method.

Further compressing the model to W6A6 with mixed-

precision quantization for weights, ZEROQ can still out-

perform Integer-Only [18] by 1.95% accuracy, even though

ZEROQ does not use any data or fine-tuning. ZEROQ can

achieve 68.83% accuracy even when the weight compres-

sion is 8×, which corresponds to using 4-bit quantization

for weights on average.

We also experimented with percentile based clipping to

determine the quantization range [25] (please see Section D

for details). The results corresponding to percentile based

clipping are denoted as ZeroQ† and reported in Table 1. We

found that using percentile based clipping is helpful for low

precision quantization. Other choices for clipping methods

have been proposed in the literature. Here we note that our

approach is orthogonal to these improvements and that ZE-

ROQ could be combined with these methods.

We also apply ZEROQ to quantize efficient and highly

compact models such as ShuffleNet, whose model size is

only 5.94MB. To the best of our knowledge, there exists no

prior zero-shot quantization results for this model. ZEROQ

achieves a small accuracy drop of 0.13% for W8A8. We

can further quantize the model down to an average of 4-bits

for weights, which achieves a model size of only 0.73MB,

with an accuracy of 58.96%.

Table 2: Object detection on Microsoft COCO using

RetinaNet. By keeping activations to be 8-bit, our 4-

bit weight result is comparable with recently proposed

method FQN [25], which relies on fine-tuning. (Note that

FQN uses 4-bit activations and the baseline used in [25] is

35.6 mAP).

Method No D No FT W-bit A-bit Size (MB) mAP

Baseline 3 3 32 32 145.10 36.4

FQN [25] 7 7 4 4 18.13 32.5

ZEROQ 3 3 MP 8 18.13 33.7

ZEROQ 3 3 MP 6 24.17 35.9

ZEROQ 3 3 8 8 36.25 36.4

We also compare with the recent Data-Free Compression

(DFC) [12] method. There are two main differences be-

tween ZEROQ and DFC. First, DFC proposes a fine-tuning

method to recover accuracy for ultra-low precision cases.

This can be time-consuming and as we show it is not nec-

essary. In particular, we show that with mixed-precision

quantization one can actually achieve higher accuracy with-

out any need for fine-tuning. This is shown in Table 3 for

ResNet18 quantization on ImageNet. In particular, note the

results for W4A4, where the DFC method without fine-
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tuning results in more than 15% accuracy drop with a fi-

nal accuracy of 55.49%. For this reason, the authors pro-

pose a method with post quantization training, which can

boost the accuracy to 68.05% using W4A4 for intermedi-

ate layers, and 8-bits for the first and last layers. In con-

trast, ZEROQ achieves a higher accuracy of 69.05% without

any need for fine-tuning. Furthermore, the end-to-end zero-

shot quantization of ResNet18 takes only 12s on an 8-V100

system (equivalent to 0.4% of the 45 minutes time for one

epoch training of ResNet18 on ImageNet). Secondly, DFC

method uses Inceptionism [31] to facilitate the generation

of data with random labels, but it is hard to extend this for

object detection and image segmentation tasks.

Table 3: Uniform post-quantization on ImageNet with

ResNet18. We use percentile clipping for W4A4 and W4A8

settings. ZEROQ† means using percentile for quantization.

Method No D No FT W-bit A-bit Size (MB) Top-1

Baseline – – 32 32 44.59 71.47

PACT [5] 7 7 4 4 5.57 69.20

DFC [12] 3 3 4 4 5.58 55.49

DFC [12] 3 7 4 4 5.58 68.06

ZEROQ†
3 3 MP 4 5.57 69.05

Integer-Only[18] 7 7 6 6 8.36 67.30

DFQ [32] 3 3 6 6 8.36 66.30

ZEROQ 3 3 MP 6 8.35 71.30

RVQuant [33] 7 7 8 8 11.15 70.01

DFQ [32] 3 3 8 8 11.15 69.70

DFC [12] 3 7 8 8 11.15 69.57

ZEROQ 3 3 8 8 11.15 71.43

We include additional results of quantized ResNet152,

InceptionV3, and SqueezeNext on ImageNet, as well as

ResNet20 on Cifar10, in Appendix C.

4.2. Microsoft COCO

Object detection is often much more complicated than

ImageNet classification. To demonstrate the flexibility of

our approach we also test ZEROQ on an object detection

task on Microsoft COCO dataset. RetinaNet [27] is a state-

of-the-art single-stage detector, and we use the pretrained

model with ResNet50 as the backbone, which can achieve

36.4 mAP.4

One of the main difference of RetinaNet with previous

NNs we tested on ImageNet is that some convolutional

layers in RetinaNet are not followed by BN layers. This

is because of the presence of a feature pyramid network

(FPN) [26], and it means that the number of BN layers is

slightly smaller than that of convolutional layers. How-

ever, this is not a limitation and the ZEROQ framework still

4Here we use the standard mAP 0.5:0.05:0.95 metric on COCO dataset.

works well. Specifically, we extract the backbone of Reti-

naNet and create Distilled Data. Afterwards, we feed the

Distilled Data into RetinaNet to measure the sensitivity as

well as to determine the activation range for the entire NN.

This is followed by optimizing for the Pareto Frontier, dis-

cussed earlier.

The results are presented in Table 2. We can see that

for W8A8 ZEROQ has no performance degradation. For

W6A6, ZEROQ achieves 35.9 mAP. Further quantizing the

model to an average of 4-bits for the weights, ZEROQ

achieves 33.7 mAP. Our results are comparable to the re-

cent results of FQN [25], even though it is not a zero-shot

quantization method (i.e., it uses the full training dataset and

requires fine-tuning). However, it should be mentioned that

ZEROQ keeps the activations to be 8-bits, while FQN uses

4-bit activations.

5. Conclusions

We have introduced ZEROQ, a novel post-training quan-

tization method that does not require any access to the train-

ing/validation data. Our approach uses a novel method to

distill an input data distribution to match the statistics in

the batch normalization layers of the model. We show that

this Distilled Data is very effective in capturing the sen-

sitivity of different layers of the network. Furthermore,

we present a Pareto frontier method to select automatically

the bit-precision configuration for mixed-precision settings.

An important aspect of ZEROQ is its low computational

overhead. For example, the end-to-end zero-shot quanti-

zation time of ResNet50 is less than 30 seconds on an 8-

V100 GPU system. We extensively test ZEROQ on vari-

ous datasets and models. This includes various ResNets,

InceptionV3, MobileNetV2, ShuffleNet, and SqueezeNext

on ImageNet, ResNet20 on Cifar10, and even RetinaNet

for object detection on Microsoft COCO dataset. We con-

sistently achieve higher accuracy with the same or smaller

model size compared to previous post-training quantization

methods. All results show that ZEROQ could exceed previ-

ous zero-shot quantization methods. We have open sourced

ZEROQ framework [1].
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