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Abstract

We combine ideas from shock graph theory with more re-

cent appearance-based methods for medial axis extraction

from complex natural scenes, improving upon the present

best unsupervised method, in terms of efficiency and perfor-

mance. We make the following specific contributions: i) we

extend the shock graph representation to the domain of real

images, by generalizing the shock type definitions using lo-

cal, appearance-based criteria; ii) we then use the rules of a

Shock Grammar to guide our search for medial points, dras-

tically reducing run time when compared to other methods,

which exhaustively consider all points in the input image;

iii) we remove the need for typical post-processing steps in-

cluding thinning, non-maximum suppression, and grouping,

by adhering to the Shock Grammar rules while deriving

the medial axis solution; iv) finally, we raise some funda-

mental concerns with the evaluation scheme used in previ-

ous work and propose a more appropriate alternative for

assessing the performance of medial axis extraction from

scenes. Our experiments on the BMAX500 and SK-LARGE

datasets demonstrate the effectiveness of our approach. We

outperform the present state-of-the-art, excelling particu-

larly in the high-precision regime, while running an order

of magnitude faster and requiring no post-processing.

1. Introduction

Object shape has a fundamental role in visual percep-

tion theory. Shape defines a basic level of abstraction that

determines the spatial extent of structures in the physical

world, and drives object recognition. A popular representa-

tion of 2D shape is the Medial Axis Transform (MAT) [4].
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sonal capacity as Professor and Adjunct Professor, respectively, at the University of

Toronto. The views expressed (or the conclusions reached) are their own and do not

necessarily represent the views of Samsung Research America, Inc.

The medial axis has been of particular interest in both hu-

man and computer vision because of its direct relationship

to local symmetries of objects. Local symmetries effec-

tively decompose a shape into salient parts, aiding recog-

nition and pose estimation, while being robust to viewpoint

changes. At the same time, symmetry in general has been

proven to be instrumental in the analysis of complex scenes

[26, 32], facilitating the encoding of shape and their dis-

crimination and recall from memory [3, 23, 39]. The im-

portance of symmetry for scene categorization has been re-

cently re-confirmed in [21, 41].

There are many algorithms that compute the MAT of 2D

binary shapes. This problem was first discussed by Blum

in his seminal work [4, 5], followed by several extensions

and variants, including smooth local symmetries [6], shock

graphs [25, 31], bone graphs [15, 16, 17] Hamilton-Jacobi

skeletons [29], augmented fast-marching [34], hierarchical

skeletons [33], and the scale axis transform [10].

In an effort to broaden the application of such methods,

interest in the problem of skeleton extraction from natural

images has been recently revived, with a focus on using su-

pervised learning. The first such approach is that of Tsogkas

and Kokkinos [37], which was later followed by other meth-

ods, including the deployment of random forests [35], or

convolutional neural networks [8, 11, 13, 14, 27, 40, 43].

Departing from this trend, Tsogkas and Dickinson defined

the first complete MAT for color images, formulating me-

dial axis extraction as a set cover problem [36]. However,

all these recent approaches have an important limitation:

medial points are extracted in isolation, without explicit

consideration of the local context, i.e., the structural con-

straints imposed by the fact that they must lie on skeletal

segments within regions bounded by curves, with the asso-

ciated generic classification of the medial axis point types

[9]. As a result, one has to consider medial proposals at

multiple scales for each point, resulting in a very large space

of medial point proposals to search. To make things worse,
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for object recognition applications. Medial branches corre-

sponding to salient object parts are tagged as bones, while

ligature segments [2] connect the bones together.

Medial axis extraction in natural images. Most recent

work on skeleton extraction from natural images relies on

supervised learning. Tsogkas and Kokkinos [37] propose

a multiple instance learning approach combined with hand-

crafted features, tailored specifically to local reflective sym-

metries. Teo et al. [35] improve on this approach by using a

more powerful random forest classifier, and by encouraging

global symmetric consistency through an MRF representa-

tion. Shen et al. [27] introduced the first deep-learning ap-

proach to solving this problem, where a fully convolutional

neural network (CNN) extracts the locations of the skele-

ton points, while estimating the local medial disk radii, by

combining deep features at multiple scales. Ke et al. [11]

propose a similar framework that stacks Residual Units in

its side outputs, improving performance and robustness. In

contrast to works that simply fuse (concatenate) side-output

responses, Zhao et al. [43] create an explicit hierarchy of

skeleton features at different scales. This allows for the

refinement of responses at finer scales using high-level se-

mantic context, but also of coarser scale responses by using

high-detail local responses from early layers of the CNN.

Finally, Wang et al. [40] frame the skeleton extraction prob-

lem as a 2D vector field generation problem using a CNN,

where each vector maps an image point to a skeleton point,

similar to the Hamilton-Jacobi skeleton algorithm [7, 29].

A completely different, unsupervised approach, the

AMAT, was proposed by Tsogkas and Dickinson [36]. The

AMAT frames medial axis extraction in color images as a

geometric set cover problem and solves it using a greedy ap-

proximate solution [38]. The cost assigned to each potential

covering element (disk) is provided by a function that prior-

itizes the selection of maximal disks, leading to a solution

approximating the medial axes of structures in the scene.

In the present paper, we use the same concept of disk

costs to generalize the definitions of shocks [31] and, in

turn, exploit the shock graph theory in the RGB domain.

Unlike [31], we do not assume the medial axis is given.

Rather, we use the rules of the SG grammar to constrain

the number of eligible medial disks that are considered at

every step. This allows us to be much more efficient than

the AMAT [36], where disks at all possible locations and

scales are valid candidates for the greedy algorithm.

3. Shock Theory

A shock graph (SG) [30, 31] is a directed acyclic graph

(DAG) built from a skeleton. Its nodes correspond to con-

nected components of shocks of the same type, and its edges

represent connections between these components. The di-

rection of an edge indicates the direction of the medial axis

radius derivative between the coarser scale and the finer

scale shock. The root of the graph is called the birth shock.

Shocks represent a colouring for medial points with spe-

cific scale (medial axis radius) gradients. A type 4 shock

(blob) corresponds to a single medial point that is a local

maximum in scale. Its counterpart, the type 2 shock (neck),

represents a single medial point that is a local minimum in

scale and splits its medial branch into separate parts when

removed. Type 3 shocks (ribbons or bends) are sets of con-

nected medial points of equal scales. Finally, type 1 shocks

(protrusion) are sets of connected medial points with mono-

tonically decreasing scales in one direction.

Formally, the shocks can be defined as follows. For a

given closed shape X , let M(X) be its medial axis rep-

resentation. M(X) consists of medial points x of scales

R(x) ≡ Rx. For a medial point x ∈ M(X) and an

open disk D(x, ǫ) of radius ǫ centered at x, let N(x, ǫ) =
M(X) ∩D(x, ǫ) \ {x} represent its ǫ-neighbourhood. x is

type 4 if ∃ǫ > 0 s.t. Rx > Ry, ∀y ∈ N(x, ǫ);

type 3 if ∃ǫ > 0 s.t. Rx = Ry, ∀y ∈ N(x, ǫ) 6= ∅;

type 2 if ∃ǫ > 0 s.t. Rx < Ry, ∀y ∈ N(x, ǫ) 6= ∅
and N(x, ǫ) is not connected;

type 1 otherwise.

While the shock graph represents the relations between con-

nected medial points in terms of their radii, the shock graph

grammar reverses the underlying grassfire flow in time. The

successive application of its rules defines a generative pro-

cess that grows parts of an object. The birth rule dictates

that birth shocks can only be types 3 or 4, while the death

rules allow the shock graph to terminate at any shock type.

The protrusion rules define how an interval of medial points,

with a monotonically changing radius value, can attach at

junctions. Finally, the union rules define the conditions un-

der which distinct branches can be connected together.

3.1. Defining Shocks for Natural Images

The ideas presented in Section 3 assume that M(X)
has already been extracted using some skeletonization algo-

rithm. In this work we turn the problem on its head: rather

than using the shock grammar to define a graph on a pre-

existing skeleton, we use the rules imposed by the grammar

to constrain the search space for medial points. To do that,

first we have to formally extend the shock type definitions to

the domain of natural images. We employ the same notation

as in Section 3, introducing new notation when needed.

The key component for determining the coloring of a

shock in the binary domain is the computation of R(x), the

radius of the largest disk, centered at x, that remains con-

tained in the open interior X of a closed 2D shape. The

contour of such disks is tangent to the shape’s boundary at
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(a) 1-shocks (protrusion). (b) 2-shocks (neck).

(c) 3-shocks (ribbon). (d) 4-shocks (blob).

Figure 2: Appearance based shock type examples from

BMAX500 [36]. Medial axes are shown in red, contour

in blue and selected shocks in yellow.

2 points, at least. Exact computation of R(x) is feasible

because the boundary of a 2D shape is well defined (i.e.,

the points where the image values change from “0” to “1”

or vice-versa). This is not the case in the natural image

domain, where extracting object boundaries is an ill-posed

problem that typically admits a probabilistic solution.

To deal with this ambiguity, we follow the region-based

approach of [36] and assign a cost C(x, r) to each disk pro-

posal D(x, r) = Dx,r . This cost acts as a “soft maximality”

indicator: if r is close to the ideal (maximal) value, C(x, r)
is low, whereas disks that are not maximal or cross image

boundaries, are severely penalized.

More concretely, let x ∈ R
2,y ∈ N(x, ǫ) be medial

points, and Rx, Ry ∈ R denote the radii of the respec-

tive maximal disks centered at x and y. Also, let a small

quantity δr > 0 denote an acceptable “cost margin” for

determining disk maximality, and ǫr > 0. Intuitively, if

C(x, r + ǫr)− C(x, r) < δr, then Dx,r+ǫr is a better can-

didate for being the maximal disk centered at x than Dx,r .

We formalize the scale maximality criterion as follows:

C(x, Rx) + δr < C(x, Rx + ǫr). (1)

This condition should be satisfied for all disk proposals that

are added to our solution. We also define a “cost smooth-

ness” criterion, expressing the fact that the costs of neigh-

boring medial points should not vary significantly. This is

another direct analogy to the shock theory for binary shapes,

which dictates that the radii of neighboring medial points

are bound to vary slowly. This is due to the fact that shocks

coincide with singularities of a continuous Euclidean dis-

tance function from the boundary [5]. Letting δc > 0, we

define the cost smoothness criterion as

‖C(x, Rx)− C(y, Ry)‖ < δc. (2)

By combining these two criteria with the binary shock type

definitions, we redefine shock coloring rules in the RGB do-

main. These rules are agnostic to the exact nature of the cost

function – we discuss potential choices for C in Section 4.1.

Note, however, that, contrary to the binary case, we must

consider all possible locations and scale candidates (x, rx),
since we know neither the centers x ∈ M(X) nor the radii

R of the true medial disks. Finally, our shock coloring def-

initions are adapted to accommodate a discrete pixel grid.

For instance, the neighbourhood of a point N(x, 1) corre-

sponds to its immediate 8-connected neighbours, while radii

only take positive integer values.

4. Constrained Medial Point Search Using the

Shock Graph Grammar

The formal definition for RGB shocks described in Sec-

tion 3.1 allows one to use the SG grammar to progressively

build an object skeleton while constraining the search space

of candidate medial points. We summarize the steps of such

an approach in Algorithm 1.

Algorithm 1: Overview of algorithm

Input: RGB image I

Output: Medial points M

1 Initialization: M ← ∅
2 D ← generateProposals(I);

3 Qs ← extractSeeds(D);

4 while notEmpty(Qs) do

5 (xs, rs)← selectSeed(Qs);

6 M ← growSeed((xs, rs),D);

7 Qs ← pruneSeeds(Qs,M );

8 M ← growEndPoints(D,M ):

First, we generate medial disk (point) proposals Dx,r

at multiple scales r. Second, we extract birth seeds

(xs, rs) from the pool of proposals and store them in a

queue Qs. We grow each seed into a medial axis, by it-

eratively attaching low-cost medial points1. Every time we

attach a new point to the axis, we make sure this attach-

ment is consistent with the rules of the SG grammar, and

that the medial axis remains connected and one-pixel wide.

We greedily continue growing an axis until no points can

be added without violating one of these constraints, and

then pick the next seed in Qs to grow. Note that, because

birth seeds can only be type 3 or 4 shocks, which corre-

spond to local scale maxima, the medial axis is constructed

in a coarse-to-fine manner. After Qs has been exhausted,

we relax δc and grow branch end points that may have

been cut short due to the cost constraint. This step allows

the algorithm to extend branch growths into more expen-

sive/ambiguous image regions for completeness. We now

1In fact, we add medial fragments rather than individual points. See the

paragraph on “Seed growth” in this Section.
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describe each one of these steps in more detail.

Proposal generation. Each medial disk candidate Dx,r

is associated with a cost C(x, r) that represents how close

Dx,r is to being “maximal”. In the domain of real images,

a low value for C is equivalent to a perceptually homoge-

neous appearance within the disk-shaped region DI
x,r ⊂ I .

In Section 4.1 we describe in detail two options for C based

on: i) RGB encodings [36]; and ii) image intensity his-

tograms. We compute C(x, r) for all points x in the image,

at all potential scales r ∈ [rmin, rmax]. Proposals corre-

sponding to disks that are not fully enclosed in the image

are ignored.

Seed extraction should only return type 3 or type 4

shocks. To extract 4-shock seed candidates, we scan the

space of positions and scales, and check whether the type

4 criterion holds. For 3-shock seed candidates, we check if

there is at least one valid neighbour sharing the same scale,

as per the shock type 3 definition. Finally, we impose an

additional requirement: a type 3/4 shock xs qualifies as a

seed iff it corresponds to a local cost minimum, i.e.,

C(xs, rxs
) ≤ C(y, ry), ∀y ∈ N(xs, 1). (3)

All seed candidates are added into a queue Qs. Because a 4-

seed can eventually grow into a nearby 3-seed as the medial

axis is formed (provided that both seeds are part of the same

object), once a seed has stopped growing, we also remove

any other seeds in Qs that have been added to M .

Seed selection follows a coarse-to-fine strategy. We pri-

oritize the selection of seeds with larger radii and lower

costs C because we expect their cost computation to be less

sensitive to noise, resulting in more robust axis growth.

Seed growth involves attaching medial point proposals to

a selected seed (xs, rs), following the shock grammar. At

each step, the least expensive valid proposal (x, rx) in the

neighborhood of the axis is added to M . Proposals whose

regions DI
x,r are subsumed by M I , the union of disk re-

gions centered at points in M , are ignored, as they offer

no new information about the object’s shape. The growth

process ends when no more valid proposals can be added.

To emulate the cost constraint in the RGB shock coloring

definitions, we introduce a cost upper bound

Ctol = C(xs, rs)(1 + αc) > 0, (4)

where αc is a small arbitrary positive constant. We ignore

proposals with costs larger than Ctol to ensure that the qual-

ity of attached points does not degrade during growth.

Single points do not provide sufficient spatial context for

determining robust axis growth directions. To resolve these

ambiguities we grow a seed by attaching fragments of valid

connected medial points, F , instead. For simplicity, we

model medial axis fragments F as linear segments of length

lF ≤ lmax, producing a piecewise-linear approximation of

the true medial axis. To rank the quality of candidate frag-

ments we define a fragment cost

C̄F =
α(lF )

lF

lF
∑

j=1

C(xj , rj), (5)

which is proportional to the mean cost of its constituent

points. The more expensive a fragment, the less likely it

is to be part of the medial axis. To prioritize longer frag-

ments, which provide more context, C̄F is weighted by a

length-dependent parameter α(lF ), i.e., between two frag-

ments with equal mean cost, the longer one will be selected.

At each iteration, we generate multiple candidate frag-

ments and add the one with the lowest C̄F to M . Growth

then continues from the endpoint of the last added fragment.

This step is repeated until no more valid fragments, i.e.,

fragments that follow the SG grammar and whose regions

are not subsumed by M I , can be attached to the current

medial branch. In practice this can happen either because

the branch is fully grown or because the remaining frag-

ment candidates are too expensive. Then, additional medial

branches can be grown from the seed (xs, rs).
A medial branch may also terminate at a junction point:

a medial point from which multiple branches emerge2. In

this case, new branches can also be grown from that point,

as shown in Figure 2d. To identify a junction point, we

check if multiple fragments can be attached to it without

violating the SG grammar’s protrusion rules.

End point growth. Restricting the growth of medial

branches using a cost-based threshold for medial fragments

promotes robustness and avoids committing to potentially

erroneous growth paths. However, the resulting medial axes

may not be fully fleshed out: branches corresponding to the

fine image details are grown last, and do not always survive

this pruning step. To recover these lost medial branches,

we perform a final refinement step: we revisit each medial

end point and allow it to grow further by relaxing the tol-

erance constraint Ctol, thus allowing less salient fragments

to be added. The algorithm terminates when no more valid

fragments can be added to any medial end point.

4.1. Cost functions

Color homogeneity. We use the default cost function C

of the AMAT [36], after smoothing the input image I us-

ing [42]. The cost of a disk region DI
x,r with area Ar is

Ccolor(x, r) =
c(x, r)

Ar

+
ws

r
, (6)

2Formally, a junction point is a medial point with at least 3 neighbours.
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where c(x, r) represents a measure of homogeneity based

on fx,r , the average CIELAB space value within DI
x,r :

c(x, r)=
∑

k

∑

l

||fx,r−fxk,rl ||
2
2 ∀k, l : D

I
xk,rl
⊂DI

x,r . (7)

Intensity histogram. While straightforward to com-

pute, Equation (6) is sensitive to gradual changes in inten-

sity. We consider a more powerful cost function that is

based on local histograms of image intensity and is more

appropriate for applications to regions with texture. We first

smooth the image using [42]. Then, we precompute a tiling

of the image using 6 × 6 squares. For each tile we com-

pute an average intensity value per color channel. We then

construct a local histogram H for each channel, by placing

these averages into one of 10 bins. To compute c(x, r), we

replace the l2 -norm in Equation (7) with a standard Bhat-

tacharyya distance between normalized histograms H1,H2

dBhatt.(H1,H2) =

√

1−

∑

i

√

H1(i) ·H2(i)
√
∑

i H1(i) ·
√
∑

i H2(i)
, (8)

averaged over the 3 color channels, as used for unsuper-

vised texture segmentation in region-based active contours

[20]. For each disk under consideration, the histograms are

computed using only the enclosed tiles. We also rescale,

and add a scale-dependent constant to obtain

Chist(x, r) =
c(x, r)

r
+

ws

r
. (9)

5. Experiments

We conduct experiments on scene and object skeleton

detection, on two representative datasets: BMAX500 [36]

and SK-LARGE [27]. BMAX500 is built by automati-

cally extracting skeletons of human-annotated region seg-

ments from the BSDS500 dataset [1]; each image typically

comes with 5-7 such annotations. We use the downsam-

pled version of BMAX500 as in [36], but we also evaluate

on the full resolution dataset, to more effectively highlight

the computational gains of our approach. SK-LARGE, on

the other hand, focuses on object-centric skeleton detection:

each image contains a centered object and the ground truth

is only the foreground object skeleton. Note that this is a

different problem than the one the ASG (and the AMAT)

aim to solve, making comparison on the SK-LARGE unfair

to our algorithm, but we still include it for completeness.

5.1. Evaluation Protocol and Criticisms

Traditionally, the evaluation of skeleton extraction meth-

ods has followed the protocol originally introduced for

the task of boundary detection on the BSDS500 bench-

mark [8][18, 19]. According to that protocol, the extracted

Figure 3: Boundary (middle) and skeleton (right) annota-

tions on the BSDS/BMAX500. Different colors denote an-

notations extracted from different segmentations. Whereas

boundaries for the same scene form a natural hierarchy,

skeletons actually conflict with one another, making the

evaluation protocol used in [36] unsuitable.

Figure 4: Segmentation (left), binary GT skeletons (mid-

dle), and their weighted version based on uniqueness of me-

dial disk area (right) [22]. The most salient skeleton parts

are retained (yellow), while skeletal points with low bound-

ary support have low weights (blue).

(boundary/skeleton) map is binarized, and then matched to

each one of the available annotations for a given image, us-

ing a bipartite graph matching routine that allows for small

localization errors. To compute precision (P), a detected

point can be matched to any of its ground truth (GT) coun-

terparts, while, for perfect recall (R), all ground truth points

must be matched with a point in the output.

We argue that this benchmarking approach can be mis-

leading for the task of skeleton detection. To better under-

stand why, see Figure 3. The boundary annotations for the

same scene form a natural hierarchy: fine-grained interpre-

tations of a scene complement the coarser ones, resulting in

modest variation in the recall scores. Skeleton annotations,

on the other hand, not only change significantly when the

source segmentation changes, but actually conflict with one

another. Even if a predicted skeleton perfectly matches one

of the ground truths, it may be at complete odds with the

rest, hurting the associated recall and F-score.

Although we employ the same evaluation scheme used

in previous work for consistency, we propose the following

alternative: for each image, we consider each annotation in-

dividually and report scores for the one with the maximum

F-score. This is a much more reasonable expectation – we

require the output to match at least one of the acceptable
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Resolution 161× 241 pixels (half) 321× 481 pixels (full)

Method (C(x, r)) AMAT (Color) ASG (Color) AMAT (Hist) ASG (Hist) AMAT (Hist) ASG (Hist)

P .393 .237 .396 .246 .431 .268 .506 .343 .471 .295 .641 .474

R .640 .665 .452 .485 .623 .658 .541 .595 .769 .794 .503 .546

F1 .487 .350 .422 .326 .509 .380 .522 .435 .584 .431 .564 .507

*R gains +.043 +.047 +.032 +.039 +.016 +.020 +.035 +.040 +.018 +.020 +.036 +.040

*F1 gains +.012 +.006 +.014 +.008 +.006 +.004 +.016 +.011 +.005 +.003 +.022 +.015

t (s) 57.4 7.0 (↓ 8.2×) 33.7 6.5 (↓ 5.2×) 393.2 34.7 (↓ 11.3×)

Table 1: Results on the BMAX500 using standard evaluation (black) and our proposed single-annotation protocol (blue).

Gains for the ligature-weighted version of BMAX500 are denoted by *. Timings are averages over the BMAX500 test set.

Cost function computation times are excluded from the runtime measurements to compare the two algorithms head to head.

scene interpretations, rather than all of them jointly.

Another observation we make is that large portions of

the medial axis may have little to do with boundary recon-

struction, but are due to the ligature or the “glue” that holds

parts of the object together [5]. Curiously, all studies bench-

marked on BMAX500 or SK-LARGE, have ignored this

fact. With this in mind, we use a uniqueness of medial disk

area-based ligature measure proposed by Rezanejad [22], to

weight the contribution of each medial axis point on a scale

from [0, 1]. Figure 4 shows a typical example, where the

lower weights near the branch points signal the ligature.

Parameters are optimized on the BMAX500 validation

set. We use αc = 0.75, lmax = 10. α(lF ) is set to decrease

linearly from α(1) = 1 to α(lmax) = 0.85. We fix these

values for all experiments, including those on SK-LARGE.

We use the same values as in [36] for the color cost

function, namely ws = 1e − 4 and the default values for

the smoothing operation [42]. For the histogram based cost

function, we use ws = 2e − 8. Finally, we set r ∈ [2, 41]
for the half-resolution images and r ∈ [2, 82] for the full

resolution images. During evaluation, any detected medial

point within distance equal to 1% of the image diagonal (in

pixels) from the ground truth can be a true positive.

5.2. Results

We report quantitative results for scene skeleton extrac-

tion, on the half- and full-resolution BMAX500 dataset,

in Table 1. We compare the AMAT [36] with post-

processing (i.e., grouping and thinning) and the ASG, using

the two cost functions described in Section 4.1. We include

results for both the standard and our proposed evaluation

protocol, as well as the gains due to our ligature weighting.

The cost function matters. Using the histogram-based

cost increases performance noticeably for both the AMAT

and the ASG (+2% and +10% F-score respectively). This

result confirms our hypothesis that a powerful cost function

that is robust to texture and other local appearance varia-

tions is crucial in order to obtain good quality medial axes.

Performance analysis. We focus on the results for the

intensity-histogram cost function. The standard evaluation

protocol rewards the AMAT’s dense yet imprecise output:

predicted points have multiple “shots” at matching with one

of the multiple GT annotations, and, conversely, a GT point

is more likely to match a detected point. This increases re-

call, making the AMAT perform on par with our method,

which produces a much sparser (59% fewer points at full

resolution), but precise output. Using one of the GT per

image (blue) calibrates P/R, yielding +5.5% and +7.6% F-

score for half and full resolution, respectively, and aligns

quantitative results to what we witness qualitatively in Fig-

ure 5: a clear advantage of obeying the rules of a shock

grammar in skeleton detection. The ASG skeletons are

smoother, as singularity theory dictates [9], and less sen-

sitive to boundary artefacts, while maintaining agreement

with the ground truth. On the contrary, the AMAT skele-

tons, where medial hypotheses are evaluated in isolation,

contain spurious points and invalid branching topology.

Finally, using a ligature-weighted version of BMAX in-

creases recall for both algorithms, with a net advantage for

the ASG, suggesting that branches missed by our method

tend to be less important for boundary reconstruction.

ASG dramatically reduces runtime. Comparison of the

histogram variants of AMAT and ASG in Table 1 show a

speedup of 5× for the latter at half-resolution and 11× at

full-resolution. Our approach not only is faster by an order

of magnitude, it also scales much better with the input im-

age size and the number of scales considered. A detailed

breakdown of the algorithm is shown in Table 2.

Comparison with supervised methods. In Table 3 we

compare to supervised learning methods. SK-LARGE con-

tains annotations only for the foreground object skeletons,

so we ignore medial axes outside the object during evalu-

ation. Both the AMAT and ASG produce lower F-scores

than Hi-Fi [43] and DeepFlux [40], but this is expected be-

cause they are not solving the same problem: the former

rely solely on bottom-up features to extract medial axes
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Figure 5: Qualitative results. Left to right: Ground truth (single annotation), ASG (this work), AMAT [36] (after post-

processing). Our method produces sparser, cleaner, and more accurate medial axes, without any post-processing.

Resolution 161× 241 321× 481
Proposal Generation 3.63s 36.0% 63.51s 64.7%

Seed Growth 4.60s 45.6% 18.28s 18.6%

End Point Growth 1.85s 18.3% 15.71s 15.9%

Other 0.01s 0.1% 0.73s 0.8%

Total 10.09s 100% 98.23s 100%

Table 2: Runtime breakdown of the ASG. Timings are aver-

ages over the 200 images in the BMAX500 test set. Other

includes the seed extraction, selection, and pruning steps.

AMAT [36] ASG Hi-Fi [43] DeepFlux [40]

F1 .509 .511 .724 .732

t (s) 511.9 63.2 0.030 (GPU) 0.019 (GPU)

Table 3: Results on SK-LARGE [27]. Runtimes are aver-

ages over the SK-LARGE test images.

of homogeneous image regions, whereas the latter incor-

porate high-level, object-specific information to detect se-

mantic object skeletons. Taking these numbers at face value

also ignores many “hidden costs” of supervised learning: 1)

training deep CNNs for skeleton extraction requires GPUs

and segmentations, which are costly and time consuming to

collect; 2) these models do not generalize on other datasets:

[36] showed that FSDS [28], trained on SK-LARGE, fails

to generalize on BMAX500; and 3) they do not easily scale

to new classes or granularities; e.g., if a new class is added

to the dataset, the model must be retrained.

6. Discussion

Our new approach for the efficient extraction of medial

axes from cluttered natural scenes uses elements from the

shock graph theory of shape. In particular, we have gener-

alized the concept of shocks to the RGB domain by consid-

ering region-based cost functions, and have devised an al-

gorithm that leverages the rules of the shock graph grammar

to guide the search for medial points. Our approach has sev-

eral merits: 1) it is fully unsupervised and thus can gener-

alize to new datasets without any training; 2) it outperforms

the state-of-the-art in unsupervised approaches and is an or-

der of magnitude faster and much more efficient in the num-

ber of skeletal pixels generated; and 3) it requires no post-

processing, such as thinning or grouping of medial points.

In our experiments, we have also raised a concern regard-

ing the way scene skeleton detection frameworks are typi-

cally evaluated in our community. To address this, we have

proposed an alternative, ligature-based weighted evaluation

scheme, that takes into account the relative importance of

each medial point for boundary reconstruction, and better

reflects performance on benchmarks with multiple ground

truth annotations per scene.
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