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Abstract

We present a minimal imaging setup that harnesses

both geometric and photometric approaches for shape and

albedo recovery. We adopt a stereo camera and a flash-

light to capture a stereo image pair and a flash/no-flash

pair. From the stereo image pair, we recover a rough shape

that captures low-frequency shape variation without high-

frequency details. From the flash/no-flash pair, we derive

an image formation model for Lambertian objects under

natural lighting, based on which a fine normal map is ob-

tained and fused with the rough shape. Further, we use

the flash/no-flash pair for cast shadow detection and albedo

canceling, making the shape recovery robust against shad-

ows and albedo variation. We verify the effectiveness of our

approach on both synthetic and real-world data.

1. Introduction

Shape recovery from images is a fundamental problem

in computer vision. Common methods typically fall into

one of two classes: geometric or photometric approaches.

Geometric approaches take images of a scene from multi-

ple viewpoints, find point correspondences across images

and establish their geometric position to recover the shape.

They generally do not recover high-frequency shape details,

because their patch-based stereo matching has fundamental

limitations in spatial resolution [18]. On the other hand,

photometric approaches recover per-pixel surface orienta-

tion using shading cues. For example, Shape from Shading

(SfS) recovers per-pixel surface normal vectors from a sin-

gle image taken under only one distant light from a single

direction [16]; photometric stereo recovers surface normals

and albedo using three or more images from the same view-

point under different lighting conditions [29]. Photomet-

ric approaches generally only recover the first-derivative of

shape instead of shape itself.

Due to the complementary properties of geometric and

photometric approaches, several works have combined both

for high-quality shape recovery. Based on multi-view stereo

results from a set of images, Wu et al. [31] explored the

shading cues in those images to recover high-frequency de-

tails. Zhang et al. [35] combined active stereo and photo-

metric stereo for edge-preserving shape recovery.

The problem of such a combination using geometric and

photometric cues, is that the imaging setup is complex:

geometric approaches require images from multiple view-

points taken by multiple cameras or one moving camera.

Photometric approaches, on the other hand, require a cap-

ture setup that can generate multiple lighting conditions.

Zhang et al. [35] mounted 3 lights around a Kinect sensor

to acquire images under different lighting; Choe et al. [6]

mounted a bulb on a Kinect and turned on the Kinect’s

IR projector and the light alternatively during image cap-

ture. Several works do not employ a lighting setup and

only use the shading cues in the images that are used for

the geometric approach. This simplification, however, ei-

ther puts strict limitations on what scenes can be recon-

structed, for example uniform albedo [31, 11], or it requires

an additional albedo estimation step [34]. Consequently,

both can introduce texture-copying artifacts on the recov-

ered shape [24, 38] where albedo or shading variation is

mistaken for shape variation.

In this paper, we present a minimal imaging setup for

shape and albedo recovery of Lambertian surfaces, while

benefiting from the strengths of both approaches and stay-

ing compact. A stereo camera and a flashlight are used to

take three images: a left image without flash, a right im-

age without flash and a left image with flash, as shown

in Fig. 1(a). The left and right no-flash images constitute

a stereo pair providing geometric cues for coarse shape re-

covery, and the left flash/no-flash image pair provides shad-

ing cues for high-frequency detail recovery. The setup is

minimal in that, recovering surface normals only from the

flash/no-flash pair is an ill-posed problem without the regu-

larization of the coarse shape estimate from the stereo pair;

three unknowns (one for albedo and two for a unit surface

normal vector) cannot be uniquely solved with two shading

constraints for each pixel. Similarly, high-frequency shape

details cannot be recovered from the stereo pair [18] with-

out the shading constraints introduced by the flash/no-flash

pair. As a result, our setup allows high-fidelity shape and
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Figure 1: We adopt a stereo camera and a flashlight, take 3 images, and recover high-fidelity normal, shape, and albedo map.1

albedo recovery for Lambertian surfaces with non-uniform

albedo under natural lighting.

The contributions of our work are as follows:

1. We present a compact imaging setup for shape and

albedo recovery that uses both geometric and photo-

metric cues.

2. We derive an image formation model for flash/no-flash

image pairs that works for Lambertian surfaces with

non-uniform albedo under natural lighting, based on

which high-frequency shape details can be recovered.

3. We propose a robust shape recovery framework by tak-

ing advantage of a ratio image from the flash/no-flash

pair for global lighting estimation and handling of cast

shadows.

2. Related Work

Our work is related to shading-based shape recovery and

flash photography.

Shape Recovery Shape recovery by geometric ap-

proaches has fundamental limitations in recovering high-

frequency details [18]. Contrarily, photometric approaches

recover per-pixel surface normals using shading cues in im-

ages. Various approaches have been proposed for high-

quality shape recovery by combining the strengths of both

geometric and photometric approaches.

While photometric approaches commonly assume con-

trolled lighting conditions without ambient lighting, when

they are combined with geometric approaches this as-

sumption is likely violated and they face more challeng-

ing lighting conditions. Basri et al. [4] verified that for

a Lambertian surface its reflectance can be modeled as a

low-dimensional linear combination of spherical harmon-

ics. Photometric stereo under natural illumination has

1The brightness of all images in this paper is adjusted for better visual-

ization.

been shown to be feasible after this theoretical verifica-

tion [3, 17]. Such approaches have been incorporated into

geometric approaches. A algorithmic structure of such

combinations is to estimate a coarse depth map, then esti-

mating illumination and albedo from the coarse depth map,

followed by an optimization including but not limited to

depth, shading and smoothness constraints [26, 31, 33, 34].

Estimating global spherical harmonics coefficients usually

fails in local areas where cast shadows or specularities

dominate the intensity. To alleviate this problem, Han et

al. [11] split illumination into a global and a local part, Or-

El et al. [24] handled local illumination based on first-order

spherical harmonics, and Maier et al. [21] proposed spa-

tially varying spherical harmonics.

Beside intensity maps captured in the visible spectrum,

setups that, capture infrared (IR) images for shading cues

have also been explored [6, 12]. To address dynamic scenes,

Wu et al. [30, 32] proposed approaches that are suitable for

refining RGB-D streams. Furthermore, volumetric signed

distance functions have been used to encode geometry in-

formation [5, 21, 37].

Incorporating photometric cues into multi-view shape

recovery is also an active research problem. Gallardo et

al. [10] used shading cues in non-rigid structure-from-

motion, and Maurer et al. [22] optimized over shape con-

taining both geometry and photometric constraints.

Flash Photography Different aspects of images taken

with a flash have been explored to aid with various computer

vision tasks. Due to light intensity falloff, objects close to

the flashlight have a stronger change in appearance than dis-

tant objects, when comparing a flash and a no-flash image.

This has been used in image matting [28], foreground ex-

traction [27], and saliency detection [13]. Under low-light

conditions, a flash image captures high-frequency details

but changes the overall appearance of the scene, while the

no-flash image captures the overall environmental ambiance

but is noisy. This complementary property has been used in
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Figure 2: Pipeline of our approach. Coarse shape and the normal map are first acquired from the stereo pair. The flash/no-

flash pair is then used to optimize a fine normal map, given the coarse normal map as initialization. Fine shape is obtained by

fusing the fine normal map and the coarse shape. An albedo map can also be computed with the fine normal map from our

image formation model.

photography enhancement under dark illumination [8], de-

noising, detail transfer, or white balancing [25].

Further, photometric cues introduced by a flashlight are

useful in stereo matching. Feris et al. [9] demonstrated that

the shadows cast by a flashlight along depth discontinu-

ities help detecting half-occlusion points in stereo matching.

Zhou et al. [36] showed the ratio of a flash/no-flash pair can

make stereo matching robust against depth discontinuities.

In addition, flash images are used in spatially varying

BRDF (SVBRDF) recovery. A single image captured from

a flash-enabled camera, or a flash/no-flash pair [2] is used

for SVBRDF and shape recovery of near-planar objects [1,

7, 19] or those with complex geometry [20].

Our work differs from the previous works in that we ex-

plicitly parameterize the image lit by a flashlight, and use

the flash/no-flash image pair to derive an albedo-free image

formation model for geometry refinement.

3. Image Formation Model

Figure 2 illustrates the general pipeline of our method

for shape and albedo recovery. First we obtain coarse shape

from the stereo pair by stereo matching [14], then we use

the flash/no-flash pair to optimize the coarse shape to obtain

high-quality shape and albedo. The coarse-to-fine shape re-

covery is possible due to our image formation model de-

rived from the flash/no-flash pair. In this section, we derive

our image formation model. In the next section we then de-

scribe how we optimize the fine normal map and how we

make it robust against cast shadows.

For an image of a surface with Lambertian reflectance,

the observed intensity m ∈ R at a pixel can be modeled as

a shading function s : S2 → R scaled by an albedo ρ ∈ R:

m = ρ s(n). (1)

The shading function s is applied to the surface normal

n ∈ S2 ⊂ R
3 and depends on the environmental lighting.

Now consider a flash/no-flash image pair which both fol-

low Eq. (1). We assume that the flash/no-flash image pair

is taken from the same viewpoint, the scene is static, and

the environmental lighting stays the same. The pixel at the

same location in the flash/no-flash pair then records the in-

tensity of the same surface patch, which we denote as mf

and mnf , respectively. The observed intensity difference

mf − mnf is caused by the additional shading sfo(n) in-

troduced by the flashlight only, which is also scaled by the

albedo ρ. We thus have two equations:

{

mnf = ρsnf(n)

mf −mnf = ρsfo(n),
(2)

Dividing the two equations yields:

mnf

mf −mnf
=

snf(n)

sfo(n)
. (3)
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(a) No-flash (b) Ratio (c) Closeup

Figure 3: Computing the ratio image according to Eq. (3)

cancels the flash/no-flash image pair’s albedo variation but

the shading variation remains, as shown in the closeup.

Note that the division cancels the albedo out, which means

we do not have to put any assumption on ρ, e.g., uniformity.

This results in an albedo-free image formation model which

describes only the relation between shading and observed

intensity. The effect of this albedo canceling is illustrated

in Fig. 3. The cushion in Fig. 3(a) has clear stripes with a

different albedo than the rest of the cushion, the intensity

variation is therefore caused by a joint effect of albedo and

shading variation. By taking the ratio of the flash/no-flash

pair, our image formation model cancels the albedo varia-

tion as shown in Fig. 3(b). In the following, we call Eq. (3)

the ratio image of a flash/no-flash image pair.

Shading model We now discuss how we model the two

shading functions snf(n) and sfo(n). According to Lam-

bert’s law, at a surface patch with normal n, the reflected

light caused by one ray of light in a direction l ∈ S2 ⊂ R
3

with intensity e : S2 → R is given by:

s(n) = e(l)max(n⊤l, 0), (4)

If light rays reach the surface patch from multiple direc-

tions, the reflected light becomes the integral over all possi-

ble incident directions:

s(n) =

∫

S2

e(l)max(n⊤l, 0) dl, (5)

As studied by Basri and Jacobs [4], a Lambertian surface

acts as a low-pass filter and the shading can be approxi-

mated by a low-dimensional model, like spherical harmon-

ics [4] or quadric functions [17]. We use second-order

spherical harmonics to parameterize the shading function

under no-flash conditions. While spherical harmonics are

basis functions defined on S2, they can be denoted in Carte-

sian coordinates. Denote n = [n1, n2, n3]
⊤, second-order

spherical harmonics can be stacked into a vector h(n) as:

h(n) = [1, n1, n2, n3, n1n2, n1n3, n2n3, n
2
1−n2

2, 3n
2
3−1]⊤.

The shading under no-flash illumination snf(n) is then a

linear combination of these spherical harmonics. Stacking

the 9 coefficients into a vector lnf ∈ R
9 yields:

snf(n) = h(n)⊤lnf . (6)

Note that l and lnf differ; l is a light ray direction and lnf is

a stack of linear combination coefficients.

For the flashlight, we assume it is a point light at infinity,

its direction is aligned with the camera’s principal axis and

it points towards the camera, i.e. the flashlight direction is

[0, 0,−1]⊤. Further, we denote the flashlight intensity as

ef . As the flashlight is the only light source bringing the

shading sfo(n), Eq. (4) can be applied and it reads:

sfo(n)= ef max([n1, n2, n3][0, 0,−1]⊤, 0)= −efn3. (7)

For simplicity, we drop the max(·, 0) term as the surface

normal would in general point towards the camera if the

surface patch is visible to the camera. Exceptions occur

only when the normal is nearly perpendicular to the ray of

light under perspective projection.

Substituting Eqs. (6) and (7) into Eq. (3) yields:

h(n)⊤l′

−n3
=

mnf

mf −mnf
, (8)

where l′ = lnf/ef is the spherical harmonics coefficient

vector scaled by flashlight intensity, and we call l′ global

lighting vector. This image formation model now explicitly

relates surface normal, lighting and observed intensity.

4. Shape and Albedo Recovery

In this section, we detail our shape and albedo recov-

ery given a flash/no-flash pair and coarse shape from semi-

global stereo matching [14]. For now, we assume the global

lighting vector l′ in Eq. (8) and the coarse normal map is

available, and there are no cast shadows in the scene. We

will describe how to obtain these later in this section.

We formulate the surface normal recovery as per-pixel

energy function optimization with a shading constraint, a

surface normal constraint, and a unit-length constraint:

min
n

Es(n) + λ1En(n) + λ2Eu(n), (9)

where λ1 and λ2 are two weighting factors. The shading

constraint minimizes the squared difference between the ra-

tio image and the estimated ratio image in Eq. (8):

Es(n) =

(

h(n)⊤l′ + n3
mnf

mf −mnf

)2

. (10)

Both sides in Eq. (8) are multiplied by n3 to avoid possible

numerical issues.

With the surface normal constraint we enforce the re-

fined surface normal to be close to the coarse surface normal

n(0), i.e., the dot-product should be close to 1:

En(n) = (1− n⊤n(0))2. (11)
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Finally, we enforce unit length of the surface normal vector:

Eu(n) = (1− n⊤n)2. (12)

Due to the non-linearity of the spherical harmonics image

formation model, this optimization becomes a non-linear

least squares problem which we solve with BFGS.

After the normal map is optimized, we fuse it with the

coarse shape following Nehab’s approach [23]. The albedo

map can be computed, according to Eq. (2), up to a global

scale ef as:

ρ =
mnf

h(n)⊤lnf
=

efmnf

h(n)⊤l′
. (13)

We now detail how we obtain the coarse normal map, com-

pute the global lighting vector, and handle cast shadows.

Obtaining coarse surface normals We compute the nor-

mal map using the PlanePCA method [15]. Given camera

intrinsics, all pixels with valid values in a depth map are

projected to camera coordinates. For each point, its nearest

neighbor points are searched, and the surface normal for the

point is found by fitting a plane to its neighbor points. For-

mally, given a set of points P = {p1,p2, ...,pn}, pi ∈ R
3,

the coarse surface normal vector n
(0)
i at pi is found by min-

imizing the following objective:

n
(0)
i = argmin

n
(0)
i

∑

pj∈N (pi)

(pj − p̄i)
⊤n

(0)
i , (14)

where N (pi) is the set of pi’s neighborhood points, and p̄i

is the mean of all pj ∈ N (pi). We measure the nearness

of points by Euclidean distance and perform a ball query to

search for the neighborhood points of pi:

N (pi) = {pj |
∥

∥pj − pi

∥

∥

2
< r, ∀pj ∈ P}, (15)

where r is an empirically chosen ball search radius. Note

that pi is included in its neighborhood set and differ-

ent points may have a different number of neighbors.

PlanePCA robustly estimates a coarse, smooth normal map,

expressing low-frequency shape which is used in the fol-

lowing lighting estimation step.

Computing the global lighting vector Here, our goal is

to estimate the low-dimensional global lighting vector l′ in

Eq. (8), given two observations and a coarse normal map.

Note that solving lnf and ef separately is unnecessary for

shape recovery; unknown ef barely scales the recovered

albedo map. Suppose there are p pixels in the region of in-

terest, for each pixel we stack the row vector h(n)⊤/(−n3)
vertically into a matrix N ∈ R

p×9 and stack all observed

mnf/(mf − mnf) into a vector m ∈ R
p, yielding an over-

determined system

Nl′ = m. (16)

(a) Ratio img. (b) No-flash img. (c) Flash-only img.

Figure 4: Relation between ratio image and cast shadows.

Bright and dark ratio image regions correspond to cast shad-

ows caused by the environmental lighting and the flashlight,

respectively.

Although the coarse normal map only expresses low-

frequency shape, we demonstrate in the supplementary ma-

terial that the estimated lighting is still as accurate as if it is

estimated from a ground truth normal map.

Handling cast shadows The image formation model

based on spherical harmonics described by Eq. (4) handles

attached shadows but is unable to model cast shadows [4].

Our image formation model thus breaks down in regions

dominated by cast shadows and the optimization in Eq. (9)

would produce artifacts. To tackle this we introduce a confi-

dence term ω into the energy function’s shading constraint:

min
n

ωEs(n) + λ1En(n) + λ2Eu(n), (17)

where ω denotes the confidence of the image formation

model at a pixel. We define it as:

ω = exp
(

−
(r − µ)2

2σ2

)

, (18)

where r is the ratio between the flash and the no-flash inten-

sity, and µ and σ are the mean and the standard deviation of

the ratio in the region of interest. This definition is based on

the observation that cast shadows strongly increase the ratio

r and make it deviate far from the mean ratio.

This phenomenon is shown in Fig. 4. The no-flash im-

age Fig. 4(a), exhibits shadows from environmental light

which correspond to bright regions (i.e., high ratios) in

the ratio image Fig. 4(b). Contrarily, the flash-only im-

age Fig. 4(c), i.e., flash minus no-flash image, exhibits shad-

ows from the flashlight only, which correspond to dark re-

gions (i.e., low ratios) in the ratio image. Shadows from

the flashlight in the flash-only image only occur if the flash-

light’s light direction and the camera’s principal axis are not

perfectly aligned.

The above two observations lead to the design of ω
in Eq. (18). For pixels where the ratio deviates too much
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Flash Initial Estimated GT Initial Estimated GT Initial Estimated GT

No-flash 11.20 7.07 0.0039 0.0037 0.021 0.015
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Figure 5: Shape and albedo recovery results on synthetic data. The first column shows the rendered flash/no-flash pair. The

even rows display the error map. The numbers above error maps are MAngE of normal map, and MAbsE of shape as well as

albedo map. Our method recovers high-frequency shape details.

from the mean ratio, our image formation model cannot re-

liably explain the observations and we trust the coarse sur-

face normal from the stereo pair more.

5. Experiments

In this section we show experiments on both synthetic

and real-world data to evaluate our method.

5.1. Synthetic Data

Experimental setup To quantitatively evaluate the shape

and albedo recovery accuracy, we rendered synthetic data

with the physically based renderer Mitsuba.2 Two publicly

available 3D objects, Stanford BUNNY and a STATUE,3 are

rendered under orthographic projection. Regarding the no-

flash image, we put the objects under three different en-

2Mitsuba Renderer
3“The Getty Caligula” by CosmoWenman / CC BY 4.0

vironment maps: PISA, DOGE and GLACIER.4 We then

simulated the flashlight by putting an additional directional

light source in the same scene. We assumed there to be no

inter-reflection. In addition, we obtained the scenes’ ground

truth shape, depth maps, and normal maps. To simulate

the coarse shape and normal map, we quantized the ground

truth depth map with 128 levels and applied PlanePCA with

a ball query radius of 0.07 to obtain coarse normal maps.

The ground truth albedo was set as a texture image, and the

initial albedo was obtained according to Eq. (13) using the

coarse normal map. Note that this initial albedo map only

serves as a comparison.

Results Figure 5 shows shape and albedo recovery results

along with their coarse initializations and ground truth, un-

der the lighting condition PISA. We use mean angular error

4High-Resolution Light Probe Image Gallery

3435



Table 1: Qualitative comparison of recovered shape be-

tween different methods. We report the MAbsE of two ob-

jects under three lighting condition. w/ conf. means using

Eq. (17) for optimization.

Env. map Method BUNNY STATUE

PISA

Han et al. [11] 3.56e-3 3.59e-3

Yan et al. [33] 4.02 1.26

Ours 3.43e-3 2.42e-3

Ours (w/ conf.) 3.39e-3 2.48e-3

DOGE

Han et al. [11] 3.66e-3 3.68e-3

Yan et al. [33] 4.02 1.26

Ours 3.54e-3 3.09e-3

Ours (w/ conf.) 3.44e-3 2.98e-3

GLACIER

Han et al. [11] 3.65e-3 3.64e-3

Yan et al. [33] 4.02 1.26

Ours 3.45e-3 3.69e-3

Ours (w/ conf.) 3.41e-3 3.64e-3

(MAngE) and mean absolute error (MAbsE), respectively,

to evaluate normal maps and shape as well as albedo maps.

While the coarse normal map contains only low-frequency

content, our optimization based on our albedo-free image

formation model recovers high-frequency shape details and

exhibits a lower error than the initializations. The recov-

ered fine-grained details are also reflected in the shape after

the depth-normal fusion. Further, compared with the coarse

albedo, errors in the final albedo are decreased thanks to

the recovered high-fidelity shape. As the optimization over

the normal map is non-convex, error the optimized normals

can get stuck in non-global minima when the initial normal

deviates too much from the ground truth.

We compare our method with Han et al.’s [11] and Yan et

al.’s [33] and report MAbsE of two objects in Table 1. The

albedo maps are uniform for all objects for a fair compari-

son, as our method uses the ratio of a flash/no-flash pair to

eliminate the effect of albedo variations while the other two

methods assume a uniform albedo. Our method performs

best among all comparison methods. Further, our method’s

results are generally improved using the confidence term in

the energy function, which verifies the effectiveness of our

strategy for handling cast shadows.

5.2. Realworld Data

In this section, we show qualitative results of real-world

data from our imaging setup.

Experimental setup Figure 6 shows our imaging setup.

We used two FLIR machine vision cameras, which have

linear radiometric response and a 12-bit ADC, accompa-

nied with two 8.5mm-lens. The baseline between the

Stereo 

Camera

Flashlight

~0.5m

Target

Figure 6: Stereo imaging setup and capture environment.

two cameras was roughly 70mm and the focal length was

2500 pixels. As flashlight we used the flash of a smartphone

mounted above the left camera.

We used the PySpin SDK to control both cameras. When

capturing flash/no-flash pairs, we kept the exposure time

identical and turned off all non-linear image processing like

gamma correction to ensure linear images. Each image was

taken 5 times and averaged to suppress imaging noise.

We obtained coarse depth maps with OpenCV’s semi-

global matching [14], applied median filtering to remove

outliers, and closed small holes by solving a Laplacian

equation with Dirichlet boundary conditions. Missing val-

ues close to depth boundaries were not considered. We

then project the depth map to camera coordinate, and ap-

plied PlanePCA with a ball search radius of 5mm to ob-

tain coarse normal maps. The weighting factors λ1 and λ2

in Eq. (9) were both set to 0.1 for all objects.

Results Figures 1, 2, and 7 show qualitative results of

shape and albedo recovery on real data. While the objects

have a complex albedo, our approach successfully recov-

ered high-quality details in the normal maps based on our

image formation model with one single lighting. Benefiting

from the high-quality normal map, we recovered the high-

frequency details that were missing in the coarse shape.

Further, the albedo map looks reasonable despite the sur-

face’s shading variation.

Figure 8 shows a comparison of surface normal recov-

ery results with and without the confidence ω of Eq. (17).

While all image formation models based on spherical har-

monics would fail at regions dominated by cast shadows,

our confidence term ω largely reduces artifacts in the recov-

ered normal map.

Figure 9 shows a qualitative comparison of shape recov-

ery results between Han et al. [11], Yan et al. [33], and our

approach. For a fair comparison, all three started with the

same initial normal map and shape as our approach. From

Fig. 9 we can see that our approach successfully recover

high-frequency details with fewer outliers. Our usage of a

flash/no-flash pair avoids texture-copy artifacts, which ex-

ists in Yan’s method. As the two methods adopt a single

no-flash image for shape recovery, the comparison verifies
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(a) (b) (c) (d) (e) (f)

Figure 7: Shape and albedo recovery on real-world data. From left to right: (a) left camera’s no-flash image, (b) coarse

normal map obtained by applying PlanePCA on the coarse shape, (c) fine normal map obtained through our surface normal

optimization, (d) coarse shape from stereo matching, (e) fine shape fused from fine surface normal and coarse shape, and

(f) recovered albedo map.

(a) No-flash (b) w/o confidence (c) w/ confidence

Figure 8: Comparison of normal map recovery without and

with the confidence term ω in Eq. (17). The use of ω reduces

artifacts in the surface normal vectors, as shown in (c).

the effectiveness of our use of flash/no-flash pairs.

6. Conclusion

We presented a simple imaging setup for effective shape

and albedo recovery by a stereo camera and a flash. We

demonstrated that this setup can benefit from the strengths

of both geometric and photometric approaches while stick-

ing to the minimal setup. Fine shape details and the albedo

map can be recovered based on our image formation model

derived from the flash/no-flash pair. Comparison experi-

ments with methods using single no-flash image verified

the effectiveness of our usage of flash/no-flash pairs. One

limitation of our approach is that albedo recovery may fail

in shadowed region. Future works include improving the

Han et al. [11] Yan et al. [33] Ours

Figure 9: Shape recovery comparison on real-world data

among Han et al. [11], Yan et al. [33], and our approach.

The second row shows side views.

albedo recovery and adapting the setup for dynamic scene

capture and recovery.
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