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Abstract

Facial landmark detection is a fundamental task for

many consumer and high-end applications and is almost

entirely solved by machine learning methods today. Ex-

isting datasets used to train such algorithms are primarily

made up of only low resolution images, and current algo-

rithms are limited to inputs of comparable quality and res-

olution as the training dataset. On the other hand, high

resolution imagery is becoming increasingly more common

as consumer cameras improve in quality every year. There-

fore, there is need for algorithms that can leverage the rich

information available in high resolution imagery. Naı̈vely

attempting to reuse existing network architectures on high

resolution imagery is prohibitive due to memory bottlenecks

on GPUs. The only current solution is to downsample the

images, sacrificing resolution and quality. Building on top

of recent progress in attention-based networks, we present a

novel, fully convolutional regional architecture that is spe-

cially designed for predicting landmarks on very high res-

olution facial images without downsampling. We demon-

strate the flexibility of our architecture by training the pro-

posed model with images of resolutions ranging from 256

x 256 to 4K. In addition to being the first method for fa-

cial landmark detection on high resolution images, our

approach achieves superior performance over traditional

(holistic) state-of-the-art architectures across ALL resolu-

tions, leading to a general-purpose, extremely flexible, high

quality landmark detector.

1. Introduction

Landmark detection is one of the classical machine

learning tasks in computer vision, nowadays almost en-

tirely solved via deep neural networks. While these net-

work based detectors provide robust detections, their accu-

racy directly depends on the image resolution they operate

on. While even low-end cameras can capture high resolu-

tion imagery nowadays, concurrent GPUs are restricted to

operate on low resolution imagery due to limited memory.

As a consequence, deep learning algorithms are forced to

predict landmarks on imagery that may be several orders of

magnitude lower in resolution than what would be available,

which naturally amplifies prediction inaccuracies.

When observing how human annotators label images,

one might realize that they do so at multiple scales. In

the context of facial landmarks, they typically annotate the

coarse features, such as for example the jawline, at a low

resolution where they have the full context of the face but

then zoom into specific areas, such as an eye region, to an-

notate more accurately. Inspired by this behaviour we pro-

pose an end-to-end attention-driven architecture that allows

to train deep networks on higher resolution images by au-

tomatically defining and focusing on regions of interest in-

stead of considering the face holistically. These regions are

identified on a low resolution image proxy and extracted

from the original high resolution image. They are then

scaled to an appropriate size for the network, which has the

benefit of aligning the regions to a canonical crop. The sec-

ond stage then localizes the landmarks in this frontalized

zoom-in, which further reduces variability and increases ro-

bustness and accuracy.

Using our novel attention-driven architecture we man-

age to predict landmarks at resolutions up to 4K on a single

GPU, showing significant improvements in prediction ac-

curacy over existing methods which are forced to operate

on downsampled imagery. We further demonstrate that the

proposed concept applies to a variety of recent network ar-

chitectures, improving performance for all of them.

Despite the fact that our approach targets high resolu-

tion imagery, when applied to traditional lower resolution

facial images in-the-wild our method also outperform cur-

rent state-of-the-art architectures in most cases. Therefore,

our proposed method is a general-purpose facial landmark

detector with high quality across image scales from low res-
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olution to 4K.

2. Related Work

Before the advent of deep learning, several methods

based on cascaded regression [5, 44, 41, 23] were proposed

to solve the problem of facial landmark detection. Such

methods start with an initial guess of landmarks and refine

them using a cascade of machine learning models. In recent

years however, deep learning methods have significantly ad-

vanced the state of the art in facial landmark detection. For

a concise summary, we differentiate and describe the con-

tribution of these methods based on their architecture and

their approach to the problem.

In terms of network architecture, existing work can be

broadly classified into three categories viz. i) networks that

contain a combination of convolutional and fully connected

or ‘dense’ layers ii) fully convolutional networks, and iii)

recurrent networks. The former consist of architectures

that take an image as input and learn convolutional filters

that extract low level and semantic features, which are then

flattened and passed onto one or more full connected lay-

ers [53, 8, 25, 56, 20, 3, 21, 27, 51, 50, 45, 32, 37, 12, 28, 13,

52, 55, 29]. On the other hand, fully convolutional architec-

tures [39, 26, 30, 4, 46, 47, 42, 35, 38, 9, 54, 36, 10] predict

the positions of facial landmarks as heatmaps that encode

the probability of a landmark being present at a particular

pixel. These architectures have a few advantages, namely

(i) translation invariance, (ii) images of different sizes can

be used at training and test times, (iii) they provide a guar-

antee that the predicted landmarks always lie within the do-

main of the image, and (iv) the representation of landmarks

as a heatmap makes the prediction of such networks hu-

man interpretable. The final category is recurrent network

approaches [40, 1], which are designed to operate on a tem-

poral sequence of images by adding recurrent layers.

Based on their approach towards solving facial landmark

detection, the above-mentioned methods can also be classi-

fied broadly into i) model based fitting methods, ii) multi-

task learning, and iii) cascaded or regional models. Model

based methods [56, 20, 3, 21, 27] assume an underlying

low resolution 3D face model that is parametrically fit to

facial images using learned features. Multi-task methods

[51, 50, 45, 32, 52] follow the principle of ‘auxiliary learn-

ing’ to jointly infer multiple attributes of the given facial

image, such as the person’s age, gender etc, in addition to

facial landmarks. Region based methods [37, 12, 28, 55]

consist of a series of architectures that independently ana-

lyze different regions of the face.

Existing facial landmark detectors work well on low res-

olution imagery. However, when a high resolution image is

available at test time, existing algorithms cannot make use

of the extra detail present due to several reasons. First, ar-

chitectures with fully connected layers (including all of the

existing region based approaches [37, 12, 28]) can be used

only with images of the same size with which they have

been trained. This would require the high resolution im-

age to be downsampled to a size compatible with the archi-

tecture. Additionally, during their forward pass, networks

build large intermediate feature representations before pre-

dicting the output, which can prove extremely challenging

for training at high resolution. In practice, even resolutions

of 512 x 512 have proven difficult to fit on a single GPU.

2.1. Contributions

In this work, building on top of recent advances in deep

learning [17, 4, 19], we propose an organic evolution to

region-based facial landmark detectors and propose an end-

to-end differentiable, fully convolutional, region based fa-

cial landmark detector.

• We combine attention driven cropping, introduced by

[17] with a differentiable soft-argmax [19] operation to

enable the first fully convolutional region based facial

landmark detector.

• To the best of our knowledge, our method is the first

to demonstrate the ability to both train with and infer

facial landmarks on images of resolution up to 4096

x 4096 on a single Nvidia 1080Ti GPU. We show the

superiority of our method across multiple resolutions

ranging from 256x256, up to 4096x4096 over the naı̈ve

upsampling of low resolution landmarks detected with

previous state of the art methods.

• Although specifically designed for high resolution im-

agery, our method generalizes extremely well to un-

constrained, in-the-wild settings and often outperforms

low resolution state-of-the-art methods (Section 4).

2.2. Available Datasets

300-W [33], 300-VW[34], 300-W-LP [56] are popular

datasets for training facial landmark detectors. Similar, but

more recent, and larger datasets include [48, 49, 4]. These

datasets contain annotations for 68 facial landmarks. While

[33, 48] are datasets with only 2D annotations, [56, 34, 4]

contain both 2D and 3D annotations. All methods described

in Section 2 use one or more of these datasets to train and

fine tune their models. Existing datasets consist of low reso-

lution imagery captured in an unconstrained setting as they

were intended to be used for “in-the-wild” applications. In

contrast, our objective is to train a landmark detector that

can make use of the detail present in high resolution facial

imagery to precisely localize landmarks. Consequently, we

cannot use any of the existing datasets for training. We cre-

ate a new high quality facial landmark dataset for training

and testing our high resolution performance (described in

Section 3.3). However, to show the additional benefits of

our approach to in-the-wild imagery, we also show experi-

ments on the 300-W [33] and 300-VW [34] datasets.
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Figure 1. Schematic overview of our attention-driven architecture for facial landmark detection. High resolution input images are down-

sampled to a low resolution proxy on which a global hourglass network detects low resolution landmarks. Crop regions are automatically

determined and the RoIs are re-scaled to the original resolution, where regional hourglass networks detect high resolution landmarks.

3. Methodology

In this section, we present our new architecture for high

resolution facial landmark detection, which is depicted in

Fig. 1. Inspired by how humans manually annotate land-

marks on high resolution images, our model analyzes dif-

ferent regions of the face in isolation, through an attention-

driven cropping mechanism. Given an initial high resolu-

tion image as the input, a global hourglass network [30]

analyzes a corresponding low-resolution proxy of the input

image and produces coarse heatmaps of facial landmarks.

On these heatmaps, we perform a differentible softargmax

operation to extract initial estimates of landmark coordi-

nates. These low resolution landmark coordinates are used

to identify regions of interest (ROIs) that correspond to dis-

tinct anatomical regions of the face. For each region, a high

resolution crop is extracted from the original high resolu-

tion input image, and is further analyzed by a region specific

hourglass network that predicts landmarks on the crop. The

landmarks predicted on the regional crops are restored back

to the original image using the ROI information from the

global hourglass. Landmarks predicted by both the global

and the multiple regional models are supervised with low

and high resolution ground truth data, respectively. The

proposed architecture is fully differentiable and fully con-

volutional and can therefore be trained end to end.

3.1. Network Architecture

The input high resolution image is initially downsam-

pled by average pooling to a fixed resolution of 256x256

pixels. The downsampled image is passed through an hour-

glass network [30] - an architectural choice that is analyzed

in Section 4.5 - that outputs heatmaps of the landmark loca-

tions at the same scale as the low resolution image. Since

the first hourglass predicts landmarks for all regions of the

face, we refer to it as the global hourglass. The global hour-

glass outputs one heatmap for each landmark. Work such

as [42, 30, 6, 4], and many others, generate ground truth

heatmaps from the training data, from which landmarks are

extracted at test time using an argmax operation. Ground

truth heatmaps for such methods are generated by applying

a spatial gaussian filter on the position of the landmarks.

The standard deviation of this gaussian filter σ is manu-

ally specified and all landmarks of the face are blurred us-

ing the same σ. However, certain landmarks in the training

set are localized with higher anisotropic uncertainty due to

the underlying feature. In the case of facial landmarks, for

example, landmarks like the corners of the eyes and lips

are easier to unambiguously identify and therefore to anno-

tate than say the eyelid, where landmarks will have better

localization across the edge and higher uncertainty along

the edge. Training networks with heatmaps created from

isotropic Gaussian kernels is enforcing the assumption that

localization of all landmarks is equally (un)certain. Unlike

previous methods in facial landmark detection, we choose

to represent the output of our convolutional networks as la-

tent heatmaps without ground truth supervision. This pro-

vides the hourglass network with the flexibility to be more

confident about certain landmarks than others and to rep-

resent them using anisotropic non-gaussian distributions.

Furthermore, we also observe similar improvements in ac-

curacy as reported by Iqbal et.al [19] when using the soft-

argmax over naive heatmap regression. The latent heatmap

output by the global hourglass is passed through a channel-
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wise spatial softmax to ensure that each channel is a proba-

bility distribution over the landmark’s position in the image.

Then, we perform a soft-argmax [19] operation on the land-

mark heatmaps to extract landmark positions as a batch size

x number of landmarks x 2 vector. Since the soft-argmax

operation boils down to a weighted average, it is fully differ-

entiable unlike the argmax. Extracting landmark positions

this way enables us to train the global hourglass using only

the ground truth landmark positions without having to cre-

ate ground truth heatmaps, while at the same time ensuring

that the landmark positions are represented inside the net-

work as a heatmap, and therefore keeping the network fully

convolutional.

3.2. Attention­Driven Cropping

In the second stage of our architecture, we use the land-

mark estimates from the global hourglass to extract regions

of interest (RoI) from the original high resolution image.

These regions of interest are then individually processed in

parallel by a set of region specific hourglass models to refine

the position of these landmarks. We refer to these hourglass

models that operate on a pre-defined region of the face as

regional hourglasses. In this work we train four regional

hourglass models, which predict landmarks for the left eye,

the right eye, the nose and the mouth regions (please refer

to Fig. 2). This approach can be extended to as many ROIs

as one would like, but we restrict ourselves to these four re-

gions for the following reason. Outside of these regions, the

landmarks that we are interested in belong to the chin, the

cheek and the forehead. These regions are typically devoid

of salient features, and analyzing these regions locally can

in fact be counter-productive due to ambiguities. Such re-

gions are thus better left analyzed globally, at a higher scale

by the global hourglass.

For each region of the face, exactly one bounding box

is computed using the result of the softargmax. Unlike

methods like [15, 14, 17], that generate multiple bounding

boxes candidates for each RoI proposal in an ’in the wild’

setting, under the assumption that an input image contains

only one face, generating a single bounding box per region

is reasonable. Each bounding box is represented by 4 co-

ordinates corresponding to its top-left and bottom-right cor-

ners. Since these bounding box co-ordinates are extracted

from the latent heatmap, they are guaranteed to lie within

the domain of the downsampled image. Noise from a nor-

mal distribution is added to the width and height of the each

bounding box independently to make the regional models

robust enough to the location of the region inside the bound-

ing box. The noisy bounding boxes are then up-scaled to

map them to domain of the original high resolution image.

Using the RoIAlign operation introduced by [17], we ex-

tract crops from the high resolution image in a differentiable

manner. The high resolution crops are resized to a fixed

Resolution (pixels) Crop Size (pixels) Batch Size

256 x 256 128 x 128 8

512 x 512 128 x 128 8

1024 x 1024 256 x 256 4

2048 x 2048 192 x 192 ∗ 4

4096 x 4096 256 x 256 ∗∗ 4

Table 1. Crop sizes used for different image resolutions. ∗ Until a

resolution of 2K, we can continue to use the basic hourglass build-

ing block. This means that the resolution of the crop increases up

to 256 for a 1K input, however this no longer fits onto the GPU

when we reach inputs of 2K. Therefore, the size of the crop re-

duces to 192x192. ∗∗ For resolutions of 4K, we used the ‘light’

hourglass variant (Section 3.4), re-enabling crops of higher sizes

and as a result, we could use 256x256 crops at 4K.

Figure 2. (Left) Our high resolution training data consists of 89

manually-annotated facial landmarks, of which 78 fall within the

four attention regions we defined. (Right) 4 attention regions de-

fined on the 300-W dataset corresponding to the two eyes, the nose

and the mouth.

size depending on the original resolution of the image. The

sizes that we used for the regional crops for different res-

olutions are shown in table Table 1. The crop sizes were

determined based on the original resolution of the image

and to maintain a healthy batch size during training. Other

crop sizes could also be readily used. The relative scale fac-

tors between the noisy high resolution bounding boxes and

the resized crop are computed and stored for later restoring

the predicted landmarks back to their original resolution.

The resized crops are then passed on to the corresponding

regional hourglass. Each regional hourglass predicts a la-

tent heatmap of landmark positions similar to the global

hourglass. Landmarks defined in the domain of the resized

crops are extracted from these regional heatmaps using the

softargmax operation as before. These regional landmarks

are restored back to the original resolution of the image us-

ing the corresponding scale factors computed from before.

The rescaled landmarks are then un-cropped using the noisy

bounding box co-ordinates to obtain landmarks defined on

the high resolution image.

Our entire architecture is shown in Fig. 1. Since all op-

erations defined in our architecture are differentiable, the

global hourglass and the multiple regional hourglasses can

be trained together in an end to end fashion. The final out-

put of our network is a complete set of facial landmark lo-

cations for a high resolution image, for which a subset of
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landmarks (eyes, nose, and mouth) contain high precision

locations thanks to our regional refinement modules.

3.3. Training Data

One of the main contributions of our method is that it en-

ables the training of networks with high resolution imagery

and sidestep GPU memory bottlenecks via attention-driven

cropping. To verify the benefits of our architecture, we re-

quire a high resolution dataset of faces with ground truth

landmarks. Existing datasets (described in Section 2.2) con-

tain a large number of images in a ’in the wild’ setting with

2D annotations but are not of sufficient resolution. To our

knowledge, there does not exist an openly available dataset

of high resolution facial imagery and landmarks. Therefore

we resorted to capturing subjects in a controlled studio set-

ting using the method of [2]. We captured 47 subjects in 4K

resolution from 8 cameras performing 24 different facial ex-

pressions, and manually annotated 89 facial landmarks on

these images. The full set of these 89 landmarks is shown

in Fig. 2. Out of the 47 subjects, we randomly sample 24

subjects for training and used the remaining 23 subjects for

evaluation. In summary, our training set consisted of a total

of 4608 images and our test set consisted of 4416 images.

To perform experiments at resolutions of 256 x 256, 512

x 512, 1024 x 1024, 2048 x 2048, and 4096 x 4096, both

the training and test sets were appropriately scaled. As seen

in Fig. 2, crops are considered only for the regions of the

eyes, nose, and the mouth. In our high resolution dataset,

out of the 89 annotated landmarks, only 78 fall inside the re-

gional crops. As a result, the global hourglass predicts all 89

landmarks and the regional hourglasses predict a total of 78

landmarks. For 300W, and 300VW, 51 of the 68 landmarks

fall under our attention regions. Therefore, while training

with 300W and 300VW, our global hourglass would predict

68 landmarks, and the regional hourglasses would predict a

total of 51 landmarks.

3.4. Implementation Details

We train the network shown in Fig. 1 by supervising both

low and high resolution landmark predictions. The network

is trained to minimize the sum of the L2 losses at both res-

olutions. This additive loss is shown in Eq. 1 where pgn and

prn correspond to the nth landmark predicted by the global

and regional models respectively. gtlrn and gthrn correspond

to the nth low and high resolution ground truth respectively.

Ntotal and Natt correspond to the total, and attention re-

fined landmarks.

loss =
1

Ntotal

Ntotal∑

n=1

‖pgn−gtlrn ‖
2
+

1

Natt

Natt∑

n=1

‖prn−gthrn ‖2.

(1)

Though our network is fully convolutional, our use of the

soft-argmax enables training with more hand tuned losses

like the wingloss [13]. However, since we are interested in

analyzing improvement that is obtained by the use of our

architecture as opposed to the improvement obtained by us-

ing a different loss function, we resorted to using the simple

L2 loss in Eq. 1.

We begin by training our architecture at a resolution of

256 x 256. The weights of both the global and regional

hourglasses are initialized following [16]. Once training at

a resolution of 256 x 256 converges, we begin to train at the

next higher resolution of 512 x 512 using the weights from

256 x 256 as an initialization. This initialization is enabled

thanks to the fully convolutional nature of our architecture.

Likewise, weights are progressively initialized all the way

until 4096 x 4096 similar in principle to [22].

An important implementation detail to note is that even

with regional models operating on cropped portions of the

high resolution images, we did not manage to fit a 4K image

into a single GPU during training. Therefore, following re-

cent work on depthwise separable convolutions [18, 7], we

replaced all convolutions in a conventional hourglass net-

work [30] with depthwise separable convolutions. This re-

sulted in lowering the number of weights in the network by

a factor of 2 and enabled training with 4K images. We re-

fer to the version of the architecture present in Fig. 1 with

depthwise separable convolutions as the light variant of our

network. For resolutions of up to 2048 x 2048, this change

wasn’t necessary. The effect of introducing depthwise sepa-

rable convolutions as opposed to standard convolutions into

our architecture is analyzed in detail in Section 4.

For all experiments reported in this paper, we use a learn-

ing rate of 1e−4, and lowered it to 1e−5 after 30 epochs.

Models were trained with batch sizes mentioned in Table 1.

All models were trained until convergence using the ADAM

optimizer [24] on a single NVIDIA 1080Ti GPU. We used

pytorch [31] to implement our architecture.

4. Results and Discussion

4.1. Learning Latent Heatmaps

One of the ways in which our approach differs from ex-

isting methods in facial landmark detection is the repre-

sentation of landmarks with learned latent heatmaps. In

Fig. 3, we show the differences in the heatmaps produced

by the global and different regional models. For the pur-

pose of visualization, the heatmaps predicted by the global

model were upscaled using nearest neighbour interpolation

and shown alongside the heatmaps predicted by the regional

networks. As expected, the global heatmaps are of lower

quality but capture the overall structure of the person’s face,

and therefore result in expected crops. The final column of

Fig. 3 shows the precise high resolution heatmaps produced

by the regional models. Positions with strong activations

in both the global and regional heatmaps indicate the more
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salient landmarks on the face.
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Figure 3. Manually cropped global heatmaps, corresponding

attention-driven crops, and regional high quality heatmaps. Note

the precision of the high quality heatmaps, e.g. one can easily

distinguish between outer and inner lip landmarks.

4.2. Benefits of Attention­Driven Cropping

Training regional networks on local crops provides sev-

eral advantages. The first is that it encourages each regional

network to concentrate only on a specific region of the face

and therefore learn region-specific features that help in pre-

dicting landmarks with higher accuracy. Fig. 3 also shows

how the coarse global heatmaps of each region are refined

by the regional networks. As one would intuitively expect,

facial features that are harder to distinguish at lower resolu-

tions start to separate out in the regional heatmaps, resulting

in precise localization (Fig. 4). This is especially visible in

case of the mouth where the outer and inner lips are clearly

separated in the high resolution regional heatmap.

The second advantage is that since each regional model

is looking only at specific part of a face, the quality of

regional landmarks is independent of the appearance of

other regions. We expect that this property of our architec-

ture makes the quality of overall landmark prediction much

more robust to global changes in appearance.

Thirdly, our global-local architecture is designed to pro-

cess only meaningful regions of a high resolution input im-

age. Purposefully discarding irrelevant portions of a high

resolution image avoids the need for networks to be ex-

tremely deep or build huge feature representations that don’t

fit inside current GPUs. Concentrating only on RoIs enables

the regional hourglasses to leverage the high frequency de-

tail present in the captured imagery by only predicting land-

marks within a meaningful ROI. Our approach allows us

to perform deep landmark detection on high resolution im-

ages, without sacrificing batch size, while at the same time

avoiding unnecessary computations.

4.3. Evaluations on 300W and 300VW

Though our method was primarily designed for high res-

olution images, we evaluate our attention driven cropping

on the low resolution 300W and 300-VW datasets. For

Global Model Prediction Regional Model Refinements

Figure 4. Effect of regional refinement: Local corrections (green)

made by regional models to landmarks predicted by the global

model (gray) are shown. When provided with sufficient context,

regional models can produce both small and large corrections.

Method Common Challenging Full Set

MDM [40] 4.83 10.14 5.88

Two-StageGT [28] 4.36 7.42 4.96

RDR [43] 5.03 8.95 5.80

FHR [38] N/A N/A 3.8

SAN [9] 3.34 6.6 3.98

DSRN [29] 4.12 9.68 5.21

TS [10] 2.91 5.91 3.49

ODN [54] 3.56 6.67 4.17

Ours 2.83 7.04 4.23

Ours (51 Hi-res landmarks only) 2.41 5.68 3.50

Table 2. Performance on the 300W dataset. Despite being de-

signed for high resolution imagery, our method performs very well

also on low resolution in-the-wild images.

300W, we split the Helen, LFPW, AFW, and Ibug datasets

into training and test sets identical to previous methods

[9, 29, 38]. We train our model at a resolution of 256x256

pixels and crop sizes of 128x128 pixels, and define 4 re-

gions of interest (2) from which a total of 51 high resolution

landmarks are detected and the remaining 17 landmarks on

the jawline are predicted by the global hourglass. We re-

port the normalized mean error (NME) [4] metric on the

300-W test sets in Table 2. Even at 256x256 pixels, our

method establishes a new baseline on the common subset

and remains competitive to state-of-the-art on the challeng-

ing subset. Qualitative landmark predictions on the 300W

test set are shown in Fig. 5 Additionally, as we will see from

the experiments in Section 4.4, the benefits of our attention

driven cropping method become significantly larger as we

move to higher resolutions.

To validate our method on the 300-VW dataset, we re-

train another network identical to the one used for the 300W,

using 50 training videos from 300-VW. Table 3 compares

our method to existing state-of-the-art using the NME met-

ric on three different test categories. Our method again pro-

duces the best results on 2 out of 3 of the categories.

4.4. Evaluations at Higher Resolutions

We compare our attention-driven cropping architecture

with a random forest algorithm [23], a two stage hourglass

network [30] and a 4 stage hourglass network namely the

2D landmark detector referred to as FAN [4]. We used our

low resolution 256 dataset described in Section 3.3 to train

the random forest, the 2 and the 4 stage hourglass networks.

Since our architecture enables training with resolutions
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Method Category 1 Category 2 Category 3

SDM [44] 7.41 6.18 13.04

TSCN [35] 12.54 7.25 1.13

CFSS [55] 7.68 6.42 13.67

TCDCN [52] 7.66 6.77 14.98

TSTN [1] 5.36 4.51 12.84

DSRN [29] 5.33 4.92 8.85

FHR+STA [38] 4.40 4.16 5.96

Ours 4.17 3.89 7.28

Ours (51 high res landmarks only) 3.66 3.35 6.65

Table 3. Performance on the 300-VW dataset. Similar to Table 2,

our method also performs very well on the videos of 300-VW.

Prediction Ground Truth

Figure 5. Qualitative results showing attention refined regional

landmarks on a few samples from the 300-W test set.
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Figure 6. Percentage Correct Keypoints as function of the error in

pixels for our method compared to DLIB [23], hourglass [30] and

FAN [4] for different resolutions from 256 to 4K. We show that

both our regular and ‘light’ variants outperform previous methods.

At 4K, only the ‘light’ version is possible but still provides signif-

icant improvement. Refer to Table 4 for Normalized Mean Errors.

of up to 4096, we trained it with data of appropriate reso-

lution. We use the high quality test set described in Sec-

tion 3.3 consisting of 4416 images for evaluation. For the

sake of comparison, the predictions made by the random

forest, the 2 and the 4 stage hourglasses were up-scaled

Method 256 512 2048 4096

DLIB [23] 3.72 3.43 3.32 3.35

Hourglass (2 Stages) [30] 2.34 2.34 2.34 2.38

Hourglass (4 Stages) [4] 2.39 2.39 2.39 2.44

Ours (light) 2.34 2.08 1.97 1.95

Ours 2.26 1.95 1.94 -

Table 4. Normalized Mean Errors for our method compared to

DLIB [23], hourglass [30] and FAN [4] for different resolutions

from 256 to 4K. Refer to Fig. 6 for Percentage Correct Keypoints

visualization.

manually from 256 to the evaluation resolution.

To quantitatively compare landmark predictions, we use

the Percentage Correct Keypoints (PCK) metric used by

[15] and the Normalized Mean Error (NME) as before.

Fig. 6 and Table 4 show quantitative comparisons of our

algorithm against different methods at resolutions ranging

from 256 to 4096. At a resolution of 4096, we report the

PCK and NME metric only for the light variant of our ar-

chitecture for reasons explained in Section 3.4. The resolu-

tion of 1024 is considered separately in our ablation study

in Section 4.5.

Our approach, including the light variant, outper-

forms other methods across all resolutions, indicating that

attention-driven cropping is not only a way for training with

higher resolution imagery, but is an effective method for fa-

cial landmark detection in principle. The benefits of our

approach increase as the resolution of the input increases.

This can be inferred from the differences in the area under

curve metric between our method and the 4 stage hourglass

as the resolution increases.

4.5. Ablation Studies

We evaluate some of our architectural choices at a reso-

lution of 1024. These results are presented in Fig. 7.

Effect of Additional Stages Stacking models on top of

one another is a common approach in landmark localiza-

tion [30, 4, 42]. Such stacking could also be incorporated

into our architecture by stacking multiple regional refine-

ment modules on top of one another. When we stack an ad-

ditional regional hourglass to our base architecture shown

in Fig. 1, we see an improvement in the AUC (see Fig. 7,

left).

Choice of Architecture The modular nature of our archi-

tecture makes it possible to swap the hourglass with dif-

ferent fully convolutional architectures. To validate the ro-

bustness of the proposed concept to different architectural

choices, we consider two recently proposed fully convo-

lutional architectures i) a 6 stage Convolutional Pose Ma-

chine (CPM) [42, 6] and ii) the CNN 6/7 architecture from

[13]. When using CNN 6/7, we discard the last fully con-

nected layer to keep the network fully convolutional and ap-

pend additional CNN 6/7 stages where each stage receives

both the image and the heatmap of the previous stage as
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Figure 7. Ablation study at 1K. Left: stacking an additional re-

gional hourglass improves the AUC. Right: swapping the hour-

glass with a CPM [42, 6] or CNN 6/7 architecture [13] shows that

our attention-driven cropping scheme can improve other architec-

tures too, but the hourglass still obtains the best results.

input. We retrain both the 6 stage CPM and the 6 stage

CNN 6/7 architecture and compare them with our attention-

driven cropping concept where every hourglass module is

replaced by a single stage CPM or CNN 6/7 respectively.

In the right half of Fig. 7, we see the results of this ex-

periment. Though our attention-driven CPM and attention-

driven CNN 6/7 consist of lesser parameters than the 6 stage

CPM and 6 stage CNN 6/7 architectures respectively, we

see a large improvement in switching to landmark detection

with our attention-driven cropping concept as opposed to

holistic multi-stage methods. This superior performance is

a testament to the robustness of the proposed method and

its applicability to more general problems in localization.

4096x4096 Evaluations

P
e

rc
e

n
ta

g
e

 C
o

rr
e

ct
 K

e
y

p
o

in
ts

Error Threshold (pixels)

Figure 8. Comparing results of testing at 4K but training at dif-

ferent resolutions confirms there is indeed a benefit by moving to

higher resolution training when possible.

4.5.1 Necessity of High Resolution Detection

The 4K images we captured (Section 3.3) were annotated

by a human expert. Considering the limited precision with

which humans annotate landmarks [11], there is a question

over the necessity of training a model with extremely high

resolution imagery. In Fig. 8, we compare the results of

our light variant with hourglass building blocks, trained at

4096 to up-scaled predictions from other attention driven

models trained at lower resolution. The performance of the

attention-driven cropping framework increases as the res-

Figure 9. Qualitatively, our method produces the most accurate

landmarks on a test image set. Here we compare to DLIB [23] and

a 4-stage hourglass (FAN) [4] on a small set of the test data. Pixel

errors are indicated by color.
Prediction

Ground Truth

Figure 10. Situations where our regional refinement could fail are

shown here on the 300w dataset, where the crop results in mean-

ingless images when parts of the face are completely occluded. In

such cases, a global approach would be more preferable.

olution of the input data increases, ultimately making the

model directly trained at 4K resolution the best performing

model. From this, we see that there is indeed a benefit by

moving to higher resolutions whenever possible. In Fig. 9,

we show qualitative results on a few different test images.

4.6. Limitations

The proposed method is designed to improve landmark

localization by leveraging information present at higher res-

olutions. If no additional information is present, or the addi-

tional information is deceiving as is the case for partial oc-

clusions (Fig. 10), the performance degrades. This is related

to the classical aperture problem, and future work could in-

vestigate approaches to determine the best resolution to lo-

calize features in automatically.

5. Conclusion

We present a novel, fully convolutional regional architec-

ture designed to predict landmarks on very high resolution

images. Our proposal is an end-to-end attention-driven ar-

chitecture that allows to train deep networks on higher res-

olution images by automatically defining and focusing on

regions of interest instead of considering the image holisti-

cally. We show that our architecture achieves superior per-

formance over holistic state of the art convolutional archi-

tectures across all resolutions from 256 to 4K. We believe

our method fills the need for algorithms that can leverage

the rich information available in high resolution imagery,

which is becoming increasingly more common.
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