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Abstract

This paper studies the problem of image-goal naviga-

tion which involves navigating to the location indicated by

a goal image in a novel previously unseen environment. To

tackle this problem, we design topological representations

for space that effectively leverage semantics and afford ap-

proximate geometric reasoning. At the heart of our rep-

resentations are nodes with associated semantic features,

that are interconnected using coarse geometric information.

We describe supervised learning-based algorithms that can

build, maintain and use such representations under noisy

actuation. Experimental study in visually and physically

realistic simulation suggests that our method builds effec-

tive representations that capture structural regularities and

efficiently solve long-horizon navigation problems. We ob-

serve a relative improvement of more than 50% over exist-

ing methods that study this task.

1. Introduction

Imagine you are in a new house as shown in Fig 1 and

you are given the task of finding a target object as shown in

Fig 1 (top). While there are multiple possible directions to

move, most of us would choose the path number 2 to move.

This is because we use strong structural priors – we real-

ize the target is an oven which is more likely to be found

in the kitchen which seems accessible via path number 2.

Now let us suppose, once you reach the oven, your goal is

to reach back to the living room which you saw initially.

How would you navigate? The answer to this question lies

in how we humans store maps (or layout) of the house we

just traversed. One possible answer would be metric maps,

in which case we would know exactly how many steps to

take to reach the living room. But this is clearly not how we

humans operate [16, 41]. Instead, most of us would first get

out of the kitchen by moving to the hallway and then navi-

gate to the living room which is visible from the hallway.

It is clear from the above examples, there are two main
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Figure 1: Semantic Priors and Landmarks. When asked to go

to target image of an oven most humans would use the path num-

ber 2 since it allows access to kitchen. Humans use semantic pri-

ors and common-sense to explore and navigate everyday yet most

navigation algorithms struggle to do so.

components of a successful visual navigation algorithm: (a)

ability to build spatial representations and store them; (b)

ability to exploit structural priors. When it comes to spa-

tial representations, the majority of papers in navigation in-

sist on building metrically precise representations of free

space. However, metric maps have two major shortcom-

ings: first, metric maps do not scale well with environment

size and amount of experience. But more importantly, ac-

tuation noise on real-robots makes it challenging to build

consistent representations, and precise localization may not

always be possible. When it comes to exploiting structural

priors, most learning-based approaches do not model these

explicitly. Instead, they hope the learned policy function has

these priors encoded implicitly. But it still remains unclear

if these policy functions can encode semantic priors when

learned via RL.

In this paper, we propose to tackle both the problems

head-on. Instead of using metric-maps which are brittle

to localization and noise, we propose a topological repre-

sentation of the space. Our proposed representation con-

sists of nodes that are connected in the form of a graph,

based on local geometry information. Each node is repre-
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Figure 2: Model Overview. Figure showing an overview of the proposed model, Neural Topological SLAM. It consists of 3 components,

a Graph Construction module which updates the topological map as it receives observations, a Global Policy which samples subgoals, and

a Local Policy which takes navigational actions to reach the subgoal. See text for more details.

sented visually via a 360-degree panoramic image. Nodes

are connected to each other using approximate relative pose

between them. But what makes our visual topological maps

novel are two directional functions Fg and Fs, which ex-

tract geometric and semantic properties of nodes. Specif-

ically, Fg estimates how likely agent will encounter free-

space and Fs estimates how likely target image is to be en-

countered if the agent moves in a particular direction. By

explicitly modeling and learning function Fs, our model

ensures that structural priors are encoded and used when

exploring and navigating new unseen environments.

Our representation has few advantages over classical and

end-to-end learning-based approaches: (a) it uses graph-

based representation which allows efficient long-term plan-

ning; (b) it explicitly encodes structural priors via function

Fs; (c) the geometric function Fg allows efficient explo-

ration and online map building for a new environment; (d)

but most importantly, all the functions and policies can be

learned in completely supervised manner forgoing the need

for unreliable credit assignment via RL.

2. Related Work

Our paper makes contributions across the following multi-

ple aspects of the navigation problem: space representation,

training paradigm for navigation policies, and different nav-

igation tasks. We survey works in these areas below.

Navigation Tasks. Navigation tasks can be divided into

two main categories. The first category of tasks is ones

where the goal location is known, and limited exploration

is necessary. This could be in the form of a simply wan-

dering around without colliding [15, 33], following an ob-

ject [22], getting to a goal coordinate [1,17]: using sequence

of images along the path [5, 21], or language-based instruc-

tions [2]. Sometimes, the goal is specified as an image but

experience from the environment is available in the form

of demonstrations [13, 34], or in the form of reward-based

training [24, 47], which again limits the role of exploration.

The second category of tasks is when the goal is not known

and exploration is necessary. Examples are tasks such as

finding an object [17], or room [42], in a novel environ-

ment, or explicit exploration [6, 9]. These task categories

involve different challenges. The former tasks focus on ef-

fective retrieval and robust execution, while the later tasks

involve semantic and common sense reasoning in order to

efficiently operate in previously unseen environments. Our

focus, in this work, is the task of reaching a target image in

a novel environment. No experience is available from the

environment, except for the target image. We aren’t aware

of any works that target this specific problem.

Classical Space Representations. Spatial and topologi-

cal representations have a rich history in robot navigation.

Researchers have used explicit metric spatial representa-

tions [12], and have considered how can such representa-

tions be built with different sensors [19,26–28,38], and how

can agents be localized against such representations [11].

Recent work has started associating semantics with such

spatial representations [4]. In a similar vein, non-metric

topological representations have also been considered in

classical literature [10, 20, 23]. Some works combine topo-

logical and metric representations [39, 40], and some study

topological representations that are semantic [20]. While

our work builds upon the existing literature on topological

maps, the resemblance is only at high-level graph structure.

Our work focuses on making visual topological mapping

and exploration scalable, robust and efficient. We achieve

this via the representation of both semantic and geometric

properties in our topological maps; the ability to build topo-

logical maps in an online manner and finally, posing the

learning problem as a supervised problem.

Learned Space Representations. Depending on the prob-

lem being considered, different representations have been

investigated. For short-range locomotion tasks, purely reac-

tive policies [3, 15, 22, 33] suffice. For more complex prob-

lems such as target-driven navigation in a novel environ-

ment, such purely reactive strategies do not work well [47],

and memory-based policies have been investigated. This

can be in the form of vanilla neural network memories

such as LSTMs [25, 29], or transformers [14]. Researchers
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Figure 3: Geometric Explorable Area Prediction (FG). Fig-

ure showing sample input image (I) and output predictions of the

Geometric Explorable Area Prediction function (FG). The green

boxes show doorways for reference, and are not available as input.

have also incorporated insights from classical literature into

the design of expressive neural memories for navigation.

This includes spatial memories [17, 30] and topological ap-

proaches [8, 13, 34, 35, 42, 45]. Learned spatial approaches

can acquire expressive spatial representations [17], they are

however bottle-necked by their reliance on metric consis-

tency and thus have mostly been shown to work in discrete

state spaces for comparatively short-horizon tasks [17, 30].

Researchers have also tackled the problem of passive and

active localization [7, 26], in order to aid building such

consistent metric representations. Some topological ap-

proaches [8, 13, 34] work with human explorations or pre-

built topological maps, thus ignoring the problem of explo-

ration. Others build a topological representation with ex-

plicit semantics [42, 46], which limits tasks and environ-

ments that can be tackled. In contrast from past work, we

unify spatial and topological representations in a way that

is robust to actuation error, show how we can incrementally

and autonomously build topological representations, and do

semantic reasoning.

Training Methodology. Different tasks have also lead to

the design of different training methodologies for training

navigation policies. This ranges from reinforcement learn-

ing with sparse and shaped rewards [24, 25, 31, 33, 47], im-

itation learning and DAgger [17, 32], self-supervised learn-

ing for individual components [15, 34]. While RL allows

learning of rich exploratory behavior, training policies us-

ing RL is notoriously hard and sample inefficient. Imitation

learning is sample efficient but may not allow learning ex-

ploratory behavior. Self-supervised learning is promising

but has only been experimented in the context of known

goal tasks. We employ a supervised learning approach and

show how we can still learn expressive exploration behavior

while at the same time not suffering from exuberant sample

complexity for training.

Figure 4: Semantic Score Prediction (FS). Figure showing sam-

ple input and output predictions of the Semantic Score Prediction

function (FS). The score predictions change based on the goal

image. When the goal image is of the living room (left), the score

of the directions in the center are higher as they lead to the living

room. When the goal image is of a bedroom (right), the scores cor-

responding to the pathway on the left are higher as they are more

likely to lead to the bedroom.

3. Task Setup

We consider an autonomous agent situated in an episodic

environment. At the beginning of an episode, the agent re-

ceives a target goal image, IG. At each time step t, the agent

receives observations (st) from the environment. Each ob-

servation consists of the current first-person image observa-

tion, It, from a panoramic camera and a pose estimate from

a noisy motion sensor. At each time step, the agent takes

a navigational action at. The objective is to learn a policy

π(at|st, IG) to reach the goal image. In our experimental

setup, all images are panoramas, including agent observa-

tions and goal image.

4. Methods

We propose a modular model, ‘Neural Topological

SLAM (NTS)’, which builds and maintains a topological

map for navigation. The topological map is represented us-

ing a graph, denoted by Gt at time t. Each node in the

graph (Ni) is associated with a panoramic image (INi
) and

represents the area visible in this image. Two nodes are

connected by an edge (Ei,j) if they represent adjacent ar-

eas. Each edge also stores the relative pose between two

nodes, ∆pij .

Our model consists of three components, a Graph Up-

date module, a Global Policy, and a Local Policy. On a

high level, the Graph Update module updates the topologi-

cal map based on agent observations, the Global Policy se-

lects a node in the graph as the long-term goal and finds a

subgoal to reach the goal using path planning, and the Lo-

cal Policy navigates to the subgoal based on visual observa-

tions. Fig. 2 provides an overview of the proposed model.

The above components will require access to 4 functions.

We first define these 4 functions and then describe how they

are used by the components of the model.
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Figure 5: Graph Update. Figure showing an overview of the Graph Update Module. It takes the current Graph (Gt) and the agent

observation (It) as input. It first tries to localize the agent in the Graph. If the agent is localized in a node different from the last timestep,

it changes the location of the agent and adds an edge if required. If the agent is not localized, a new node is added and corresponding ghost

nodes are added using the geometric explorable area prediction function (FG). See the text for more details.

Graph Localization (FL). Given a graph G and an image

I , this function tries to localize I in a node in the graph. An

image is localized in a node if its location is visible from the

panoramic image associated with the node. Internally, this

requires comparing each node image (INi
) with the given

image (I) to predict whether I belongs to node Ni.

Geometric Explorable Area Prediction (FG). Given an

image I , this function makes nθ = 12 different predictions

of whether there’s explorable area in the direction θ sampled

uniformly between 0 and 2π. Figure 3 shows an example of

input and output of this function. Intuitively, it recognizes

doors or hallways which lead to other areas.

Semantic Score Prediction (FS). Given a source image

IS and a goal image IG, this function makes nθ = 12 dif-

ferent predictions of how fast the agent is likely to reach

the goal image if it explores in the direction θ sampled uni-

formly between 0 and 2π. Figure 4 shows example input-

output pairs for this function. The scores corresponding to

the same source image change as the goal image changes.

Estimating this score requires the model to learn semantic

priors about the environment.

Relative Pose Prediction (FR). Given a source image IS
and a goal image IG which belong to the same node, this

function predicts the relative pose (∆pS,G) of the goal im-

age from the source image.

4.1. Model components

Assuming that we have access to the above functions, we

first describe how these functions are used by the three com-

ponents to perform Image Goal Navigation. We then de-

scribe how we train a single model to learn all the above

functions using supervised learning.

Graph Update. The Graph Update module is responsible

for updating the topological map given agent observations.

At t = 0, the agent starts with an empty graph. At each time

step, the Graph Update module (fGU ) takes in the current

observations st and the previous topological map Gt−1 and

outputs the updated topological map, Gt = fGU (st, Gt−1).
Figure 5 shows an overview of the Graph Update Module.

In order to update the graph, the module first tries to lo-

calize the current image in a node in the current graph using

the Graph Localization function (FL). If the current image

is localized in a node different from the last node, we add

an edge between the current node and the last node (if it

does not exist already). If the current image is not local-

ized, then we create a new node with the current image. We

also add an edge between the new node and the last node.

Every time we add an edge, we also store the relative pose

(∆p) between the two nodes connected by the edge using

the sensor pose estimate.

The above creates a graph of the explored areas. In or-

der to explore new areas, we also predict and add unex-

plored areas to the graph. We achieve this by augmenting

the graph with ‘ghost’ nodes which are agent’s prediction

of explorable areas using the Geometric Explorable Area

Prediction function (FG). If there is an explorable area in

a direction θ, we add a ‘ghost’ node (Xk) and connect it to

the new node (Ni) using edge Ei,k. Since we do not have

the image at the ghost node location, we associate a patch

of the node image in the direction of θ, i.e. (IXk
= INi,θ).

The relative pose between the new node and the ghost node

is stored as (r, θ), where θ is the direction and r = 3m is the

radius of the node. The ghost nodes are always connected

to exactly one regular node and always correspond to unex-

plored areas. We ensure this by removing ghost nodes when

adding regular nodes in the same direction, and not adding

ghost nodes in a particular direction if a regular node exists

in that direction. Intuitively, ghost nodes correspond to the

unexplored areas at the boundary of explored areas denoted

by regular nodes.

Global Policy. The Global Policy is responsible for select-

ing a node in the above graph as the long-term goal. It first

tries to localize the goal image in the current graph using the

Graph Localization function (FL). If the goal image (IG) is
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Figure 6: Global Policy. Figure showing an overview of the Global Policy. It takes the current Graph (Gt) and the Goal Image (IG)

as input. It first tries to localize the Goal Image in the Graph. If the Goal Image is localized, the corresponding node is selected as the

long-term goal. If the Goal Image is not localized, then the semantic scoring function (FS) is used to score all the ghost nodes based on

how close they are to the goal image. The ghost node with the highest score is selected as the long-term goal. Given a long-term goal, a

subgoal node is computed using graph path planning. The relative directions to the subgoal node are the output of the Global Policy which

is passed to the Local Policy.

localized in a node Ni, then Ni is chosen as the long-term

goal. If the goal image is not localized, then the Global Pol-

icy needs to choose an area to explore, i.e. choose a ghost

node for exploration. We use the Semantic Score Predic-

tion (FS) function to predict the score of all ghost nodes.

The Global Policy then just picks the ghost node with the

highest score as the long-term goal.

Once a node is selected as a long-term goal, we plan the

path to the selected node from the current node using Djik-

stra’s algorithm on the current graph. The next node on the

shortest path is chosen to be the subgoal (NSG). The rel-

ative pose associated with the edge to the subgoal node is

passed to the Local Policy (∆pi,SG).

If the goal image is localized in the current node (or the

agent reaches the node Ni where the goal image (IG) is

localized), the Global policy needs to predict the relative

pose of IG with respect to the current agent observation.

We use the Relative Pose Prediction (FR) function to get

the relative pose of the goal image, which is then passed to

the Local Policy.

Local Policy. The Local Policy receives the relative pose as

goal directions which comprises of distance and angle to the

goal. Given the current image observation and the relative

goal directions, the Local Policy takes navigation actions

to reach the relative goal. This means the Local Policy is

essentially a PointGoal navigation policy. Our Local Policy

is adapted from [6]. It predicts a local spatial map using

a learned mapper model in the case of RGB input or using

geometric projections of the depth channel in case of RGBD

input. It then plans a path to the relative goal using shortest

path planning.

4.2. Training NTS Multi­task Learning model

Given access to the four functions described above, we

discussed how the different components use these func-

tions for navigation. In this subsection, we describe how

we train a single multi-task learning model to learn all the

four functions. Figure 7 shows an overview of this multi-

task learning model. It takes a Source Image (IS) and a

Goal Image (IG) as input and encodes them using a shared

ResNet18 [18] encoder. It first predicts whether the two

images belong to the same node or not. This prediction is

used to implement the Graph Localization function (FL).

If they belong to the same node, it makes Intra-Node pre-

dictions which include the direction and score (or equiv-

alently) distance of the Goal Image relative to the Source

Image. These predictions are used to implement the Rela-

tive Pose Prediction function (FR). If they belong to differ-

ent nodes, it makes Inter-Node Predictions which include

directions of explorable areas (which is used as the Ge-

ometric Explorable Area Prediction function (FG)) and a

semantic score corresponding to each explorable area de-

noting its proximity of the Goal Image (which is used as

the Semantic Score Prediction function (FS)). The Con-

nection, Intra-Node Prediction, and Inter-Node Prediction

models consist of fully-connected layers with ReLU activa-

tions and dropout. Exact details are deferred to the supple-

mentary material.

5. Experimental Setup

Environment. All our experiments are conducted in the

Habitat simulator [36] with the Gibson [43] dataset. The

Gibson dataset is visually realistic as it consists of recon-

structions of real-world scenes. We also implement physi-

cally realistic motion sensor and actuation noise models as

proposed by [6]. Actuation motion noise leads to stochastic

transitions as the amount translated or rotated by the agent

is noisy. This model also adds realistic translational noise

in rotation actions and rotational noise in translational ac-

tions. The sensor noise model adds realistic noise to the

base odometry sensor readings. Both the noise models are

based on real-world data and agents trained on these noise

models are shown to transfer to the real-world [6].
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Figure 7: NTS Multi-task Learning Model. Figure showing an overview of the NTS Multi-task Learning Model. It takes a Source

Image (IS) and a Goal Image (IG) as input and encodes them using a shared ResNet18 encoder. It first predicts whether the two images

belong to the same node or not. If they belong to the same node, it makes Intra-Node predictions which include the direction and score (or

equivalently) distance of the Goal Image relative to the Source Image. If they belong to different nodes, it makes Inter-Node Predictions

which include directions of explorable areas and a semantic score corresponding to each explorable area denoting its proximity of the Goal

Image. All the predictions of this model are used at various places in the components of the overall NTS model. See text for more details.

Task setup. We use panoramic images of size 128 × 512
for both agent image observation and target goal image. We

conduct experiments with both RGB and RGBD settings.

The base odometry sensor provides a 3×1 reading denoting

the change in agent’s x-y coordinates and orientation. The

action space consists of four actions: move forward,

turn right, turn left, stop. The forward ac-

tion moves the agent approximately 25cm forward and the

turn actions turn the agent approximately 10 degrees. Note

that the state space and motion of the agent are continuous.

The agent succeeds in an episode if it takes the stop ac-

tion within a 1m radius of the target location. The agent

fails if it takes stop action anywhere else or does not take

the stop till the episode ends. In addition to the success

rate, we also use Success weighted by inverse Path Length

(SPL) as an evaluation metric as proposed by [1]. It takes

into account the efficiency of the agent in reaching the goal

(shorter successful trajectories lead to higher SPL).

Training data. We split the curated set of 86 scenes from

[36] into sets of 68/4/14 scenes for train/val/test. For train-

ing our supervised learning model, we sample 300 images

randomly in each of 68 training scenes. We get labels for

pairs of source and target images in each scene giving us

a total of approximately 68 × 300 × 300 = 6.12 million

data points. The labeling process is automated and it only

requires the ground-truth map already available with the

dataset without the need for any additional human anno-

tation. Details of the labeling process are deferred to the

supplementary material. Note that sampling images or the

ground-truth map are not required for the test environments.

Test episodes. For creating test episodes, we sample

episodes (given by starting and goal locations) in the test

scenes to create 3 different sets of difficulty based on the

distance of the goal from starting locations: Easy (1.5 −

3m), Medium (3 − 5m) and Hard (5 − 10m). The maxi-

mum episode length is 500 steps or each difficulty level.

5.1. Baselines

We use the following baselines for our experiments:

ResNet + GRU + IL. A simple baseline consisting of

ResNet18 image encoder and GRU based policy trained

with imitation learning (IL).

Target-driven RL. A siamese style model for encoding the

current image and the goal image using shared convolu-

tional networks and trained end-to-end with reinforcement

learning, adapted from Zhu et al. [47].

Metric Spatial Map + RL. An end-to-end RL model which

uses geometric projections of the depth image to create a

local map and passes it to the RL policy, adapted from Chen

et al. [9].

Metric Spatial Map + FBE + Local. This is a hand-

designed baseline which creates a map using depth im-

ages and then uses a classical exploration heuristic called

Frontier-based Exploration (FBE) [44] which greedily ex-

plores nearest unexplored frontiers in the map. We use the

Localization model and Local Policy from NTS to detect

when a goal is nearby and navigate to it.

Active Neural SLAM. This is a recent modular model

based on Metric Spatial Maps proposed for the task of ex-

ploration. We adapt it to the Image Goal task by using the

Localization model and Local Policy from NTS to detect

when a goal is nearby and navigate to it.

All the baselines are trained for 25 million frames.

RL baselines are trained using Proximal Policy Optimiza-

tion [37] with a dense reward function. The reward func-

tion includes a high reward for success (=SPL*10.), a shap-

ing reward equal to the decrease in distance to the goal

and a per step reward of -0.001 to encourage shorter tra-

jectories. ResNet + GRU + IL is trained using behavioral
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Easy Medium Hard Overall

Model Succ SPL Succ SPL Succ SPL Succ SPL

RGB

ResNet + GRU + IL 0.57 0.23 0.14 0.06 0.04 0.02 0.25 0.10

Target-driven RL [47] 0.56 0.22 0.17 0.06 0.06 0.02 0.26 0.10

Active Neural SLAM (ANS) [6] 0.63 0.45 0.31 0.18 0.12 0.07 0.35 0.23

Neural Topological SLAM (NTS) 0.80 0.60 0.47 0.31 0.37 0.22 0.55 0.38

RGBD

ResNet + GRU + IL 0.72 0.32 0.16 0.09 0.05 0.02 0.31 0.14

Target-driven RL [47] 0.68 0.28 0.21 0.08 0.09 0.03 0.33 0.13

Metric Spatial Map + RL [9] 0.69 0.27 0.22 0.07 0.12 0.04 0.34 0.13

Metric Spatial Map + FBE + RL 0.77 0.56 0.36 0.18 0.13 0.05 0.42 0.26

Active Neural SLAM (ANS) [6] 0.76 0.55 0.40 0.24 0.16 0.09 0.44 0.29

Neural Topological SLAM (NTS) 0.87 0.65 0.58 0.38 0.43 0.26 0.63 0.43

Table 1: Results. Performance of the proposed model Neural Topological SLAM (NTS) and the baselines in RGB and RGBD settings.

cloning on the ground-truth trajectory. This means just like

the proposed model, all the baselines also use the ground-

truth map for training. In terms of the number of training

samples, sampling 300 random images in the environment

would require 300 episode resets in the RL training setup.

300 episodes in 68 scenes would lead to a maximum of 10.2
million (= 68 × 300 × 500) samples. Since we use 25

million frames to train our baselines, they use strictly more

data than our model. Furthermore, our model does not re-

quire any interaction in the environment and can be trained

offline with image data.

6. Results

We evaluate the proposed method and all the baselines on

1000 episodes for each difficulty setting. We compare all

the methods across all difficulty levels in both RGB and

RGBD settings in Table 1. The results show that the pro-

posed method outperforms all the baselines by a consid-

erable margin across all difficulty settings with an overall

Succ/SPL of 0.55/0.38 vs 0.35/0.23 in RGB and 0.63/0.43

vs 0.44/0.29 in RGBD. The results also indicate the relative

improvement of NTS over the baselines increases as the dif-

ficulty increases leading to a large improvement in the hard

setting (0.43/0.26 vs 0.16/0.09 in RGBD).

Comparison with end-to-end RL and the effect of stop

action. The results indicate that NTS performs better than

both end-to-end RL based baselines [9,47] and methods us-

ing metric spatial maps [6, 9]. The performance of the RL-

based baselines is much weaker than the proposed model.

We believe the reason behind this is the complexity of the

exploration search space. Compared to the Pointgoal navi-

gation task where the agent receives updated direction to the

goal at each time step, Image Goal navigation is more dif-

ficult in terms of exploration as the goal image does not di-

rectly provide the direction to explore. Another difficulty is

exploring the ‘stop’ action. Prior setups of the Image Goal

task where end-to-end RL policies were shown to perform

reasonably well assumed that the agent succeeded if it hits

the goal state. However, based on the suggestion from [1],

we added the ‘stop’ action as it is more realistic. To quantify

the effect of stop action, we report the performance of all

the models without the stop action in Table 2(left). We see

that the performance of RL baselines is much higher. How-

ever, the performance of NTS also increases as the agent

automatically stops when it reaches the goal state instead

of using the prediction of the Relative Pose Estimator to

stop. Other differences that make our experimental setup

more realistic but also makes exploration harder for RL as

compared to prior setups include continuous state space as

compared to grid-based state space, fine-grained action as

compared to 90 degree turns and grid cell forward steps and

stochastic transitions due to realistic motion noise.

Comparison with spatial map-based methods and the ef-

fect of motion noise. The performance of metric spatial

map-based baselines drops quickly as the distance to the

goal increases. This is likely due to the accumulation of

pose errors as the trajectory length increases. Errors in pose

prediction make the map noisy and eventually lead to incor-

rect path planning. To quantify this effect, we evaluate all

the models without any motion actuation and sensor noise

in Table 2(right). The results show that the performance

of the metric map-based baselines scales much better with

distance in the absence of motion noise, however, the per-

formance of NTS does not increase much. This indicates

that NTS is able to tackle motion noise relatively well. This

is because NTS only uses pose estimates between consec-

utive nodes, which do not accumulate much noise as they

are a few actions away from each other. The performance

of NTS is still better than the baselines even without mo-

tion noise as it consists of Semantic Score Predictor (FS)

capable of learning structural priors which the metric spa-

tial map-based baselines lack. We quantify the effect of the

Semantic Score Predictor in the following subsection.
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RGBD - No stop RGBD - No Noise

Model Easy Med. Hard Overall Easy Med. Hard Overall

ResNet + GRU + IL 0.76 0.28 0.10 0.38 0.71 0.18 0.06 0.32

Target-driven RL [47] 0.89 0.45 0.21 0.52 0.69 0.22 0.07 0.33

Metric Spatial Map + RL [9] 0.89 0.45 0.21 0.52 0.70 0.24 0.11 0.35

Metric Spatial Map + FBE + RL 0.92 0.46 0.29 0.56 0.78 0.46 0.23 0.49

Active Neural SLAM (ANS) [6] 0.93 0.50 0.32 0.58 0.79 0.53 0.30 0.54

Neural Topological SLAM (NTS) 0.94 0.70 0.60 0.75 0.87 0.60 0.46 0.64

Table 2: No stop and no noise. Success rate of the proposed model NTS and the baselines without stop action (left) and without motion

noise (right) in the RGBD setting.
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Figure 8: Performance of the proposed model NTS and two ablations as a function of number of sequential goals.

6.1. Ablations and Sequential Goals

In this subsection, we evaluate the proposed model on se-

quential goals in a single episode and study the importance

of the topological map or the graph and the Semantic Score

Predictor (FS). For creating a test episode with sequen-

tial goals, we randomly sample a goal between 1.5m to 5m
away from the last goal. The agent gets a time budget of

500 timesteps for each goal. We consider two ablations:

NTS w/o Graph. We pick the direction with the highest

score in the current image greedily, not updating or using

the graph over time. Intuitively, the performance of this ab-

lation should deteriorate as the number of sequential goals

increases as it has no memory of past observations.

Neural Topological SLAM w/o Score Function. In this

ablation, we do not use the Semantic Score Predictor (FS)

and pick a ghost node randomly as the long-term goal when

the Goal Image is not localized in the current graph. In-

tuitively, the performance of this ablation should improve

with the increase in the number of sequential goals, as ran-

dom exploration would build the graph over time and in-

crease the likelihood of the Goal Image being localized.

We report the success rate and SPL of NTS and the two

ablations as a function of the number of sequential goals

in Figure 8. Success, in this case, is defined as the ra-

tio of goals reached by the agent across a test set of 1000

episodes. Firstly, the performance of NTS is considerably

higher than both the ablations, indicating the importance of

both the components. The performance of all the models

decreases with an increase in the number of sequential goals

because if the agent fails to reach an intermediate goal, there

is a high chance that the subsequent goals are farther away.

However, the performance gap between NTS and NTS w/o

Score Function decreases and the performance gap between

NTS and NTS w/o Graph increases with increase in the

number of sequential goals as expected. This indicates that

the topological map becomes more important over time as

the agent explores a new environment, and while the Se-

mantic Score Predictor is the most important at the begin-

ning to explore efficiently.

7. Discussion

We designed topological representations for space that

leverage semantics and afford coarse geometric reason-

ing. We showed how we can build such representation au-

tonomously and use them for the task of image-goal navi-

gation. Topological representations provided robustness to

actuation noise, while semantic features stored at nodes al-

lowed the use of statistical regularities for efficient explo-

ration in novel environments. We showed how advances

made in this paper make it possible to study this task in

settings where no prior experience from the environment is

available, resulting in a relative improvement of over 50%.

In the future, we plan to deploy our models on real robots.
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