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Abstract

Background models are widely used in computer vi-
sion. While successful Static-camera Background (SCB)
models exist, Moving-camera Background (MCB) mod-
els are limited. Seemingly, there is a straightforward so-
lution: 1) align the video frames; 2) learn an SCB model;
3) warp either original or previously-unseen frames to-
ward the model. This approach, however, has draw-
backs, especially when the accumulative camera motion
is large and/or the video is long. Here we propose a
purely-2D unsupervised modular method that systemati-
cally eliminates those issues. First, to estimate warps
in the original video, we solve a joint-alignment prob-
lem while leveraging a certifiably-correct initialization.
Next, we learn both multiple partially-overlapping local
subspaces and how to predict alignments. Lastly, in
test time, we warp a previously-unseen frame, based
on the prediction, and project it on a subset of those
subspaces to obtain a background/foreground separation.
We show the method handles even large scenes with
a relatively-free camera motion (provided the camera-
to-scene distance does not change much) and that it
not only yields State-of-the-Art results on the origi-
nal video but also generalizes gracefully to previously-
unseen videos of the same scene. Our code is available at
https: // github. com/ BGU-CS-VIL/ JA-POLS .

1. Introduction

Background modeling is an important video-analysis
tool with applications such as tracking and change de-
tection. In the static-camera case, the problem has been
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Figure 1: JA-POLS’ example results. The foreground
is visualized via the sum of the RGB squared residuals.

solved successfully[42, 11, 5, 1, 19, 6]. Our focus is on
the more challenging case, where the camera is moving.
There, the success has been more modest, as existing
methods are limited to highly-restricted motions (e.g .:
translations; small motions; jitter) and/or a small ac-
cumulative motion across the video; moreover, they do
not directly generalize to previously-unseen misaligned
videos. This raises a natural question: why not employ
the following seemingly-simple 3-step solution? 1) align
all the video frames (via, e.g ., [4, 27, 22, 8, 9, 21]); 2)
learn a Static-camera Background (SCB) model of the
global scene from the aligned frames; 3) warp previously-
unseen frames toward the SCB model and apply the
latter to the former, where the warping is done using,
e.g ., either classical tools (see [44] and references therein)
or methods such as PoseNet [25]. Unfortunately, this
logical approach, whose first two steps are exemplified
by the clever PRPCA [30], suffers from severe draw-
backs (related to, among other things, scalability and
optimization challenges) that hinder its applicability,
especially for large scenes (i.e., a large accumulative
camera motion) and/or long videos. A more popular
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alternative focuses on incremental model updates to
perform background/foreground (BG/FG) separation
of the next frame in the video stream. The lack-of-
memory property of the approach, however, prevents
an effective use of all the previously-acquired data (es-
pecially when the camera returns to regions covered
earlier, possibly at new orientations/positions). We
also note that existing methods, whether global (e.g .,
PRPCA) or incremental, target BG/FG separation in
the original video and lack a readily-available mecha-
nism to do so for previously-unseen unaligned frames
(unless it is the next frame right at the end of the origi-
nal video). Our approach is different. Particularly, we
propose a novel method, self-coined JA-POLS (short for
Joint Alignment and Partially-overlapping Local Sub-
spaces), for unsupervised learning of a Moving-camera
Background (MCB) model ; see Fig. 1. JA-POLS, a
purely-2D modular method, allows for large camera
motions (either accumulative ones or between consec-
utive frames) and provides a mechanism for warping
previously-unseen frames toward the model. The model
itself scales gracefully since rather than trying to cap-
ture the background of the entire scene using a single
low-dimensional global (“panoramic-size”) subspace, it
consists of multiple smaller Partially-overlapping Local
Subspaces (POLS). As we show, JA-POLS not only
yields State-of-the-Art (SOTA) results on the original
data but also generalizes to previously-unseen unaligned
videos. Our key contributions are as follows: 1)
a novel MCB method that allows for a substantial and
relatively-free camera motion; 2) the alignment of the
original frames is done jointly (not pairwise) and utilizes
an efficient initialization with theoretical guarantees; 3)
all the alignment-related computations are done in 2D
directly from image measurements, obviating the need
of an explicit 3D-scene reconstruction, of constructing
a global panoramic image, and of camera calibration.
4) The POLS model overcomes the issues that prevent
a single global model from handling large scenes and/or
long videos; 5) unlike competing methods, which focus
only on BG/FG separation in the original video and/or
the next frame, JA-POLS also provides a mechanism
for aligning frames taken from new videos (covering the
same scene but taken at possibly-different times and
from possibly-different camera poses).

2. Related Work

The global approach to MCB modeling starts
with building a representation of the entire scene. This
usually involves, as preprocessing, aligning the frames of
the original video, thereby reducing the MCB problem
to a typically-large SCB problem with missing data [30].

Image alignment. In [10, 30], homographies be-

tween consecutive frames are estimated, while [24] uses
a multi-layer homography. Works such as [48, 29] gen-
erate an adaptive panoramic image, while [45] assumes
a PTZ camera. Also related is video stabilization; e.g .,
[14] finds an optimal steady-camera path using pairwise
transformations between consecutive frames, while [28]
minimizes a global cost based on the warped frames.
Most of the works above assume a calibrated camera
and/or a highly-restricted camera motion (e.g ., small
motions or PTZ). Moreover, transformation estimation
is usually done pairwise and sequentially; this is prone
to accumulative errors as well as perspective distortions
when the scene is wide. AutoStitch [4] uses bundle ad-
justment upon computing pairwise geometric matches.
Available implementations of [4] do not scale well with
the number of input frames and typically handle, at
most, only a few hundreds of frames. Other alignment
methods use 3D data, e.g ., the (non-visual) Simultane-
ous Localization and Mapping (SLAM) [31, 26] which
estimates a model of the environment together with a
dynamic camera pose. Posenet [25] is a neural net that
estimates camera poses from images and uses ground-
truth 3D poses in its training. Such methods rely on
depth data (in some SLAM methods) and/or expensive
3D reconstruction procedures such as Structure-from-
Motion [47] (as in, e.g ., [25]). Our method includes a
regression net which is, conceptually, akin to PoseNet;
the differences are that ours is purely 2D-based and that
what it predicts are invertible affine transformations.

Background models. For already-aligned images,
SCB models have been researched extensively. Ear-
lier methods focused on pixelwise models [42, 18, 52].
Thurnhofer-Hemsi et al . [45] use a competitive-learning
net that learns receptive fields in the panoramic scene.
Another main approach, closer to ours, is learning a low-
dimensional subspace. Principal Component Analysis
(PCA) can be used but only if it can be assumed that the
data contains neither foreground objects nor outliers.
Otherwise, Robust PCA (RPCA) methods are preferred.
The first RPCA in computer vision was proposed in [11].
Later, Candes et al . [5] and similar works [51, 16] used
a “low-rank and sparse” (“L+ S”) data decomposition.
The low-rank part represents the background while the
sparse part models outliers. Unfortunately, all these
models [11, 5, 51, 16] do not scale. A scalable RPCA
was proposed in [17] based on Trimmed Grassmann Av-
erages (TGA); see also [6]. Works such as [1, 19, 15] use
L+S decompositions within subspace tracking; despite
the word “tracking”, these methods, which focus on
subspace updates, are more suitable for SCB than MCB
models. A related MCB approach, t-GRASTA [20], re-
lies on [34] and alternates between motion estimation
and subspace learning. DECOLOR [50] is a similar
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Figure 2: Flowcharts of JA-POLS: (1) the joint-alignment phase; (2) the learning phase; (3) the test phase.

MCB approach focusing on moving-object detection.
These MCB methods linearly approximate the motions
and thus cannot handle a large camera motion. The
incPCP-PTI method [7] continuously estimates a rigid-
body transformation between each new frame and the
low-rank component of the previous one, and then ap-
plies it to the whole low-rank matrix. This method
targets a PTZ camera. Several works focus on moving-
object detection in a moving camera; e.g ., [49]
segments optical flow into BG/FG while [38] classifies
feature-based trajectories. These works, which solve a
related but slightly-different problem from ours, cannot
detect static changes and cannot handle long sequences;
see also [2]. Lastly, all works mentioned in this section
lack a direct way to handle previously-unseen misaligned
frames (unless the frame is next consecutive one).

3. The Proposed Method: JA-POLS

The outline of the proposed method, which treats
the original video as (unlabeled) training data, is as
follows. Phase 1 (§ 3.1): Given a training video, we
solve an unsupervised joint-alignment problem using:
a novel smart initialization with theoretical guarantees;
a Lie-algebraic parameterization/regularization; a Spa-
tial Transformer Net (STN). See [41] for benefits of a
Lie-algebraic parameterization (via the matrix expo-
nential) of affine maps within STNs. Phase 2 (§ 3.2):
Upon the joint alignment, we learn two tasks indepen-
dently: 1) alignment prediction; 2) learning multiple
local low-dimensional robust background models over
partially-overlapping areas, yielding a set of local lin-
ear subspaces, each associated with a different region
of the scene. Phase 3 (§ 3.3): In test time, a new
frame is first warped toward the global scene via the
(refined) predicted alignment, and then projected on
the Partially-overlapping Local Subspaces (POLS). The
average of the projections results in an effective BF/FG
separation. See flowcharts in Fig. 2. Importantly, our
method requires neither the creation of a single global
model for an entire panoramic scene nor 3D reconstruc-
tion; rather, it employs a decentralized and localized

approach and is purely 2D-based. As our method uses
Lie groups/algebras, our Sup. Mat. contains all the
relevant required background used below.

Notation. Let SE(2) and Aff(2) denote the Special
Euclidean and affine groups in 2D, respectively. Both
groups can be seen as nonlinear spaces of 3-by-3 ma-
trices acting on R2 (in homogeneous coordinates) and
SE(2) ( Aff(2). Let aff(2) denote the Lie algebra of
Aff(2); aff(2) is a 6D linear space of 3-by-3 matrices.
Let vec : aff(2) → R6 denote a linear bijection. The
matrix exponential and logarithm, exp : aff(2) → Aff(2)
and log : Aff(2) → aff(2), connect the algebra to the
group. If θ ∈ R6, then T θ = exp(vec−1(θ)) ∈ Aff(2)
is the affine transformation parameterized by θ, and
d(T θ, SE(2)) (see Sup. Mat.) measures how far T θ is
from SE(2). Let Ωscene be the domain of the panoramic-
size image, and let D be the number of its pixels.

3.1. Unsupervised Joint Alignment

Given training frames, (xi)
N
i=1, we seek (T θi)Ni=1 ⊂

Aff(2) that minimize the (robustified) variance of all
RGB values over the warped images, (x̃θi

i )Ni=1, where

x̃θi

i = xi ◦ T
θi . Let d̃θi

i < D be the number of pixels

in Ω̃θi

i , the domain of x̃θi

i . Note that Ω̃θi

i ( Ωscene =⋃N

i=1 Ω̃
θi

i . Let wi
l denote a binary weight indicating

whether or not pixel l in Ωscene is also in Ω̃θi

i , and

let x̃θi

il denote pixel l of x̃θi

i (if wi
l = 0, then x̃θi

il is
undefined). Consider the following minimization of a
robust joint-alignment loss,

min
(θi)Ni=1

∑D

l=1

∑N

i=1
wi

lρ(x̃
θi

il − µl, σ)

µl =
∑N

i=1
wi

l x̃
θi
il∑

N
i=1

wi
l

, T θi = exp(

∈aff(2)︷ ︸︸ ︷
vec−1(θi)) ∈ Aff(2) (1)

where θi ∈ R6, µl is the average of pixel stack l,
{x̃θi

il : wi
l = 1}, and ρ(·, σ) is Huber’s loss [3] of param-

eter σ > 0. This loss is akin to those used by others
for joint alignment. In our setting, however, that loss is
specially-hard to minimize: since usually d̃θi

i ≪ D, and
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since the optimal Ω̃θi

i and Ω̃
θj

j of two warped images,

x̃θi

i and x̃
θj

j , may be far from each other (implying that

the difference between T θi and T θj is large, and that at
least one of them is far from the identity map), minimiz-
ing this loss is likely to yield either bad local-minima
or, worse, bad trivial global minima (e.g ., shrinking all
images to a point or creating no overlap between the
images.); we will return to this issue in our ablation
studies. A potential remedy is regularizing the transfor-
mations’ size and/or the difference between consecutive
transformations; however, in a large scene it is hard
to determine the amount of such regularizations. All
this motivates us to propose a novel loss function, over
residual transformations :

min
(δi)Ni=1

(
N∑

i=1

D∑

l=1

wi
lρ(x̃

θi

il − µl, σ)

)
+ λ

N∑

i=1

d(T θi , SE(2))

µl =
∑N

i=1
wi

l x̃
θi
il∑

N
i=1

wi
l

, T θi =

∈Aff(2)︷ ︸︸ ︷
exp(vec−1(δi)︸ ︷︷ ︸

∈aff(2)

)

∈SE(2)︷︸︸︷
gi ∈ Aff(2)

(2)

where (gi)
N
i=1 ⊂ SE(2) are known, (δi)

N
i=1 ⊂ R6 param-

eterize the sought-after residual affine warps, and λ > 0
controls a new regularization term penalizing the devi-
ation of the affine T θi from SE(2). Here, θi is implied
by θi = vec(log(T θi)) ∈ R6 (where log(T θi) ∈ aff(2)).
The (gi)

N
i=1 in Eq. (2) may be viewed as an initialization.

A question then arises: how can we find good values
for this initialization? After all, the aforementioned
difficulties hold even if, in Eq. (1), the transformations
are restricted to SE(2). Fortunately, there is a way to
not only provide such good values but also do it in an
efficient and scalable way. Upon obtaining (gi)

N
i=1, as

discussed below, we minimize the loss in Eq. (2) via an
STN [23] whose input images are (xi ◦ gi)

N
i=1.

A certifiably-correct initialization. Let xi and
xj denote two input images. Let g̃ij ∈ SE(2) be a
noisy estimate of a relative SE transformation warping
xj toward xi (obtaining g̃ij is discussed later). We use
such pairwise transformations to jointly align the images
(xi)

N
i=1, in a global coordinate system. Concretely, we

wish to estimate (gi)
N
i=1 ⊂ SE(2) that are as consistent

as possible with the noisy relative transformations; i.e.,
we want to have g̃ij ≈ g−1

i gj for all (i, j) ∈ E , where E
is a known subset of (1, . . . , N)× (1, . . . , N). This leads
to the following known nonconvex estimation problem
over the 3N -dimensional nonlinear space SE(2)N [37].

Definition 1 (The SE-Synchronization problem)

Given (g̃ij)i,j ⊂ SE(2), find

(gi)
N
i=1 = argmin

ti∈R2,Ri∈SO(2)

∑
(i,j)∈E

κij‖Rj −RiR̃ij‖
2
F

+ τij‖tj − ti −Rit̃ij‖
2
ℓ2

(3)

where ‖·‖
2
F is the Frobenius norm, g̃ij =

[
R̃ij t̃ij

01×2 1

]
∈

SE(2), κij > 0, τij > 0, and gi =
[

Ri ti
01×2 1

]
∈ SE(2) .

To solve it, we employ SE-Sync [37], an efficient and
certifiably-correct algorithm for synchronization over
SE(2) (more generally, SE(n)). SE-Sync recovers certi-
fiably globally-optimal solutions provided that the noise
corrupting the (g̃ij) is not too large; moreover, even
when exact optimality fails to hold, SE-Sync still pro-
duces a reasonable approximated solution, together with
an upper bound on that solution’s (global) suboptimal-
ity. SE-Sync thus provides us with a good estimate of
(gi)

N
i=1 ⊂ SE(2) to jointly align (xi)

N
i=1, where the align-

ments are restricted to SE(2). As mentioned above,
we subsequently refine the transformations over the
larger group, Aff(2)N , using the STN. An instance of
SE-Sync is modeled as a sparse and nonlinear undi-
rected graph (V, E); the nodes, V, correspond to (the
coordinate systems of the) input frames, xi, while the
edges, E , correspond to a set of noisy estimates of rel-
ative transformations; i.e., Eij corresponds to g̃ij , the
estimated transformation from coordinate system j to
coordinate system i. We build E by connecting each
node only with the next five ones; the rationale is that
relative transformations between frames in such a short
batch are usually small. The estimation of g̃ij ∈ SE(2),
is done via established vision tools; see our Sup. Mat.
For each (xi, xj) image pair, the result of that esti-
mation procedure is not only the (estimated) relative

transformation, g̃ij =
[

R̃ij t̃ij

01×2 1

]
, but also (estimated)

precisions, τij and κij , of t̃ij ∈ SO(2) and R̃ij ∈ SO(2),
respectively, used in Eq. (3).

3.2. Learning

POLS learning. Given the original frames
and their estimated global affine transformations,
(xi, T

θi)Ni=1, a seemingly-straightforward approach is
to use the warped images, (x̃θi

i )Ni=1, to learn a subspace-
based SCB model (e.g ., some k-dimensional subspace
such as PCA or one of its robust variants [11, 5, 17, 6])
whose domain is Ωscene. The subspace would be rep-
resented by an orthogonal D × k matrix Vscene. We
note, however, that doing so for very large scenes: 1)
can be very expensive as D can be huge; 2) requires
learning a model where, in each example, most of the
data is missing, as typically d̃θi

i ≪ D; 3) requires k
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(a) (b) (c) (d)

Figure 3: The POLS model. (a) A training frame, xi. (b) Its warped version, x̃i, embedded in the larger scene. (c)
A set of sliding-window regions, marked in red, that overlap with x̃i in 85% of their pixels. Each region is associated
with a local subspace, learned from such x̃i’s. (d): Projection of a warped frame (either train or test), marked by a
green border, on a local subspace, whose domain is marked by a red border. Black areas indicate the missing values
in that projection. Moreover, the projection ignores pixels within the green border that fall outside the red one.

large enough to capture the variability the dynamic
background exhibits in the entire scene; 4) can have
(for long videos) a prohibitively-large memory footprint.
We thus argue that, especially for large scenes and/or
long videos, there must be a better way: if all we want
is BG/FG separation in a small region ( i.e., the size
of a single frame), why should we do everything at a
whole-scene scale? As an alternative, we propose learn-
ing portions of the scene individually. Particularly, we
split Ωscene into M partially-overlapping domains; see
Fig. 3c. Let m ∈ {1, . . . ,M}. In our experiments, each
such domain, Ωm, is a 250-by-420 rectangle, obtained
via a raster scan of 30-pixel horizontal/vertical strides
(this determines M). See Sup. Mat. for the effect
of using other window sizes. Let nm < N denote the
number of warped training images whose domain over-
laps Ωm by more than 85%. We denote these images

by {x̃
θq
q }

nm

q=1 ⊂ {x̃θi

i }
N

i=1. Let dm = d denote the (con-
stant) number of pixels in Ωm. We form a (3d)-by-nm

local-data matrix, Ym, whose generic column, yq ∈ R3d,

contains the RGB values of x̃
θq
q in indices corresponding

to overlapping pixels between Ωm and Ω̃
θq
q (the domain

of x̃
θq
q ), and NaNs (to indicate missing data) in indices

corresponding to pixels that are in Ωm but not in Ω̃
θq
q .

We can now apply, to each Ym, any off-the-shelf method
for linear dimensionality reduction suitable for back-
ground modeling. Let Vm denote the subspace learned
from Ym. Note that: 1) each Ym is much smaller, in
either dimension, than an analogous global-data matrix,
Yscene, that consists of all of the pixels in all of the
warped frames (as well as many NaNs); 2) the (Vm)’s
can be learned in parallel (our distributed implemen-
tation exploits that); 3) the relative portion of missing
data in Ym is much smaller than that in Yscene. To
summarize, a POLS model is highly scalable and suffers
less (than a global model) from missing data.

Alignment learning. Given a test frame, we seek
to align it w.r.t. the global scene. In theory, one can use

any off-the-shelf tool for pairwise alignment. However,
this would suffer from two issues. 1) One would have
to explicitly reconstruct a panoramic-size image. Tools
for creating panoramas do not scale to a very large
scene (e.g ., thousands of frames). Moreover, commit-
ting to specific values of the panorama is error prone,
and these mistakes can hurt alignment to it. 2) For a
very large panorama, it is hard and/or time consuming
to estimate the alignment using standard tools. In-
spired by PoseNet [25], we prefer a deep-net approach.
However, PoseNet’s training relies on expensive and
error-prone 3D reconstruction pipeline. In contrast, we
propose a purely-2D approach that reuses the estimated
training warps. Given the already-available training
pairs, (xi, T

θi)Ni=1, our regression net learns to map
xi to θi ∈ R6 ∼= aff(2), the (Lie-algebraic) parameter
of an affine transformation in 2D. Learning transfor-
mation parameters between a pair of images directly
has been done, e.g ., in [13, 32]. Here, however, we
are interested in learning the transformation for each
frame to a global coordinate system. As sometimes a
training video might consists of only tens or hundreds
of frames, a too-low number for training, we resort
to standard approaches for handling data scarcity: 1)
Transfer learning [39]: in training, we merely fine-tune
a GoogLeNet [43] pre-trained on ImageNet [12]. 2)
Data augmentation (e.g ., [40]): we generate synthe-
sized frames by applying affine warps to the training
data. For more details, see our Sup. Mat.

3.3. Test

In test time, the regression net takes an input image,
x, and predicts θ = θ(x). We warp x by T θ to produce
a warped image in the global coordinate system, x′ =
x◦T θ. The predicted alignment is sometimes imperfect
(in terms of pixel-level accuracy), but it still locates x
very close to its desired destination. Thus, it is easy
to refine the prediction as follows (the more expensive
PoseNet would have also needed a refinement due to
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similarly-imprecise results; see our Sup. Mat.). Let
Ω′ be the domain of x′. We select only the training
pixel stacks that are either in Ω′ or near it (e.g ., of
distance < 10 pixels). We compute the average image
of these pixel stacks. Then, we apply a standard tool for
estimating the small residual transformation between
x′ and the average image (see Sup. Mat). Let x̃ denote

the result of applying the refined warp, and let Ω̃ denote
its domain (Fig. 3d, green border). Among the local
subspaces we use only those whose domain has some
overlap with Ω̃. We project x̃ on the subspace of each
such model as follows. Let m ∈ {1, . . . ,M} and let xm

be the following image, of domain Ωm (Fig. 3d, red
border): xm coincides with x̃ (Fig. 3d, green border)

on Ωm ∩ Ω̃, and takes zero values on Ωm \ Ω̃ (Fig. 3d,
black pixels). Recall there are d pixels in Ωm. Let µm

denote the (vectorized) mean image associated with
the k-dimensional subspace Vm (some of the subspace
methods we experimented with do not use a mean image;
for these, just take µm to be the zero vector). Let bm
denote the projection of xm, the vectorized version of
xm, on Vm. It is defined by

bm = µm + Vmαm (4)

αm = argmin
α∈Rk

∥∥∥W
1

2

m(Vmα− (xm − µm))
∥∥∥
2

ℓ2

(5)

where Wm is a diagonal 3d× 3d matrix whose diagonal
elements are 1 if they correspond to pixels in Ω̃, and
0 otherwise. This is a linear weighted least-squares
problem, so it has a standard closed-form solution. The
background image of x̃, according to model m, is given
by bm, the “unvectorized” version of bm. Next, we
compute the pixelwise average of the background images
and warp the result back to the domain of x. Letting b

denote the resulting “unwarped” average image, b and
f , x− b are the BG/FG separation of x by the POLS
model; see, e.g ., Fig. 1 and Fig. 2.

3.4. Camera-motion Types Handled by the Method

Recall that while we initialize the STN using SE(2),
we end up working with Aff(2). Thus, while SE(2)
cannot handle, e.g ., changes in scale, JA-POLS can
handle some variations of those distances, as long as
these variations are not substantial enough to completely
break the initialization; this caveat is the main limita-
tion of our method. The method has no problems with
camera motions that are roughly parallel to the scene
(e.g ., arbitrary in-plane rotations or vertical/lateral
translations). Thus, it enables relatively-free camera
movements, in the sense described above and, particu-
larly, handles large accumulative motions (which none
of the competing methods can handle) that are roughly

parallel to the scene. Moreover, not relying on motion
cues, in test videos JA-POLS can handle even fast mo-
tions of camera/objects. It also detects changes due
to removal/displacement of static background objects.
Empirically, perspective effects come into play only in
very short ranges (e.g ., <2 meters). At least concep-
tually the affine STN could have been replaced with a
homographic STN to handle such cases as well.

4. Results

We show, via qualitative and quantitative evalua-
tions, that JA-POLS consistently yields SOTA results
on moving-camera videos. Please also see the videos
in the Sup. Mat. Whenever possible (see below),
we compare against PRPCA [30], DECOLOR [50],
Prac-ReProCS [15] and incPCP-PTI [7] in camera-
motion datasets, and t-GRASTA [20] in camera-jitter
datasets. We consider 9 moving-camera benchmark
videos: Tennis, Swing, Stroller, Stunt, Flamingo, Hike
(DAVIS dataset [35], [36]), Horse (Freiburg-Berkeley
dataset [33]), Sidewalk and ContinuousPan (CDNet
2014 dataset [46]); these videos come with Ground-
Truth (GT) FG masks. We also add our own 5 real
videos, captured by us: Jitter, GardenShort, Kitchen,
FastMotion and GardenWideScene. To enable qual-
itative evaluation on those, we inserted synthesized
FG objects into each of them (see the Sup. Mat. for
some visual examples). Together, the 14 videos cover
a variety of camera-motion types: jitter (Sidewalk,
Jitter), short videos with fairly-free motion (Tennis,
Stroller, Swing, Flamingo, Hike, Horse, GardenShort),
wide-scenes and/or long videos (Stunt, ContinuousPan,
GardenWideScene), fast motion (FastMotion), and an
indoor scene (Kitchen). Some of the sequences con-
tain occlusions and illumination variations. To quantify
FG estimation, we set a fixed threshold on the esti-
mated FG, and compute the Fmeasure index defined by
Fmeasure = 2·Precision·Recall

Precision+Recall where precision and recall
are derived from the GT and thresholded FG binary
masks. Each local subspace in our POLS model was
learned using either TGA [17] (k = 5; 60% trimming)
or the denoising RPCA (Denoising-RPCA) which was
proposed as part of the pipeline in [30]. We found that
both of them outperformed [5], that in small datasets (
< 80 frames) Denoising-RPCA was the best, and that
in larger ones TGA was the winner; see Sup. Mat. for
details. We evaluate all methods on the same training
images. As our competitors lack a direct way to process
new test videos, only JA-POLS can be evaluated on the
latter. Table 1 compares the different methods (except
t-GRASTA, which is not designed to handle most of the
sequences there). PRPCA, which uses a global model,
faces memory issues in wide scenes and could not run
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Observation JA-POLS PRPCA DECOLOR Prac-ReProCS IncPCP-PTI

Figure 4: A typical frame from the Tennis dataset. Left column: observation (top row) and ground-truth foreground
(bottom). Other columns: estimated background (top) and foreground (bottom) produced by each method.

Sequence JA-POLS PRPCA DECOLOR Prac-ReProCS incPCP-PTI

Tennis 0.67± 0.03 0.54± 0.03 0.21± 0.11 0.27± 0.03 0.16± 0.04
Swing 0.62± 0.02 0.59± 0.05 0.27± 0.02 0.27± 0.01 0.19± 0.01
Stroller 0.62± 0.03 0.50± 0.05 0.35± 0.04 0.21± 0.02 0.02± 0.01
Flamingo 0.58± 0.01 0.50± 0.01 0.23± 0.01 0.14± 0.02 0.18± 0.03
Hike 0.74± 0.01 0.70± 0.06 0.31± 0.02 0.07± 0.01 0.01± 0.00
Horse 0.80± 0.01 0.61± 0.05 0.14± 0.03 0.27± 0.02 0.20± 0.04
Stunt 0.48± 0.10 0.39± 0.11 0.10± 0.05 0.11± 0.05 0.15± 0.05
ContinuousPan 0.67± 0.05 Out of memory 0.51± 0.08 0.59± 0.05 0.47± 0.09

Jitter 0.83± 0.03 0.40± 0.05 0.22± 0.04 0.75± 0.04 0.53± 0.06
GardenShort 0.83± 0.01 0.10± 0.00 0.38± 0.01 0.71± 0.01 0.34± 0.03
Kitchen 0.57± 0.07 0.21± 0.02 0.19± 0.03 0.24± 0.04 0.24± 0.04
FastMotion 0.41± 0.05 0.06± 0.01 0.11± 0.02 0.27± 0.03 0.21± 0.02
GardenWideScene 0.44± 0.04 Out of memory 0.07± 0.02 0.35± 0.02 0.30± 0.03

Table 1: F-measure values (mean±std). The first 8 sequences are known benchmarks, the last 5 are our own.

Observation JA-POLSGround-truth FG incPCP-PTIPrac-ReProCSDECOLOR

Figure 5: FG-extraction comparison of the methods on two typical frames from the ContinuousPan sequence.

Sequence JA-POLS
t-GRASTA t-GRASTA
(batch) (online)

Sidewalk 0.57± 0.05 0.45± 0.08 0.11± 0.07
Jitter 0.83± 0.03 0.29± 0.03 0.44± 0.04
Kitchen 0.57± 0.07 0.14± 0.01 0.18± 0.04

Table 2: F-measure performance (mean±std) of
t-GRASTA and JA-POLS, on a small jitter case
(Sidewalk), a medium jitter case (Jitter) and a
relatively-free-motion case (Kitchen).

on them, even though the machine we used, whose full

specs are at the Sup. Mat., had 256GB RAM (to clar-
ify, JA-POLS does not need so much RAM). Also, as
PRPCA relies on pairwise alignments, it suffers from
accumulative alignment errors, and these worsen as
the video gets longer (e.g ., >100 frames). DECOLOR,
Prac-ReProCS and incPCP-PTI degrade sharply when
the motion is fast, suggesting they cannot handle rapid
subspace evolutions. Figures 4 and 5 visualize typical
BG/FG separation results produced by each method.
For more visual and qualitative results, see Sup. Mat.
Table 2 compares the performance, on the Jitter dataset,
of JA-POLS and t-GRASTA [20] using 3 levels of mo-
tion. Figure 6 shows results for frames from a test video
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Observation JA-POLS t-GRASTA (batch) t-GRASTA (online)
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Figure 6: FG-extraction of JA-POLS vs. t-GRASTA (in its batch and online modes), on 2 typical frames from
Jitter dataset. Note this is a test video. Since t-GRASTA cannot handle test videos, we ran it here from scratch
(i.e., not treating it as test data). While such a comparison is biased against JA-POLS, the latter still clearly wins.
It also detects FG details even of small objects, and provides a relatively-clearer background.

Figure 7: Change detection: JA-POLS captures not only moving objects such as the man and the dog (which
appears in the last 3 frames as can be seen upon zooming in) but also removal of static objects (a chair).

of the Jitter dataset (see the caption for details). Fig-
ure 7 shows frames from a test video of the GardenShort
dataset. Note that a static object (a chair), which was
part of the background, is moved to another location
during the test video. JA-POLS detects that as it does
not rely on motion cues.

JA-POLS evaluation on test videos. Leverag-
ing the alignment predictor, we also evaluated JA-POLS’
performance on 3 test videos. The resulting F-measure
(mean±std) values are as follows: Kitchen: 0.50± 0.03,
GardenWideScene: 0.55± 0.03 and Jitter: 0.88± 0.01.

Sequence
SE-Sync+STN STN Only
F-measure Loss F-measure Loss

Jitter 0.83± 0.03 0.018 0.80± 0.03 0.021
CP 0.67± 0.05 0.064 0.44± 0.07 0.123

Table 3: F-measure performance (mean±std) and the
same STN loss (alignment+regularization) of
JA-POLS on the Jitter and ContinuousPan (CP) data,
with and without the SE-Sync initialization.

Ablation studies. Table 3 quantifies the impor-
tance of the SE-Sync initialization, showing its clear
utility, especially when the motions go beyond mere
jitters. The Sup. Mat. contains two additional such

ablation studies. The first shows the importance of our
regularization term, while the second shows that the
alignment prediction is indeed indispensable.

Timings. SE-Sync takes a few seconds. POLS learn-
ing is fast, especially when TGA is used, and usually
takes a few minutes. Since training the predictor is
based on transfer learning, that too takes only minutes.
The bottleneck is the STN optimization, whose running
time, which ranges from ∼ 15 minutes to several hours,
depends on the length and complexity of the training
video. However, processing a new test frame through
the entire pipeline takes less than 2 [sec].

5. Conclusion

We proposed a novel MCB model and showed it
achieves SOTA results and that it is highly scalable.
We also showed that our choices in each step were ju-
dicious; e.g ., we demonstrated that POLS consistently
outperforms a global model as well as the critical roles
of the SE-Sync initialization, the novel regularization,
and the predictor. While competing MCB models fo-
cus on BG/FG separation in the original data and/or
incremental updates given the next frame, ours also
generalizes to unseen misaligned videos (of the same
scene, taken possibly at different times).
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