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Abstract

3D object detection on point clouds finds many appli-

cations. However, most known point cloud object detec-

tion methods did not adequately accommodate the charac-

teristics (e.g., sparsity) of point clouds, and thus some key

semantic information (e.g., shape information) is not well

captured. In this paper, we propose a new graph convo-

lution (GConv) based hierarchical graph network (HGNet)

for 3D object detection, which processes raw point clouds

directly to predict 3D bounding boxes. HGNet effectively

captures the relationship of the points and utilizes the multi-

level semantics for object detection. Specially, we pro-

pose a novel shape-attentive GConv (SA-GConv) to cap-

ture the local shape features, by modelling the relative ge-

ometric positions of points to describe object shapes. An

SA-GConv based U-shape network captures the multi-level

features, which are mapped into an identical feature space

by an improved voting module and then further utilized

to generate proposals. Next, a new GConv based Pro-

posal Reasoning Module reasons on the proposals consid-

ering the global scene semantics, and the bounding boxes

are then predicted. Consequently, our new framework out-

performs state-of-the-art methods on two large-scale point

cloud datasets, by ∼4% mean average precision (mAP) on

SUN RGB-D and by ∼3% mAP on ScanNet-V2.

1. Introduction

3D object detection on point clouds has many applica-

tions, such as autonomous driving, fault detection for parts,

housekeeping robots, and augmented reality. Since point

clouds lie in irregular space and can be sparse, known meth-

ods (e.g., convolutional neural networks) designed for grid-

structured data did not perform well on point clouds (e.g.,

see discussion in [2]). Many methods have been proposed

∗These authors contributed equally to this work.

Figure 1. The predicted object centers and bounding boxes. Dif-

ferent colors of points indicate the center predictions based on the

semantics of different levels. The semantics of different levels are

then centralized and aggregated to predict the bounding boxes.

for 3D object detection on point clouds, such as projection

based methods [35, 4], volumetric convolution based meth-

ods [19, 8], and PointNet based methods [29, 30]. The for-

mer two types tried to stiffly transform point cloud data into

grid-structured data, and the latter aggregated features with-

out explicitly considering the geometric positions of points.

Compared to other known methods, PointNet++ [32]

aimed to preserve the spatial structure of points, and thus

was widely used as backbone for feature learning in state-

of-the-art frameworks [29, 46, 30]. Recently, Charles et al.

proposed VoteNet [29], voting for points to be at the object

centers based on learned features from PointNet++ [32].

This method yielded excellent results. But, there are still

some challenging drawbacks. First, using PointNet++ as

backbone neglected some local shape information, since the

relative geometric positions of points were not accounted

for. Second, the multi-level semantics were not adequately

utilized by the structures of the frameworks, which might

neglect some helpful information for object detection.

In this paper, we propose a novel Hierarchical Graph

Network (HGNet) for 3D object detection on point clouds,

based on graph convolutions (GConvs). HGNet contains

three main components: a GConv based U-shape network

(GU-net), a Proposal Generator, and a Proposal Reason-

ing Module (ProRe Module). Specially, we develop a new
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Shape-attentive GConv (SA-GConv), which captures the

object shape information by modelling the relative geomet-

ric positions of points. In our pipeline, the SA-GConv based

GU-net takes a point cloud as input and captures the seman-

tics of multi-levels (see Fig. 2), which are further aggregated

to generate proposals by the Proposal Generator that con-

tains an improved voting module (see Sec. 3.4). Incorpo-

rating the global scene semantics, the novel Proposal Rea-

soning Module (ProRe Module) leverages a fully-connected

graph to reason on the proposals, and the bounding boxes

are predicted. The detection results are finally obtained af-

ter performing 3D non-maximum suppression (NMS). An

example of our object detection results is shown in Fig. 1.

The entire HGNet is trained in end-to-end manner. In our

framework, the local shape information, semantics of multi-

levels, and global scene information (features of proposals)

of point clouds are sufficiently captured, aggregated, and

incorporated by the hierarchical graph model, giving full

consideration of the characteristics of point cloud data.

Our main contributions in this work are as follows:

(A) We develop a novel Hierarchical Graph Network

(HGNet) for 3D object detection on point clouds, which

outperforms the state-of-the-art methods by a clear margin.

(B) We propose a novel SA-(De)GConv, which is effective

at aggregating features and capturing shape information of

objects in point clouds.

(C) We build a new GU-net for generating multi-level fea-

tures, which are vital for 3D object detection.

(D) Leveraging global information, we propose the ProRe

Module to promote performance by reasoning on proposals.

2. Related Work

2.1. 3D Object Detection on Point Clouds

Point clouds have some special characteristics (e.g.,

sparse and irregular), which are often not suitable for

convolutional neural networks to process. Many meth-

ods [2, 38, 20, 44, 9, 23] have been proposed for 3D object

detection on point clouds, such as projection methods (e.g.,

Complex-YOLO [35], BirdNet [4]), volumetric convolution

based methods (e.g., 3DFCN [19], Vote3Deep [8]), and

PointNet based methods (e.g., F-PointNet [30], STD [46]).

PointNet [31] pioneered a method using raw points as

input and obtained good performances, followed by many

frameworks [31, 32, 14, 29, 42]. Lang et al. [17] intro-

duced the Pillar Feature Network, encoding point clouds

into pseudo images and being processed by 2D CNN.

Although novel and fast, the localization information of the

framework [17] was not well preserved. PointNet based

methods showed good performance, as they dealt with raw

points directly. However, PointNet did not consider the

dependence of points in information aggregation. Yang

et al. [46] proposed a two-stage fusion method STD,

combining PointNet based methods and volumetric con-

volution based methods. However, the two-stage process

might learn some unmatched features for object detection.

VoteNet [29] proposed a new voting method, predicting

the object centers with the features learned which helped

aggregate distant semantic information. However, the

local shape information was not well accounted for in

the VoteNet. Since there can be a variety of objects, the

features needed for detecting different objects may not be

in an identical distribution. In other words, semantics of

multi-levels may be needed for identifying different objects.

2.2. Spatialbased Graph Convolution Networks

Graph convolution networks (GCNs) can be divided

into two types: spatial-based [26, 3, 28] and spectral-

based [12, 6, 15, 10]. Spatial-based methods are mainly

based on the spatial relations of vertices in graphs, and are

widely used on point clouds. Thus, we focus on review-

ing these methods. The first spatial-based GCN was pro-

posed in [26], by summing up the neighborhood informa-

tion of vertices directly. Later, an inductive feature aggre-

gation algorithm (GraphSAGE, including Mean aggregator,

LSTM aggregator, and Pooling aggregator) was proposed

in [10] to replace the transductive learning. Strictly speak-

ing, GraphSAGE is not a kind of GCN, but it embodied

the ideas of GCNs. Graph Attention Networks [40] em-

ployed attention mechanisms in learning relative weights

among neighboring vertices, and showed attractive perfor-

mance over previous works. In addition, many attention

based GCNs [18, 1, 25] were proposed. GINs [45] assigned

different weights for the central vertex and its neighbor-

ing vertices. For 3D data, Li et al. [21] introduced the

dilated GCNs, which better balanced the receptive fields

and computation. Feature-Steered GConv [41] verified that

GConvs could capture shape information by modelling the

geometric positions of the points, and outperformed the tra-

ditional shape descriptors. Wang et al. presented a dynamic

edge convolution method for semantic segmentation, called

EdgeConv [42], which aimed to capture the relationship of

points but neglected the importance of the relative geomet-

ric positions of points.

3. Hierarchical Graph Network

3.1. Motivation and Overview

We aim to develop a new effective method for 3D ob-

ject detection on point clouds. Different from 2D image

data, point clouds often do not present clear object shape

information (e.g., corners and edges), and thus some shape-

attentive feature extractors are needed to process point

clouds. Even though the previous work [42, 32, 41] im-
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Figure 2. An overview of our HGNet framework, which contains GU-net, Proposal Generator, and ProRe Module. The counts of points

are indicated on the left. In inference, 3D non-maximum suppression (NMS) is utilized and predicted 3D boxes are finally produced.

plicitly used the positions of points, it is more efficient to

explicitly model the geometric positions of points, which

better describe the shapes of objects. In addition, the multi-

level semantics were proved beneficial [43, 39, 34, 22] to

detecting objects of various sizes. Also, points can be sparse

on the surfaces of objects, and thus the semantics of differ-

ent levels may provide complementary information for one

another. Many previous studies for 3D object detection did

not sufficiently utilize multi-level semantics, which was in-

efficient to tackle point clouds with objects of various sizes

and point sparsity.

In this work, we develop an end-to-end hierarchical

graph network (HGNet) for 3D object detection on point

clouds, as shown in Fig. 2. The entire HGNet contains

three main parts: a GConv based U-shape network (GU-

net), a Proposal Generator, and a Proposal Reasoning Mod-

ule (ProRe Module). A new shape-attentive GConv is pro-

posed to capture the local shape semantics. GU-net gen-

erates the multi-level semantics, which are aggregated to

generate proposals by the Proposal Generator. Finally, the

ProRe Module reasons on the proposals to help predict the

bounding boxes by leveraging the global scene semantics.

Below we will discuss in detail the novel Shape-attentive

(De)GConv in Sec. 3.2, GU-net in Sec. 3.3, the Proposal

Generator in Sec. 3.4, the ProRe Module in Sec. 3.5, and

the loss functions in Sec. 3.6.

3.2. Shapeattentive Graph (De)Convolutions

Point clouds usually do not present the object shapes

clearly, yet shape information is important for 3D object

detection. One might describe the local shape around a

point using the relative geometric positions of its neighbor-

ing points. In this section, we will present a novel Shape-

attentive GConv, which captures object shapes by mod-

elling the geometric positions of points.

Shape-attentive Graph Convolution. Consider a point

set X = {xi ∈ R
D+3}ni=1, where a point xi = [fi, pi],

pi ∈ R
3 is the geometric position and fi ∈ R

D is the D-

dimensional feature. From X , we want to generate a point

set X ′ = {xi ∈ R
D′+3}n

′

i=1, n′ < n. Here we design

a GConv to aggregate features from X to X ′. Similar to

the sampling layer in PointNet++, we first sample n′ points

from n points. Typically, k Nearest Neighbors (kNN) or

ball-query [32] with respect to the geometric positions of

points is used to construct a local region after sampling a

point xi ∈ X as the central point for feature aggregation.

In this paper, we use kNN as example.

Our shape-attentive GConv (SA-GConv) models the

point positions by an independent term. Consider two

points xi and xj in a local region, where xi is the cen-

tral point and xj is one of the neighboring points of xi.

The relative geometric position vector, eij = pi − pj , can

well express the relative geometric direction and the rela-

tive geometric distance between points xi and xj . Usually,

a local region contains dozens of points, which are suffi-

cient for local shape description in the 3-dimensional space

if xj enumerates all the points in the local region except

xi. To model the relative geometric positions of points and

adaptively aggregate the point features, we define a directed

GConv, SA-GConv, in an attractively simple way as:

fi = max
xj∈kNN(xi)

g(pi − pj) · f(xi, xj) (1)

We model the relative geometric positions by a learnable

function g : R3 → R
1, and the point features (including

geometric positions) are addressed by f : RD+3×R
D+3 →

R
D′

. Without loss of generality, we employ the max-

pooling operation to finally aggregate the features. In par-

ticular, we can implement g by a simple one-by-one con-

volution with the Sigmoid activation function, and imple-

ment f by f(xi, xj) = MLP([xi, x
′

j ]), where x′

j = xj −xi,

MLP(·) is a multi-layer perceptron with batch normaliza-

tion and ReLU activation, and [·, ·] indicates channel wise

concatenation. The operation is illustrated as in Fig. 3. In

394



Fig. 3, the blue point xi is sampled from a point set as cen-

tral point, and the corresponding local region contains 3

nearest neighbors of xi (including the orange, green, yel-

low points); the features of the 3 nearest neighbors of xi

are aggregated to xi following Eq. (1). Our proposed SA-

GConv has the property of permutation invariance, as the

max-pooling operation is symmetric with respect to the in-

put.

This shape-attentive operation is different from the sim-

ple MLP based operations (e.g., EdgeConv [42]). Eq. (1)

explicitly computes the shape information by an indepen-

dent function g while MLP based methods used learned

weights. Three dimensions (e.g., for geometric positions)

in a high dimensional feature space have very limited im-

pacts if one co-treats all features (including “positions”) us-

ing merely an MLP. Beside, as shown in Fig. 7, the function

g is highly responsive to the shape information, and such

shape description is beneficial to object detection.

Shape-attentive Graph De-Convolution.

In processing grid-structured data, an effective up-sampling

operation often pads the feature maps (e.g., by interpola-

tion) and then performs a convolution, as shown in the left

part of Fig. 4. Generalizing this operation to irregular data,

we propose the Shape-attentive graph De-Convolution (SA-

DeGConv), which performs the inverse operation of SA-

GConv. SA-DeGConv provides a method to propagate the

features from certain points to more points in an adaptive

way, as shown in the right part of Fig. 4.

The SA-DeGConv is performed in three steps. (1)

Padding the points. As shown in Fig. 2, if we up-sample the

features in the point feature maps U4 to generate U3, we

should pad the points on U3 by following the positions of

points on D3, as the points on D3 and U3 shall be position-

ally aligned. (2) Feature Initialization. As {p
(4)
i } ⊂ {p

(3)
i },

and p
(3)
i , p

(4)
i indicate the geometric positions of the i-th

point on U3 and U4, respectively. Thus, for the points on

U3, we use arithmetic average to initialize the features by

f∗

i =
∑k

j=1 f
(4)
j /k, where f

(4)
j indicates the features of the

j-th k positionally neighboring points on U4. (3) Feature

aggregation. We use SA-GConv (Eq. (1)) to update the fea-

tures of all the points on U3, as illustrated in Fig. 4.

3.3. GUnet

Effectively detecting objects needs to use abundant

semantics. Previous methods (e.g., PointNet based meth-

ods) barely utilized semantics of multi-levels, which

was not very beneficial to detecting objects of various

sizes, as discussed in [22, 24]. Besides, as points can be

sparse and even missing on the surfaces of objects, using

multi-level semantics provides abundant information for

object detection. To capture the multi-level semantics,

we propose a new U-shape network called GU-net, based

𝑥𝑗 = [𝑓𝑗 , 𝑝𝑗]𝑥𝑖 = [𝑓𝑖 , 𝑝𝑖]
𝑓

𝑔
[𝑥𝑖, 𝑥𝑗]
[𝑝𝑖, 𝑝𝑗]

max

Figure 3. An illustration of the Shape-attentive GConv operation.

The blue point xi indicates a sampled point whose feature is up-

dated by aggregating the features from other points (xj , including

the orange, yellow, and green points). p indicates the geometric

position. The aggregation follows from Eq. (1).

on SA-(De)GConv. We design a down-sampling module,

and repeatedly stack it 4 times to form the down-sampling

pathway, while an up-sampling module is repeatedly

stacked twice to make up the up-sampling way. Similar to

FPN [22], GU-net generates a feature pyramid with three

point feature maps (see Fig. 2).

Down-sampling Module. Given a point feature map with

N points, we first sample a subset containing N ′ (N ′ < N )

points by the farthest point sampling (FPS) [27, 7, 32].

Then we construct the local regions by kNN or ball-query

around the sampled points, and then update the features of

sampled points by performing the SA-GConv. In this way,

a point feature map is processed to generate a higher-level

point feature map with fewer points (e.g., D4 is generated

from D3).

Up-sampling Module. The process of the up-sampling

module is inverse of the process of the down-sampling

module, mainly performed by SA-GConv. The skip

connections are also used to bridge the corresponding point

feature maps (e.g., U3 and D3) by channel-wise concate-

nation, except for the top-most point feature map U4. U4
and D4 is connected by MLP. Thus, the GU-net outputs

a feature pyramid with three point feature maps (see Fig. 2).

3.4. Proposal Generator

Three point feature maps are generated by GU-net (see

Fig. 2), containing the multi-level semantics. Some previ-

ous methods (e.g., VoteNet [29]) used only one feature map

for object prediction. Even though the higher-level features

are computed by fusing the lower-level features in the up-

sampling pathway, it is more beneficial to use the multi-

level features together for proposal generation as the fea-

tures of different levels provide various semantics. To this

end, we propose the Proposal Generator to predict the object

centers (shown in Fig. 1) with an improved voting module

as the main structure, which transforms the multi-level fea-

tures into an identical feature space.

Improved Voting Module. The voting module in
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Figure 4. An illustration of the up-sampling operation (left) to the

grid-structured data, and SA-DeGConv (right). In the right part,

the dashed circles denote the padded points and the blue arrows in-

dicate the arithmetic average for feature initialization in perform-

ing SA-DeGConv.

VoteNet [29] was proposed to predict the object centers

and centralize the object features. In our paper, we per-

form the voting operation on all the point feature maps in

the feature pyramid. Thus, the improved voting module

also helps to transform the multi-level features (of differ-

ent feature spaces) into an identical feature space (as shown

in Fig. 1), which can be further utilized directly to generate

proposals. We implement the improved voting module with

SA-GConv, since SA-GConv is more efficient. The voting

process is specified by:

[fv, pv] = [f, p] + [∆f,∆p]

[∆f,∆p] = SA-GConv([f, p])
(2)

where f ∈ R
F and p ∈ R

3 are the features and the geomet-

ric positions of the points in feature pyramid, and fv ∈ R
Fv

and pv ∈ R
3 are the features and geometric positions of

the votes. SA-GConv(·) follows from Eq. (1). We use SA-

GConv to implement the improved voting module by adding

three additional channels to predict the geometric shifts.

Generating Proposals. By performing the improved

voting module, the features in the feature pyramid are trans-

formed into an identical feature space. To aggregate the fea-

tures, we retain Np votes by FPS and aggregate the features

of all the votes into them, similar to VoteNet (Np = 256 as

default). Thus, the features of multi-levels are fully fused to

predict bounding boxes and categories.

3.5. Proposal Reasoning Module

With the structures presented above, the local semantics

and multi-level semantics are captured and fully fused. On

one hand, these semantics are learned in the local receptive

fields, yet the global scene semantics are not used in object

detection. On the other hand, some objects contain very few

points on their external surfaces (e.g., see the point clouds

of the SUN RGB-D dataset in Fig. 6), and it can be hard to

detect those objects with such limited information. Hence,

we propose a new GConv based Proposal Reasoning Mod-

ule (ProRe Module) to reason on proposals by leveraging

the global scene information. The features of the propos-

als are updated by a new GConv, incorporating the global

semantics and using the relative positions of the proposals

as an attention map. We formulate the relation of the pro-

posals as a directed graph Gg = (Vg, Eg). Vg denotes the

vertex set, and each vertex is for a proposal presenting as

high dimensional features. The edges Eg in Gg are initially

set as fully-connected with self-loops.

Formally, given a proposal set in which the features

of the proposals lie in an F -dimensional space, we con-

sider a proposal-feature tensor Hp ∈ R
n×F and a tensor

P ∈ R
n×n×3 recording the relative positions of the propos-

als. In P, an element Pi,j,k = pi,k − pj,k, where pi,k and

pj,k are the k-th dimension (k ∈ {x, y, z}) of the geometric

positions of the i-th and j-th proposals, respectively. The

reasoning procedure can be specified as:

H′

p = Φ(P,Hp) = γ(P)⊙Ψc(Ψv(Hp)
T +HT

p )
T (3)

where “+HT
p ” indicates a residual connection [11], ⊙ de-

notes the Hadamard product, and the operation Ψi (i ∈
{c, v}) is mainly implemented by one-dimensional convo-

lutions, operating along the vertex-wise and channel-wise

directions, respectively. The vertex-wise operation Ψv in-

corporates features and propagates information among ver-

tices (proposals), and the channel-wise operation Ψc up-

dates the features of proposals. H′

p ∈ R
n×F ′

denotes the

proposal-feature tensor after reasoning. Different from the

previous GConvs, ProRe considers the relative geometric

positions among proposals in feature aggregation using γ,

which transforms P into size n × F ′ for Hadamard pro-

duction. After the reasoning, the 3D bounding boxes and

corresponding categories are predicted as in VoteNet [29].

3.6. Loss Functions

The improved voting process on the feature pyramid is

under the guidance of Lvoting, as:

Lvoting =
∑

m

(
1

Mm

∑

i

|∆pi −∆p∗i |✶[xi on object]) (4)

where ✶[xi on object] indicates whether a point xi is on an

object surface. Mm is the point number on a certain ob-

ject in the m-th level point feature maps of feature pyra-

mid, and | · | denotes the L1 loss. The other loss terms

Lobj-cls,Lboxes,Lsem-cls also follow VoteNet. The loss func-

tion of the entire framework is defined by:

L = Lvoting + λ1Lobj-cls + λ2Lboxes + λ3Lsem-cls (5)

where λ1 = 0.5, λ2 = 1, and λ3 = 0.1 as default.

4. Experiments

To evaluate our method, two key questions should be ad-

dressed by the experiments of HGNet.
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Q1: How does HGNet compare to the state-of-the-art meth-

ods for 3D object detection on point clouds?

Q2: How to analyze the performance of SA-(De)GConv

(for local shape semantics), GU-net with Proposal Gener-

ator (for semantics of multi-levels), and the ProRe Module

(for global semantics)?

4.1. Implementation Details

The entire HGNet in Fig. 2 is trained end-to-end. We im-

plement our framework using PyTorch 1.0 on Python 3.6.

The framework is trained on 1 GeForce RTX 2080Ti GPU.

We train HGNet with the Adam optimizer. With a batch

size of 8, the learning rate is 10−3 initially, is reduced by

10× after 80 epochs, and is reduced by 10× again after

120 epochs. Training the whole framework to convergence

takes about 18 hours on SUN RGB-D and about 5 hours

on ScanNetV2. In our experiments, the evaluation metrics

follow those in [29], using the average precision (AP). In

addition to the mean average precision (mAP) for evaluat-

ing the performance of the frameworks compared, we also

use the coefficient of variation for AP (cvAP) to show the

adaptability of the frameworks to detect various objects, de-

fined as

cvAP = [

∑Nc

i (APi − mAP)2

Nc · mAP2 ]
1

2 (6)

where Nc indicates the numer of the object categories. The

lower cvAP is, the better a framework is.

4.2. Datasets

SUN RGB-D [36] is a single-view dataset showing indoor

scenes, with 37 object categories in total (but 10 most com-

mon categories are used). The whole dataset contains ∼5K

RGB-D images with 5,285 images for training. All the im-

ages are annotated with oriented 3D bounding boxed and

the categories. We convert the depth images into point cloud

data before model processing.

ScanNet-V2 [5] is a dataset of indoor scenes, containing

RGB-D scans of about 1.5K scenes. To compare with the

state-of-the-art frameworks, we prepare the data as in [13].

Input Data. Similar to PointNet [31], we use raw points as

input, after randomly sampling 20,000 points from a point

cloud in SUN RGB-D or 40,000 points from a 3D scan in

ScanNet-V2. We only use the height features and geometric

positions as in VoteNet [29], without RGB cues. For data

augmentation, we randomly flip point clouds along the x-

axis and y-axis, and randomly scale the point clouds by s
times, s ∼ U(0.9, 1.1).

4.3. Evaluation Results

Comparison with State-of-the-art Methods. To answer

question Q1, we compare on SUN RGB-D and ScanNet-V2

with various state-of-the-art methods: Deep sliding shapes

(DSS) [37], 3D-SIS [13], 2D-driven [16], F-PointNet [30],

GSPN [47], Cloud of gradients descriptor (COGD) [33],

and VoteNet [29]. The experimental results are shown in

Table 1 and Table 2. The performance results of the previ-

ous methods are obtained from either the original papers or

[29].

The experimental results show that our HGNet outper-

forms all the previous methods by a large margin without

RGB cues. Specifically, HGNet promotes the AP scores for

large objects compared to VoteNet [29], such as desk and

bathtub, which puzzled VoteNet, as shown in Table 1. Note

that HGNet has less bias than the previous methods (even

reducing cvAP by ∼9% on SUN RGB-D), which illustrates

that HGNet is more adaptive to various objects. This likely

is due to the proposed feature pyramid and our hierarchi-

cal graph modelling (SA-GConv, GU-net, and ProRe Mod-

ule). It is worth noting that the AP scores cannot completely

show the power of HGNet, and this will be discussed in

the next paragraph. Besides, the difference of the inference

time per point cloud between VoteNet and HGNet is within

0.001s on our GPUs, on both SUN RGB-D and SCanNet.

Visualization Results. Fig. 6 gives some visualization ex-

amples of point clouds, comparing the predicted bounding

boxes and ground truth boxes. These examples show that

HGNet has good performance on various objects. Besides,

HGNet often detects some objects in the scenes that are not

annotated by the ground truth (see the first and second rows

for SUN RGB-D in Fig. 6). This implies that the indicator

AP might underestimate the ability of HGNet.

4.4. Ablation Analysis

Ablation Experiments. To answer question Q2, we evalu-

ate the contributions of SA-GConv, GU-net, and the ProRe

Module via ablation experiments on the SUN RGB-D

dataset. Some quantitative results are shown in Table 3.

We compare SA-GConv with a simple GConv (SGConv)

by SGConv(xi, xj) = f(xi, xj), eliminating the position

modelling term g(pi − pj). Also, we compare De-GConv

with the arithmetic interpolation (Inter.), which is the ini-

tialization method of De-GConv (described in Sec. 3.2). We

compare feature pyramid with U2 (as shown in Fig. 2). The

first row in Table 3 is for the baseline. As one can see in

Table 3, SA-GConv, ProRe Module, and feature pyramid

contributes ∼2%, respectively. Besides, SA-DeGConv also

contributes 0.4%. It is clear that these proposed compo-

nents are useful. Below we further discuss the effects of

ProRe module and SA-GConv.

Local Shape Information Capturing. To further illustrate

the performance of SA-(De)GConv, we compare it with the

set abstraction module (SA) of PointNet++. We replace SA-

GConv by SA in HGNet, and compare the precision of the

voting results on SUN RGB-D. The voting results show the

power of feature capturing. We define a smaller box with
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Input style bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP cvAP

DSS XYZ + RGB 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1 0.61

COGD XYZ + RGB 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.7 0.35

2D-driven XYZ + RGB 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1 0.36

F-PointNet XYZ + RGB 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0 0.38

VoteNet XYZ 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7 0.40

HGNet XYZ 78.0 84.5 35.7 75.2 34.3 37.6 61.7 65.7 51.6 91.1 61.6 0.31

Table 1. 3D object detection performance results on the SUN RGB-D V1 dataset. The average precision with a 3D IoU threshold of 0.25

is used. Only the 10 most common categories are shown. cvAP is defined in Eq. (6).

Input style mAP@0.25 mAP@0.50 cvAP@0.25 cvAP@0.5

DSS XYZ + RGB 15.2 6.8 - -

F-PointNet XYZ + RGB 19.8 10.8 - -

GSPN XYZ + RGB 30.6 17.7 - -

3D-SIS XYZ 27.6 16.0 0.65 1.25

3D-SIS XYZ+5 views 32.2 24.7 0.97 1.03

VoteNet XYZ 58.6 33.5 0.40 0.84

HGNet XYZ 61.3 34.4 0.38 0.82

Table 2. 3D object detection results on the ScanNet-V2 dataset

with 3D IoU thresholds of 0.25 and 0.5, respectively. “-” means

“not applicable”, since the corresponding data were not available.

SGConv GU-net
ProRe mAP

SA-GConv SGConv SA-DeGConv Inter. FP U2
X X X 57.3

X X X 59.5

X X X 59.7

X X X 60.1

X X X X 58.9

X X X 60.8

X X X X 61.6

Table 3. Quantitative ablation experiments on SUN RGB-D. “FP”

indicates the feature pyramid.

the same center in the bounding box of an object, and the

lengths of the small box are only 30% of those of the bound-

ing box. We define “precise votes” if the votes lie in the

small box. We calculate the ratio of “precise votes” over the

votes from U2 (as in Fig. 2). As shown in Table 4, it can be

seen that the points are better clustered (by over 6% in the

“precise votes” ratio) to the object centers with SA-GConv.

Note that the proposals are generated from the votes, and

thus the voting results are very important.

To demonstrate the shape information capturing

capability of SA-GConv, we let SA-GConvg(x) =
maxxj∈kNN(xi){g(pi − pj)}, with f(xi, xj) ≡ 1 in Eq. (1).

The g parameters of SA-GConvg(x) are inherited from the

g parameters of the first SA-GConv in GU-net (see Fig. 2).

Then we operate SA-GConvg(x) on the SUN RGB-D point

clouds. As illustrated in Fig. 7, the object parts that have ob-

vious shape information (e.g, corners, edges) are highly re-

sponsive. Besides, the response hot maps are similar among

the objects in the same category. This obviously verifies that

our SA-GConv (especially g) well captures the shape infor-

mation by modelling the geometric positions.

The ProRe Module helps the features propagate among

the proposals. This module might not be so useful if the fea-

tures for detecting an object had been adequately learned;

but it helps in detecting an object with very few points (e.g.,

the points can be sparse or missing on some objects). In

each category of SUN RGB-D, we sort the objects based

on the numbers of points on them in increasing order, and

divide the objects into 10 groups based on the sorted order.

Then we calculate the total average recall (AR) across the

categories in every percentile range (group). As shown in

Fig. 5, as the number of points on the objects decreases, the

impact of the ProRe Module is gradually becoming appar-

ent. For objects with very few points, the ProRe Module

can promote the recall rate by even over 12%.

0~10%
10~20%

20~30%
30~40%

40~50%
50~60%

60~70%
70~80%

80~90%
90~100%

50

60

70

80

90

AR
(%

)

without ProRe
with ProRe

Figure 5. The x-axis is for the percentile ranges in the sorted order

of the objects, and the y-axis is for AR with respect to the objects.

5. Conclusions

For 3D object detection on point clouds, we proposed

a novel framework HGNet, learning the semantics via hi-

erarchical graph modelling. Specifically, we proposed the

novel and light Shape-attentive (De)GConv to capture the

local shape semantics, which aggregates the features con-

sidering the relative geometric positions of points. We built

GU-net based on SA-GConv and SA-DeGConv, generat-

ing the feature pyramid containing the multi-level seman-

tics. The points on the feature pyramid vote to be at the

corresponding object centers and the semantics of multi-

levels are further aggregated to generate proposals. Then

a ProRe Module is employed to incorporate and propagate

the features among the proposals, promoting the detection
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Ratio of “precise votes” (%) bathtub bed bookshelf chair desk dresser nightstand sofa table toilet average

HGNet + SA 32.5 51.2 14.8 46.3 26.5 24.7 32.1 44.4 36.3 55.4 36.4

HGNet + SA-GConv 42.1 59.3 19.6 48.3 31.7 32.6 38.9 53.7 41.4 57.0 42.5

Table 4. Comparison of voting results between SA-GConv and SA module in HGNet on SUN RGB-D dataset.

Figure 6. Comparison between the predicted bounding boxes and ground truth boxes on SUN RGB-D and ScanNet-V2.

Figure 7. Visualization examples of the response values of

SA-GConvg on some objects of the SUN RGB-D dataset. One

can see that the edges (green arrows), corners (grey arrows), and

sharp parts (blue arrows) of the objects are highly responsive.

performance by leveraging the global scene semantics. Fi-

nally, the bounding boxes and the categories are predicted.

Different from the previous methods, HGNet attains better

performance by carefully considering the shape information

and aggregating the semantics of multi-levels.
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